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Standard Runge-Kutta methods are explicit, one-step, and generally constant step-size numerical
integrators for the solution of initial value problems. Such integration schemes of orders 3, 4, and 5
require 3, 4, and 6 function evaluations per time step of integration, respectively. In this paper, we
propose a set of simple, explicit, and constant step-size Accerelated-Runge-Kutta methods that are
two-step in nature. For orders 3, 4, and 5, they require only 2, 3, and 5 function evaluations per time
step, respectively. Therefore, they are more computationally efficient at achieving the same order
of local accuracy. We present here the derivation and optimization of these accelerated integration
methods. We include the proof of convergence and stability under certain conditions as well as
stability regions for finite step sizes. Several numerical examples are provided to illustrate the
accuracy, stability, and efficiency of the proposed methods in comparison with standard Runge-
Kutta methods.
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1. Introduction

Most of the ordinary differential equations (ODEs) that model systems in nature and society
are nonlinear, and as a result are often extremely difficult, or sometimes impossible, to solve
analytically with presently available mathematical methods. Therefore, numerical methods are
often very useful for understanding the behavior of their solutions. A very important class of
ODEs is the initial value problem (IVP):

dỹ(t)
dt

= ˜f
(

t, ỹ(t)
)

, t0 ≤ t ≤ tN,

ỹ
(

t0
)

= ỹ0,

(1.1)
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where ỹ, ỹ0, and ˜f are (m − 1)-dimensional vectors, and t denotes the independent variable,
time.

A constant step numerical integrator approximates the solution ỹ(t1) of the IVP defined
by (1.1) at point t1 = t0+h by ỹ1. This is referred to as “taking a step.” Similarly, at step n+1, the
numerical integrator approximates the solution ỹ(tn+1) at point tn+1 = tn + h by ỹn+1. By taking
steps successively, the approximate solutions ỹ2, . . . , ỹN at points t2, . . . , tN are generated. The
accuracy of a numerical integrator is primarily determined by the order of the local error it
generates in taking a step. The local error at the end of step n+ 1 is the difference ũ(tn+1)− ỹn+1,
where ũ(t) is the local solution that satisfies the local IVP:

dũ(t)
dt

= ˜f
(

t, ũ(t)
)

,

ũ
(

tn
)

= ỹn.
(1.2)

Standard Runge-Kutta (RK) methods are a class of one-step numerical integrators. That
is, the approximate solution ỹn+1 is calculated using ỹn and the function ˜f. An RK method
that has a local error of O(hp+1) is said to be of order p and is denoted by RKp. It has been
established that RK3, RK4, and RK5 require 3, 4, and 6 function evaluations per time step of
integration, respectively [1–3].

In this paper, we propose a new and simple set of numerical integrators named the
accelerated-Runge-Kutta (ARK) methods. We derive these methods for the autonomous
version of (1.1) given by

dy(t)
dt

= f
(

y(t)
)

, t0 ≤ t ≤ tN,

y
(

t0
)

= y0,

(1.3)

where y, y0, and f arem-dimensional vectors, and t denotes the independent variable, time. We
assume that f is a (sufficiently smooth) Lipschitz continuous function, and hence the solution
of the IVP given by (1.3) is unique.

Accelerated Runge-Kutta methods are inspired by standard Runge-Kutta methods but
are two-step in nature. That is, the approximate solution yn+1 is calculated using yn, yn−1, and
the function f. ARKp denotes an ARK method whose local error is of O(hp+1). We will see in
the next section that ARK3, ARK4, and ARK5 require 2, 3, and 5 function evaluations per time
step of integration, respectively. Since function evaluations are often the most computationally
expensive part of numerically solving differential equations (see Section 4 for further details),
ARK methods are expected to be more computationally efficient than standard RK methods.

Various authors have attempted to increase the efficiency of RK methods. As a result,
numerous variations of two-step explicit RK methods exist today. Byrne and Lambert [4]
proposed 3rd- and 4th-order two-step Pseudo RK methods. Byrne [5] later proposed a set
of methods that minimize a conservative bound on the error, and Gruttke [6] proposed a
5th-order Pseudo RK method. Costabile [7] introduced the Pseudo RK methods of II species
which involve many parameters to improve local accuracy. Jackiewicz et al. [8] considered the
two-step Runge-Kutta (TSRK) methods up to order 4. Jackiewicz and Tracogna [9] studied a
more general class of these TSRK mothods and derived order conditions up to order 5 using
Albrecht’s method. Recently, Wu [10] has proposed a set of two-step methods which make use
of the derivative of the differential equation.
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The accelerated-Runge-Kutta (ARK) methods presented here are along the lines first
proposed in [11] and are simple and straightforward. They could be considered special cases
of the more general TSRK methods. The simplicity of the ARK methods’ construction not only
reduces computational overhead cost, but also leads to a simpler and more elegant set of order
equations that can be directly analyzed more precisely. The ARK methods also benefit from
a more precise and effective optimization technique which transforms them into higher-order
methods for some problems. In addition, we have presented here a complete analysis of all
aspects of the ARK methods, including their motivation, derivation, accuracy, speedup, and
stability.

