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1. Introduction

The mathematical study of a predator-prey system in population dynamics has a long history
starting with the work of Lotka and Volterra. The principles of Lotka-Volterra models have
remained valid until today and many theoretical ecologists adhere to their principles [1–9].
Thus, we need to consider a Lotka-Volterra-type food chain model which can be described
by the following differential equations:

x′(t) = x(t)
(
a − bx(t) − cy(t)),

y′(t) = y(t)
( − d1 + c1x(t) − e1z(t)

)
,

z′(t) = z(t)
( − d2 + e2y(t)

)
,

(1.1)

where x(t), y(t), and z(t) are the densities of the lowest-level prey, mid-level predator, and
top predator at time t, respectively; a > 0 is called intrinsic growth rate of the prey; b > 0 is the
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coefficient of intraspecific competition; c > 0 and e1 > 0 are the per-capita rate of predation of
the predator; c1 > 0 and e2 > 0 denote the product of the per-capita rate of predation and the
conversion rate; d1 > 0 and d2 > 0 denote the death rate of the predators.

Now, we regard x(t) as a pest to establish a new system dealing with impulsive pest
control strategies from system (1.1). There are many ways to control pest population. One
of the most important methods for pest control is chemical control. A principal substance in
chemical control is pesticide. Pesticides are often useful because they quickly kill a significant
portion of pest population. However, there are many deleterious effects associated with
the use of chemicals that need to be reduced or eliminated. These include human illness
associated with pesticide applications, insect resistance to insecticides, contamination of soil
and water, and diminution of biodiversity. As a result, we should combine pesticide efficacy
tests with other ways of control like biological control. Biological control is another important
strategy to control pest population. It is defined as the reduction of the pest population
by natural enemies and typically involves an active human role. Natural enemies of insect
pests, also known as biological control agents, include predators, parasites, and pathogens.
Virtually, all pests have some natural enemies, and the key to successful pest control is to
identify the pest and its natural enemies and release them at fixed time for pest control.
Such different pest control tactics should work together rather than against each other to
accomplish successful pest population control [10–12]. Thus, in this paper, we consider the
following Lotka-Volterra-type food chain model with periodic constant releasing natural
enemies (mid-level predator) and spraying pesticide at different fixed time:

x′(t) = x(t)
(
a − bx(t) − cy(t)), t /= nT, t /= (n + τ − 1)T,

y′(t) = y(t)
( − d1 + c1x(t) − e1z(t)

)
, t /= nT, t /= (n + τ − 1)T,

z′(t) = z(t)
( − d2 + e2y(t)

)
, t /= nT, t(n + τ − 1)T,

x
(
t+
)
=
(
1 − p1

)
x(t), t = (n + τ − 1)T,

y
(
t+
)
=
(
1 − p2

)
y(t), t = (n + τ − 1)T,

z
(
t+
)
=
(
1 − p3

)
z(t), t = (n + τ − 1)T,

x
(
t+
)
= x(t), t = nT,

y
(
t+
)
= y(t) + q, t = nT,

z
(
t+
)
= z(t), t = nT,

(
x
(
0+)

, y
(
0+)

, z
(
0+)) =

(
x0, y0, z0

)
,

(1.2)

where 0 < τ < 1, T is the period of the impulsive immigration or stock of the mid-level
predator, 0 ≤ p1, p2, p3 < 1 present the fraction of the prey and the predator which die due to
the harvesting or pesticides, and q is the size of immigration or stock of the predator. Such
system is an impulsive differential equation whose theories and applications were greatly
developed by the efforts of Bainov and Simeonov [13] and Lakshmikantham et al. [14]. Also,
Nieto and O’Regan. [18] presented a new approach to obtain the existence of solutions to
some impulsive problems. Moreover [15–17], the theory of impulsive differential equations is
being recognized to be not only richer than the corresponding theory of differential equations
without impulses, but also to represent a more natural framework for mathematical modeling
of real-world phenomena [18–22].
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In recent years, many authors have studied two-dimensional predator-prey systems
with impulsive perturbations [23–29]. Moreover, three-species food chain systems with
sudden perturbations have been intensively researched, such as those of Holling-type
[30, 31] and Beddington-type [32, 33]. However, most researches about food chain systems
mentioned above have just dealt with biological control and have only given conditions for
extinction of the lowest-level prey and top predator by observing the local stability of lower-
level prey and top-predator free periodic solution. For this reason, the main purpose of this
paper is to investigate the conditions for the extinction and the permanence of system (1.2).

The organization of the paper is as follows. In the next section, we introduce some
notations and lemmas which are used in this paper. In Section 3, we find conditions for
local and global stabilities of a lower-level prey and top-predator free periodic solution by
applying the Floquet theory and for permanence of system (1.2) by using the comparison
theorem. In Section 4, we give some numerical examples including chaotic phase portrait.
Finally, we have a conclusion in Section 5.

2. Preliminaries

Now, we will introduce a few notations and definitions together with a few auxiliary results
relating to comparison theorem, which will be useful for our main results.

Let R+ = [0,∞) and R
3
+ = {x = (x(t), y(t), z(t)) ∈ R

3 : x(t), y(t), z(t) ≥ 0}. Denote N as
the set of all nonnegative integers, R

∗
+ = (0,∞), and f = (f1, f2, f3)

T as the right-hand side of
the first three equations in (1.2). We first give the definition of a solution for (1.2).

Definition 2.1 (see [14]). Let Ω ⊂ R
3 be an open set and let D = R+ × Ω. A function x =

(x(t), y(t), z(t)) : (0, a)→R
3, a > 0, is said to be a solution of (1.2) if

(1) x(0+) = (x0, y0, z0) and (t, x(t)) ∈ D for t ∈ [0, a),

(2) x(t) is continuously differentiable and satisfies the first three equations in (1.2) for
t ∈ [0, a), t /= nT , and t /= (n + τ − 1)T ,

(3) 0 ≤ t < a; then x(t) is left continous at t = (n + τ − 1)T and nT , and

x
(
t+
) − x(t) =

⎧
⎨

⎩

( − p1x(t),−p2y(t),−p3z(t)
)

if t = (n + τ − 1)T,

(0, q, 0) if t = nT.
(2.1)

Now, we introduce another definition to formulate the comparison result. Let V : R+ ×
R

3
+ →R+, then V is said to be in a class V0 if

(1) V is continuous on (nT, (n + 1)T] × R
3
+, and lim(t,y)→ (nT,x), t>nTV (t, y) = V (nT+, x)

exists;

(2) V is locally Lipschitzian in x.

Definition 2.2 (see [14]). For V ∈ V0, one defines the upper-right Dini derivative of V with
respect to the impulsive differential system (1.2) at (t, x) ∈ (nT, (n + 1)T] × R

3
+ by

D+V (t, x) = lim sup
h→ 0+

1
h

[
V
(
t + h, x + hf(t, x)

) − V (t, x)
]
. (2.2)



4 Discrete Dynamics in Nature and Society

Remark 2.3. The smoothness properties of f guarantee the global existence and uniqueness of
solutions of system (1.2). (See [13, 14] for details.)

We will use a comparison result of impulsive differential inequalities. We suppose that
g : R+ × R+ →R satisfies the following hypothesis.

(H) g is continuous on (nT, (n+1)T]×R+ and the limit lim(t,y)→ (nT+,x)g(t, y) = g(nT+, x)
exists and is finite for x ∈ R+ and n ∈ N.

Lemma 2.4 (see [14]). Suppose V ∈ V0 and

D+V (t, x) ≤ g(t, V (t, x)
)
, t /= (n + τ − 1)T, nT,

V
(
t, x
(
t+
)) ≤ ψ1

n

(
V (t, x)

)
, t = (n + τ − 1)T,

V
(
t, x
(
t+
)) ≤ ψ2

n

(
V (t, x)

)
, t = nT,

(2.3)

where g : R+ × R+ →R satisfies (H) and ψ1
n, ψ

2
n : R+ →R+ are nondecreasing for all n ∈ N. Let r(t)

be the maximal solution for the impulsive Cauchy problem

u′(t) = g
(
t, u(t)

)
, t /= (n + τ − 1)T, nT,

u
(
t+
)
= ψ1

n

(
u(t)
)
, t = (n + τ − 1)T,

u
(
t+
)
= ψ2

n

(
u(t)
)
, t = nT,

u
(
0+
)
= u0,

(2.4)

defined on [0,∞). Then V (0+, x0) ≤ u0 implies that V (t, x(t)) ≤ r(t), t ≥ 0, where x(t) is any
solution of (2.3).

We now indicate a special case of Lemma 2.4 which provides estimations for the
solution of a system of differential inequalities. For this, we let PC(R+,R)(PC1(R+,R)) denote
the class of real piecewise continuous (real piecewise continuously differentiable) functions
defined on R+.

Lemma 2.5 (see [14]). Let the function u(t) ∈ PC1(R+,R) satisfy the inequalities

du

dt
≤ f(t)u(t) + h(t), t /= τk, t > 0,

u
(
τ+k
) ≤ αku

(
τk
)
+ βk, k ≥ 0,

u
(
0+
) ≤ u0,

(2.5)

where f, h ∈ PC(R+,R) and αk ≥ 0, βk, u0 are constants, and (τk)k≥0 is a strictly increasing sequence
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of positive real numbers. Then, for t > 0,

u(t) ≤ u0

(
∏

0<τk<t

αk

)

exp

(∫ t

0
f(s)ds

)

+
∫ t

0

(
∏

s≤τk<t
αk

)

exp

(∫ t

s

f(γ)dγ

)

h(s)ds

+
∑

0<τk<t

(
∏

τk<τj<t

αj

)

exp

(∫ t

τk

f(γ)dγ

)

βk.

(2.6)

Similar results can be obtained when all conditions of the inequalities in Lemmas 2.4
and 2.5 are reversed. Using Lemma 2.5, it is possible to prove that the solutions of the Cauchy
problem (2.4) with strictly positive initial value remain strictly positive.

Lemma 2.6. The positive octant (R∗
+)

3 is an invariant region for system (1.2).

Proof. Let (x(t), y(t), z(t)) : [0, t0)→R
3 be a solution of system (1.2) with a strictly positive

initial value (x0, y0, z0). By Lemma 2.5, we can obtain that, for 0 ≤ t < t0,

x(t) = x(0)
(
1 − p1

)[t/T] exp

(∫ t

0
f1(s)ds

)

,

y(t) = y(0)
(
1 − p2

)[t/T] exp

(∫ t

0
f2(s)ds

)

,

z(t) = z(0)
(
1 − p3

)[t/T] exp

(∫ t

0
f3(s)ds

)

,

(2.7)

where f1(s) = a − bx(s) − cy(s), f2(s) = −d1 + c1x(s) − e1z(s), and f3(s) = −d2 + e2y(s). Thus,
x(t), y(t), and z(t) remain strictly positive on [0, t0).

Lemma 2.7. If aT + ln(1 − p1) ≤ 0, then x(t)→ 0 as t→∞ for any solution x(t) of the following
impulsive differential equation:

x′(t) = x(t)
(
a − bx(t)), t /= nT, t /= (n + τ − 1)T,

x
(
t+
)
=
(
1 − p1

)
x(t), t = (n + τ − 1)T,

x
(
t+) = x(t), t = nT.

(2.8)

Proof. It is easy to see that for a given initial condition x(0+),

x(t) =
a exp

(
a
(
t − t0

))
x
(
t0
)

a + bx
(
t0
)(

exp
(
a
(
t − t0

) − 1
) , (n + τ − 1)T ≤ t0 < t ≤ (n + τ)T, (2.9)
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for a solution x(t) of (2.8). It follows from aT + ln(1 − p1) ≤ 0 and (2.9) that

x
((
n + τ

)
T
)
=

a
(
1 − p1

)
exp(aT)x

(
(n + τ − 1)T

)

a + b
(
1 − p1

)
x
(
(n + τ − 1)T

)(
exp(aT) − 1

)

≤ x
(
(n + τ − 1)T

)

1 + (b/a)
(
1 − p1

)
x
(
(n + τ − 1)T

)(
exp(aT) − 1

)

≤ x((n + τ − 1)T
)
.

(2.10)

Thus, we know that the sequence {x((n + τ)T)}n≥0 is monotonically decreasing and bounded
from below by 0, and so it converges to some L ≥ 0. From (2.10), we obtain that

L =
a
(
1 − p1

)
exp(aT)L

a + b
(
1 − p1

)
L
(

exp(aT) − 1
) . (2.11)

Since ln(1 − p1) + aT ≤ 0, we get L = 0. It is from (2.9) that, for t ∈ ((n + τ − 1)T, (n + τ)T],

x
(
t) ≤ x((n + τ − 1)T

)
exp(aT). (2.12)

Therefore, we have limt→∞x(t) = 0.

Now, we give the basic properties of another impulsive differential equation as fol-
lows:

y′(t) = −d1y(t), t /= nT, t /= (n + τ − 1)T,

y
(
t+
)
=
(
1 − p2

)
y(t), t = (n + τ − 1)T,

y
(
t+
)
= y(t) + q, t = nT,

y
(
0+) = y0 > 0.

(2.13)

System (2.13) is a periodically forced linear system. It is easy to obtain that

y∗(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q exp
( − d1

(
t − (n − 1)T

))

1 − (1 − p2
)

exp
( − d1T

) , (n − 1)T < t ≤ (n + τ − 1)T,

q
(
1 − p2

)
exp
( − d1

(
t − (n − 1)T

))

1 − (1 − p2
)

exp
( − d1T

) , (n + τ − 1)T < t ≤ nT,
(2.14)
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y∗(0+) = y∗(nT+) = q/(1−(1−p2) exp(−d1T)), and y∗((n+τ−1)T+) = q(1−p2) exp(−d1τT)/(1−
(1 − p2) exp(−d1T)) is a positive periodic solution of (2.13). Moreover, we can obtain that

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − p2

)n−1
(
y
(
0+) − q

(
1 − p2

)
e−T

1 − (1 − p2
)

exp
( − d1T

)
)

exp
( − d1t

)
+ y∗(t),

(n − 1)T < t ≤ (n + τ − 1)T,

(
1 − p2

)n
(
y
(
0+) − q

(
1 − p2

)
e−T

1 − (1 − p2
)

exp
( − d1T

)
)

exp
( − d1t

)
+ y∗(t),

(n + τ − 1)T < t ≤ nT,

(2.15)

is a solution of (2.13). From (2.14) and (2.15), we get easily the following result.

Lemma 2.8. All solutions y(t) of (2.13) tend to y∗(t). That is, |y(t) − y∗(t)|→ 0 as t→∞.

It is from Lemma 2.8 that the general solution y(t) of (2.13) can be synchronized with
the positive periodic solution y∗(t) of (2.13).

3. Extinction and permanence

Firstly, we show that all solutions of (1.2) are uniformly ultimately bounded.

Theorem 3.1. There is an R > 0 such that x(t) ≤ R, y(t) ≤ R, and z(t) ≤ R for all t large enough,
where (x(t), y(t), z(t)) is a solution of system (1.2).

Proof. Let (x(t), y(t), z(t)) be a solution of (1.2) with x0, y0, z0 ≥ 0 and let u(t) = (c1/c)x(t) +
y(t) + (e1/e2)z(t) for t ≥ 0. Then, if t /= nT , t /= (n + τ − 1)T, and t > 0, then we obtain
that

du

dt
= −c1b

c
x2(t) +

c1a

c
x(t) − d1y(t) − e1d2

e2
z(t). (3.1)

Choosing 0 < β0 < min{d1, d2}, we get

du

dt
+ β0u(t) ≤ −c1b

c
x2(t) +

c1

c

(
a + β0

)
x(t), t /= nT, t /= (n + τ − 1)T, t > 0. (3.2)

As the right-hand side of (3.2) is bounded from above by R0 = c1(a + β0)
2/4bc, it follows that

du(t)
dt

+ β0u(t) ≤ R0, t /= nT, t /= (n + τ − 1)T, t > 0. (3.3)

If t = nT , then u(t+) = u(t) + q and if t = (n + τ − 1)T , then u(t+) ≤ (1 − p)u(t), where
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p = min{p1, p2, p3}. From Lemma 2.5, we get that

u(t) ≤ u0(1 − p)[t/kT] exp

(∫ t

0
− β0ds

)

+
∫ t

0
(1 − p)[(t−s)/kT] exp

(∫ t

s

− β0dγ

)

R0ds

+
[t/kT]∑

j=1

(1 − p)[(t−kT)/jT] exp

(∫ t

kT

− β0dγ

)

q

≤ u0 exp
( − β0t

)
+
R0

β0

(
1 − exp

( − β0t
)
+

q exp
(
β0T
)

exp
(
β0T
) − 1

)
.

(3.4)

Since the limit of the right-hand side of (3.4) as t→∞ is

R0

β0
+
cq exp

(
β0T
)

exp
(
β0T
) − 1

<∞, (3.5)

it easily follows that u(t) is bounded for sufficiently large t. Therefore, x(t), y(t), and z(t)
are bounded by a constant for sufficiently large t. Hence, there is an R > 0 such that x(t) ≤
R, y(t) ≤ R, and z(t) ≤ R for a solution (x(t), y(t), z(t)) with all t large enough.

Theorem 3.2. The periodic solution (0, y∗(t), 0) is locally asymptotically stable if

aT + ln
(
1 − p1

)

c
< Γ <

d2T − ln
(
1 − p3

)

e2
, (3.6)

where

Γ =
q
((

1 − (1 − p2
)

exp
( − d1T

) − p2 exp
( − d1τT

)))

d1
(
1 − (1 − p2

)
exp
( − d1T

)) . (3.7)

Proof. The local stability of the periodic solution (0, y∗(t), 0) of system (1.2) may be
determined by considering the behavior of small amplitude perturbations of the solution. Let
(x(t), y(t), z(t)) be any solution of system (1.2). Define u(t) = x(t), v(t) = y(t)−y∗(t), w(t) =
z(t). Then they may be written as

⎛

⎜⎜
⎝

u(t)

v(t)

w(t)

⎞

⎟⎟
⎠ = Φ(t)

⎛

⎜⎜
⎝

u(0)

v(0)

w(0)

⎞

⎟⎟
⎠ , (3.8)

where Φ(t) satisfies

dΦ
dt

=

⎛

⎜⎜
⎝

a − cy∗(t) 0 0

c1y
∗(t) −d1 −e1y

∗(t)

0 0 −d2 + e2y
∗(t)

⎞

⎟⎟
⎠Φ(t) (3.9)
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and Φ(0) = I, the identity matrix. So the fundamental solution matrix is

Φ(t) =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

exp

(∫ t

0
a − cy∗(s)ds

)

0 0

exp

(

c1

∫ t

0
y∗(s)ds

)

exp
( − d1t

)
exp

(

− e1

∫ t

0
y∗(s)ds

)

0 0 exp

(∫ t

0
− d2 + e2y

∗(s)ds

)

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.10)

The resetting impulsive conditions of system (1.2) become

⎛

⎜⎜
⎝

u
(
(n + τ − 1)T+)

v
(
(n + τ − 1)T+)

u
(
(n + τ − 1)T+)

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

1 − p1 0 0

0 1 − p2 0

0 0 1 − p3

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

u
(
(n + τ − 1)T

)

v
(
(n + τ − 1)T

)

w
(
(n + τ − 1)T

)

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

u
(
nT+)

v
(
nT+)

w
(
nT+)

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

u(nT)

v(nT)

w(nT)

⎞

⎟⎟
⎠ .

(3.11)

Note that all eigenvalues of

S =

⎛

⎜⎜
⎝

1 − p1 0 0

0 1 − p2 0

0 0 1 − p3

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟⎟
⎠Φ(T) (3.12)

are μ1 = (1 − p1) exp(
∫T

0a − cy∗(t)dt), μ2 = (1 − p2) exp(−d1T) < 1, and μ3 = (1 − p3) exp(
∫T

0 −
d2 + e2y

∗(t)dt). Since

∫T

0
y∗(t)dt =

q
(
1 − (1 − p2

)
exp
( − d1T

) − p2 exp
( − d1τT

))

d1
(
1 − (1 − p2

)
exp
( − d1T

)) , (3.13)

the conditions μ1 < 1 and μ3 < 1 are equivalent to the equation (3.7). By Floquet theory [13,
Chapter 2], we obtain that (0, y∗(t), 0) is locally asymptotically stable.

Theorem 3.3. The periodic solution (0, y∗(t), 0) is globally stable if

aT + ln
(
1 − p1

) ≤ 0, Γ <
d2T − ln

(
1 − p3

)

e2
. (3.14)
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Proof. Suppose that aT + ln(1−p1) ≤ 0 and Γ < (d2T − ln(1−p3))/e2. Then there are sufficiently
small numbers ε1, ε2 > 0 such that

φ ≡ (1 − p3
)

exp
(
− d2T +

Λ
(
d1 − c1ε1

)(
1 − (1 − p2

)
exp
( − (d1 − c1ε1

)
T
) + e2ε2T

)
< 1,

(3.15)

where Λ = e2q(1− (1−p2) exp(−(d1 − c1ε1)T)−p2 exp(−(d1 − c1ε1)τT). It follows from the first
equation in (1.2) that x′(t) = x(t)(a−bx(t)−cy(t)) ≤ x(t)(a−bx(t)) for t /= nT, t /= (n+τ −1)T .
By Lemma 2.4, x(t) ≤ x̃(t) for t > 0, where x̃(t) is the solution of (2.8). By Lemma 2.7, we get
x̃(t)→ 0 as t→∞, which implies that there is a T1 > 0 such that x(t) ≤ ε1 for t ≥ T1. For
the sake of simplicity, we suppose that x(t) ≤ ε1 for all t > 0. We can infer from the second
equation in (1.2) that y′(t) = y(t)(−d1 + c1x(t)− e1z(t)) ≤ y(t)(−d1 + c1x(t)) ≤ y(t)(−d1 + c1ε1)
for t /= nT, t /= (n + τ − 1)T . Let ỹ1(t) be the solution of the following equation:

ỹ′
1(t) = −(d1 − c1ε1

)
ỹ1(t), t /= nT, t /= (n + τ − 1)T,

ỹ1
(
t+
)
=
(
1 − p2

)
ỹ1(t), t = (n + τ − 1)T,

ỹ1
(
t+
)
= ỹ1(t) + q, t = nT,

ỹ1
(
0+
)
= y0.

(3.16)

Then we know that y(t) ≤ ỹ1(t) by Lemma 2.4. Thus, from the third equation in (1.2) and
Lemma 2.8, we obtain that

z′(t) ≤ z(t)( − d2 + e2ỹ1(t)
)

≤ z(t)( − d2 + e2ỹ
∗
1(t) + e2ε2

)
,

(3.17)

where

ỹ∗
1(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q exp(−(d1 − c1ε1)(t − (n − 1)T))
1 − (1 − p2) exp(−(d1 − c1ε1)T)

, (n − 1)T < t ≤ (n + τ − 1)T,

q(1 − p2) exp(−(d1 − c1ε1)(t − (n − 1)T))
1 − (1 − p2) exp(−(d1 − c1ε1)T)

, (n + τ − 1)T < t ≤ nT,
(3.18)

is the periodic solution of (3.16). Integrating (3.17) on ((n + τ − 1)T, (n + τ)T], we obtain

z
(
(n + τ)T

) ≤ z((n + τ − 1)T+) exp

(∫ (n+τ)T

(n+τ−1)T
− d2 + e2ỹ

∗
1(t) + e2ε2dt

)

= z
(
(n + τ − 1)T

)
φ.

(3.19)
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Therefore, we have z((n + τ)T) ≤ z(τT)φn→ 0 as n→∞. Also, we obtain, for t ∈ ((n + τ −
1)T, (n + τ)T],

z(t) ≤ z((n + τ − 1)T+) exp

(∫ t

(n+τ−1)T
− d2 + e2ỹ

∗
1(t) + e2ε1dt

)

≤ z((n + τ − 1)T
)

exp
(

qe2

1 − (1 − p2
)

exp
( − (d1 − c1ε1

)
T
) + e2ε1T

)
,

(3.20)

which implies that z(t)→ 0 as t→∞. Thus, we may assume that z(t) ≤ ε2 for all t > 0. It is
from the second equation in (1.2) that

y′(t) ≥ y(t)( − d1 + c1x(t) − e1ε2
)

≥ y(t)( − d1 − e1ε2
)
.

(3.21)

Let ỹ2(t) and ỹ∗
2(t) be the solution and the periodic solution of (2.13), respectively, with d1

changed into d1 + e1ε2 and the same initial value y0. Then we infer from Lemmas 2.4 and
2.7 that ỹ2(t) ≤ y(t) ≤ ỹ1(t) and ỹ1(t) and ỹ2(t) become close to ỹ∗

1(t) and ỹ∗
2(t) as t→∞,

respectively. Note that ỹ∗
1(t) and ỹ∗

2(t) are close to y∗(t) as ε1, ε2 → 0. Therefore, we obtain
y(t)→y∗(t) as t→∞.

Definition 3.4. System (1.2) is permanent if there exist M ≥ m > 0 such that, for any solution
(x(t), y(t), z(t)) of system (1.2) with x0, y0, z0 > 0,

m ≤ lim
t→∞

infx(t) ≤ lim
t→∞

supx(t) ≤M,

m ≤ lim
t→∞

infy(t) ≤ lim
t→∞

supy(t) ≤M,

m ≤ lim
t→∞

inf z(t) ≤ lim
t→∞

sup z(t) ≤M.

(3.22)

To prove the permanence of system (1.2), we consider the following two subsystems.
If the top predator is absent, that is, z(t) = 0, then system (1.2) can be expressed as

x′(t) = x(t)
(
a − bx(t) − cy(t)), t /= nT, t /= (n + τ − 1)T,

y′(t) = y(t)
( − d1 + c1x(t)

)
, t /= nT, t /= (n + τ − 1)T,

x
(
t+
)
=
(
1 − p1

)
x(t), t /= (n + τ − 1)T,

y
(
t+
)
=
(
1 − p2

)
y(t), t /= (n + τ − 1)T,

x
(
t+
)
= x(t), t = nT,

y
(
t+
)
= y(t) + p, t = nT,

(
x
(
0+
)
, y
(
0+
))

=
(
x0, y0

)
.

(3.23)
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If the prey is extinct, then system (1.2) can be expressed as

y′(t) = y(t)
( − d1 − e1z(t)

)
, t /= nT, t /= (n + τ − 1)T,

z′(t) = z(t)
( − d2 + e2y(t)

)
, t /= nT, t /= (n + τ − 1)T,

y
(
t+
)
=
(
1 − p2

)
y(t), t /= (n + τ − 1)T,

z
(
t+
)
=
(
1 − p3

)
z(t), t /= (n + τ − 1)T,

y
(
t+
)
= y(t) + p, t = nT,

z
(
t+
)
= z(t), t = nT,

(
y
(
0+
)
, z
(
0+
))

=
(
y0, z0

)
.

(3.24)

Especially, Liu et al. [23] have given a condition for permanence of subsystem (3.23).

Theorem 3.5 (see [23]). Subsystem (3.23) is permanent if Γ < (aT + ln(1 − p1))/c, where

Γ =
q
((

1 − (1 − p2
)

exp
( − d1T

) − p2 exp
( − d1τT

)))

d1
(
1 − (1 − p2

)
exp
( − d1T

)) . (3.25)

Theorem 3.6. Subsystem (3.24) is permanent if (d2T − ln(1 − p3))/e2 < Γ, where

Γ =
q
((

1 − (1 − p2
)

exp
( − d1T

) − p2 exp
( − d1τT

)))

d1
(
1 − (1 − p2

)
exp
( − d1T

)) . (3.26)

Proof. Let (y(t), z(t)) be a solution of subsystem (3.24) with y(0) > 0 and z(0) > 0. From
Theorem 3.1, we may assume that y(t) ≤ R with d1 + R > 0 and z(t) ≤ R/e1. Then y′(t) ≥
−(d1 + R)y(t). From Lemmas 2.4 and 2.8, we have y(t) ≥ u∗(t) − ε for sufficiently small ε > 0,
where

u∗(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q exp
( − (d1 + R

)(
t − (n − 1)T

))

1 − (1 − p2
)

exp
( − (d1 + R

)
T
) , (n − 1)T < t ≤ (n + τ − 1)T,

q
(
1 − p2

)
exp
( − (d1 + R

)(
t − (n − 1)T

))

1 − (1 − p2
)

exp
( − (d1 + R

)
T
) , (n + τ − 1)T < t ≤ nT.

(3.27)

Thus, we obtain that y(t) ≥ (q(exp(−(d1 + R)T)/(1 − (1 − p2) exp(−(d1 + R)T))) − ε ≡ m0 for
sufficiently large t. Therefore, we only need to find an m2 > 0 such that z(t) ≥ m2 for large
enough t. We will do this in the following two steps.

Step 1. From (3.26), we can choose m1 > 0, ε1 > 0 small enough such that

Φ ≡ (1 − p3
)

exp
(
− d2T +

Δ
(
d1 + e1m1

)(
1 − (1 − p2

)
exp
( − (d1 + e1m1

)
T
)) − e2ε1T

)
> 1,

(3.28)
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where Δ = e2q(1− (1− p2) exp(−(d1 + e1m1)T)− p2 exp(−(d1 + e1m1)τT)). In this step, we will
show that z(t1) ≥ m1 for some t1 > 0. Suppose that z(t) < m1 for t > 0. Consider the following
system:

v′(t) = −(d1 + e1m1
)
v(t), t /= (n + τ − 1)T, nT,

w′(t) = −(d2 − e2v(t)
)
w(t), t /= (n + τ − 1)T, nT,

v
(
t+
)
=
(
1 − p2

)
v(t), t = (n + τ − 1)T,

w
(
t+
)
=
(
1 − p3

)
w(t), t = (n + τ − 1)T,

v
(
t+
)
= v(t) + p, t = nT,

w
(
t+
)
= w(t), t = nT,

(
v
(
0+
)
, w
(
0+
))

=
(
y0, z0

)
.

(3.29)

Then, by Lemma 2.4, we obtain z(t) ≥ w(t). By Lemma 2.8, we have v(t) ≥ v∗(t) − ε1, where,
for t ∈ ((n − 1)T, nT],

v∗(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q exp
( − (d1 + e1m1

)(
t − (n − 1)T

))

1 − (1 − p2
)

exp
( − (d1 + e1m1

)
T
) , (n − 1)T < t ≤ (n + τ − 1)T,

q
(
1 − p2

)
exp
( − (d1 + e1m1

)(
t − (n − 1)T

))

1 − (1 − p2
)

exp
( − (d1 + e1m1

)
T
) , (n + τ − 1)T < t ≤ nT.

(3.30)

Thus, for t /= (n + τ − 1)T, t /= nT ,

w′(t) ≥ ( − d2 + e2
(
v∗(t) − ε1

))
w(t). (3.31)

Integrating (3.31) on ((n + τ − 1)T, (n + τ)T], we get

w
(
(n + τ)T

) ≥ w((n + τ − 1)T+) exp

(∫ (n+τ)T

(n+τ−1)T
− d2 + e2

(
v∗(t) − ε1

)
dt

)

= w
(
(n + τ − 1)T

)
Φ.

(3.32)

Therefore, z((n + τ + k)T) ≥ w((n + τ + k)T) ≥ w((n + τ)T)Φk →∞ as k→∞ which is a
contradiction to the boundedness of z(t).

Step 2. Without loss of generality, we may let z(t1) = m1. If z(t) ≥ m1 for all t > t1, then
subsystem (3.24) is permanent. If not, we may let t2 = inft>t1{z(t) < m1}. Then z(t) ≥ m1 for
t1 ≤ t ≤ t2 and, by continuity of z(t), we have z(t2) = m1 and t1 < t2. There exists a t ′(> t2) such
that z(t ′) ≥ m1 by Step 1. Set t3 = inft>t2{z(t) ≥ m1}. Then z(t) < m1 for t2 < t < t3 and z(t3) =
m1. We can continue this process by using Step 1. If the process is stopped in finite times, we
complete the proof. Otherwise, there exists an interval sequence [t2k, t2k+1], k ∈ N, which has
the following properties: z(t) < m1, t ∈ (t2k, t2k+1), t2k−1 < t2k ≤ t2k+1, and z(tn) = m1, where
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k, n ∈ N. Let T0 = sup{t2k+1 − t2k | k ∈ N}. If T0 = ∞, then we can take a subsequence {t2ki}
satisfying t2ki+1 − t2ki →∞ as ki→∞. As in the proof of Step 1, this will lead to a contradiction
to the boundedness of z(t). Then we obtain T0 <∞. Note that

z(t) ≥ z(t2k
)

exp

(∫ t

t2k

− d2 + e2
(
v∗(s) − ε1

)
ds

)

≥ m1 exp
( − d2T0

) ≡ m2, t ∈ (t2k, t2k+1
]
, k ∈ N.

(3.33)

Thus we obtain that lim inft→∞z(t) ≥ m2. Therefore, we complete the proof.

Theorem 3.7. System (1.2) is permanent if

d2T − ln
(
1 − p3

)

e2
< Γ <

aT + ln
(
1 − p1

)

c
. (3.34)

Proof. Consider the following two subsystems of system (1.2):

x′
1(t) = x1(t)

(
a − bx1(t) − cy1(t)

)
, t /= nT, t /= (n + τ − 1)T,

y′
1(t) = y1(t)

( − d1 + c1x1(t)
)
, t /= nT, t /= (n + τ − 1)T,

x1
(
t+
)
=
(
1 − p1

)
x1(t), t = (n + τ − 1)T,

y1
(
t+
)
=
(
1 − p2

)
y1(t), t = (n + τ − 1)T,

x1
(
t+
)
= x1(t), t = nT,

y1
(
t+
)
= y1(t) + p, t = nT,

(
x1
(
0+
)
, y1
(
0+
))

=
(
x0, y0

)
;

(3.35)

y′
2(t) = y2(t)

( − d1 − e1z2(t)
)
, t /= nT, t /= (n + τ − 1)T,

z′2(t) = z2(t)
( − d2 + e2y2(t)

)
, t /= nT, t /= (n + τ − 1)T,

y2
(
t+
)
=
(
1 − p2

)
y2(t), t = (n + τ − 1)T,

z2
(
t+
)
=
(
1 − p3

)
z2(t), t = (n + τ − 1)T,

y2
(
t+
)
= y2(t) + p, t = nT,

z2
(
t+
)
= z2(t), t = nT,

(
y2
(
0+
)
, z2
(
0+)) =

(
y0, z0

)
.

(3.36)

It follows from Lemma 2.4 that x1(t) ≤ x(t), y1(t) ≥ y(t), y2(t) ≤ y(t), and z2(t) ≤ z(t). If Γ <
(aT + ln(1 − p1))/c, by Theorem 3.5, subsystem (3.35) is permanent. Thus we can take T1 > 0
and m1 > 0 such that x(t) ≥ m1 for t ≥ T1. Further, if (d2T − ln(1−p3))/e2 < Γ, by Theorem 3.6,
subsystem (3.36) is also permanent. Therefore, there exist a T2 > 0 and m2, m3 > 0 such that
y(t) ≥ m2 and z(t) ≥ m3 for t ≥ T2. The proof is complete.
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Figure 1: a = 2.0, b = 0.001, c = 0.5, c1 = 0.01, d1 = 0.3, d2 = 0.2, e1 = 0.01, e2 = 0.02, p1 = 0.3, p2 = 0.1,
p3 = 0.01, τ = 0.2, and T = 5. (a)–(c) Time series of system (1.2) when q = 10.

4. Numerical examples

In this section, we are concerned with the numerical investigation of some situations covered
by Theorems 3.2 and 3.7 which may lead to a chaotic behavior of system (1.2). It is easy to see
that the unperturbed three-species food chain system (1.1) has four nonnegative equilibria:

(1) the trivial equilibrium A(0, 0, 0);

(2) the mid-predator and top-predator free equilibrium B(d1/b, 0, 0);

(3) the top-predator free equilibrium C(d1/c1, (ac1 − d1b)/cc1, 0)·(ac1 − d1b > 0);

(4) the positive equilibrium E∗ = (x∗, y∗, z∗) if and only if ae2c1 − d2cc1 − d1be2 > 0,
where

x∗ =
ae2 − d2c

be2
, y∗ =

d2

e2
, z∗ =

ae2c1 − d2cc1 − d1be2

be1e2
. (4.1)

The stability of equilibrium of system (1.1) has been studied by Zhang and Chen
[30].

Lemma 4.1 (see [30]). (1) If positive equilibrium E∗ exists, then E∗ is globally stable.
(2) If positive equilibrium E∗ does not exist and C exists, then C is globally stable.
(3) If positive equilibrium E∗ and C do not exist, then B is globally stable.

Throughout this section, we chose (x(0), y(0), z(0)) = (5, 2, 4) as an initial point.
For a = 2.0, b = 0.001, c = 0.5, c1 = 0.01, d1 = 0.3, d2 = 0.2, e1 = 0.01, e2 = 0.02,

p1 = 0.3, p2 = 0.1, p3 = 0.01, τ = 0.2, and T = 5, it follows from Theorem 3.2 that the periodic
solution (0, y∗(t), 0) is locally stable if 6.3771 < q < 16.6987. The unperturbed system (1.1)
has a globally stable top-predator free equilibrium C(20, 3.94, 0), but no positive equilibria.
The behavior of the trajectories of system (1.2) when q = 10 is depicted in Figure 1. Another
behavior is illustrated in Figure 2 for a = 4.0, b = 0.001, c = 0.5, c1 = 0.01, d1 = 0.3, d2 = 0.02,
e1 = 0.01, e2 = 0.02, p1 = 0.3, p2 = 0.1, p3 = 0.01, τ = 0.2, and T = 5. In this case, the
trajectory of system (1.2) tends to a periodic orbit of period T . We know from Theorem 3.7
that system (1.2) is permanent when 1.8194 < q < 12.9901. The unperturbed system (1.1) has
a global stable positive equilibrium E∗ = (3500, 1, 3470). An example of chaotic behavior is
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Figure 2: a = 4.0, b = 0.001, c = 0.5, c1 = 0.01, d1 = 0.3, d2 = 0.02, e1 = 0.01, e2 = 0.02, p1 = 0.3, p2 = 0.1,
p3 = 0.01, τ = 0.2, and T = 5. (a) The trajectory of system (1.2) when q = 5. (b)–(d) Time series.
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Figure 3: a = 4.0, b = 0.0002, c = 1.0, c1 = 0.3, d1 = 0.3, d2 = 0.01, e1 = 0.05, e2 = 0.0005, p1 = 0.3, p2 = 0.1,
p3 = 0.01, τ = 0.2, and T = 5. (a) The trajectory of system (1.2) when q = 3. (b) The two-dimensional plot x
versus y.

exhibited in Figure 3 for a = 4.0, b = 0.0002, c = 1.0, c1 = 0.3, d1 = 0.3, d2 = 0.01, e1 = 0.05,
e2 = 0.0005, p1 = 0.3, p2 = 0.1, p3 = 0.01, τ = 0.2, and T = 5. In this case, the unperturbed
system (1.1) also has a globally stable top-predator free equilibrium C(2/3, 3.99, 0), but no
positive equilibria. By Theorem 3.2, we can figure out that system (1.2) is also locally stable if
6.4951 < q < 39.7113. Figure 3 indicates that a trajectory may have chaotic behavior.
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5. Conclusion

In this paper, we have studied dynamical properties of a food chain system with
Lotka-Volterra functional response and impulsive perturbations. We have found sufficient
conditions for extinction and permanence of the system by means of the Floquet theory
and a comparison theorem. We also have given numerical examples that exhibit a periodic
trajectory and a chaotic behavior.

Now, assume that Γ < (d2T − ln(1 − p3))/e2. It follows from Theorem 3.3 that if p1 is
large enough to make aT+ln(1−p1) ≤ 0 negative (in other words, if we choose strong pesticide
to eradicate pests), then the lowest-level prey and top-predator free periodic solution is
globally stable, which means that we succeed in controlling pest population. Further, if we
only consider biological control in system (1.2), that is, if we take τ = 0, p1 = p2 = p3 = 0, then
we obtain with the help of Theorems 3.2 and 3.7 the following results.

Theorem 5.1. Suppose that τ = p1 = p2 = p3 = 0. Then the following statements hold.

(1) The periodic solution (0, y∗(t), 0) is locally asymptotically stable if ad1T/c < q <
d1d2T/e2.

(2) System (1.2) is permanent if d1d2T/e2 < q < ad1T/c.

Especially, we get Theorem 3.1 in [30] as corollary of Theorem 5.1(1). From
Theorem 5.1, we note that if there is no chemical control, global stability of a lower-level prey
and top-predator free periodic solution of system (1.2) is not guaranteed. In other words, it is
possible to fail to control pest population by using just one control strategy. Theoretically
speaking, we need to use more than two different pest control tactics simultaneously to
succeed in pest population control.
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