In Section 2, we explain the central idea of ARK methods followed by a description
of how to derive and optimize ARK3, ARK4, ARK4-4 (a more accurate ARK4), and ARK5
in Sections 2.1, 2.2, 2.3, and 2.4, respectively. In Section 3, we use seven standard initial
value problems to compare the accuracy of ARK and RK methods. In Section 4, we present
the computational speedup of ARK methods over the RK methods using some of the same
standard problems. The hallmark of our ARK method is its simplicity. Tracogna and Welfert
[12], based on methods developed in [9], use a more sophisticated approach using B-series
to develop a 2-step TSRK algorithm for numerical integration. In Section 5, we compare the
numerical performance of our method with that of [12] using the above-mentioned standard
initial value problems. Section 6.1 deals with stability and convergence of ARK methods at
small step sizes, and Section 6.2 compares the stability region of ARK and RK methods at
finite step sizes. We end with our conclusions and findings, and include in the appendices, the
description of the standard initial value problems used, and the Maple code that derives the
ARK3 method.

2. Central idea of accelerated Runge-Kutta methods

The idea behind the ARK methods proposed herein is perhaps best conveyed by looking at
RK3 and ARK3. An example of the RK3 method solving the IVP given by (1.1) has the form

ỹn+1 = ỹn +
1
6
˜k1 +

2
3
˜k2 +

1
6
˜k3 for 0 ≤ n ≤N − 1, (2.1)

where

˜k1 = h˜f
(

tn, ỹn
)

,

˜k2 = h˜f
(

tn +
1
2
h, ỹn +

1
2
˜k1

)

,

˜k3 = h˜f
(

tn + h, ỹn − ˜k1 + 2˜k2
)

.

(2.2)

The approximate solution ỹn+1 at tn+1 is calculated based on the approximate solution ỹn at tn
along with 3 function evaluations ˜k1, ˜k2, and ˜k3 in [tn, tn+1]. Hence, RK3 is a one-step method
with a computational cost of 3 function evaluations per time step.

An example of the accelerated-RK3 (ARK3) method solving the IVP given by (1.3) has the
form

yn+1 = yn +
1
2

k1 +
1
2

k−1 +
(

k2 − k−2
)

for 1 ≤ n ≤N − 1, (2.3)
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Figure 1: The central idea of the ARK3 method is illustrated here. Approximating the solution yn+1 at tn+1
requires 2 function evaluations k1 and k2 (shown in red) and two reused values k−1 and k−2 (shown in
blue) from the previous steps k1 and k2. This process repeats for the next step (approximating the solution
at tn+2).

where

k1 = hf
(

yn
)

, k−1 = hf
(

yn−1
)

,

k2 = hf
(

yn +
5

12
k1

)

, k−2 = hf
(

yn−1 +
5

12
k−1

)

.
(2.4)

The approximate solution yn+1 at time tn+1 is calculated based on the approximate solutions
yn and yn−1 at times tn and tn−1, respectively, along with 2 function evaluations k1 and k2 in
[tn, tn+1] and 2 reused function evaluations k−1 and k−2 in [tn−1, tn]. In each step of integration
from point tn to point tn+1, only k1 and k2 are calculated, while k−1 and k−2 are reused from the
previous step’s k1 and k2. Figure 1 illustrates this idea. The reuse of previously calculated data
reduces the number of function evaluations at each time step of integration from 3 for RK3 to
2 for ARK3, making ARK3 more computationally efficient than RK3. This increased efficiency
is shared by ARK4 and ARK5 when compared to RK4 and RK5, respectively, and is the central
idea behind the ARK methods.

It is important to note that at the first step, there is no previous step. Therefore, ARK
methods cannot be self-starting. A one-step method must supply the approximate solution y1

at the end of the first step t1. The one-step method must be of sufficient order to ensure that the
difference y1 − y(t1) is of order p or higher. In this case, the ARKp method will be convergent
of order p (see Section 6.1, Theorem 6.4). For example, the ARK3 method can be started by the
RK3 or RK4 methods. This extra computation occurs only in the first step of integration; for all
the subsequent steps, ARK methods bear less computational cost than their RK counterparts.

The general form of the ARK methods presented in this paper is

yn+1 = c0yn − c−0yn−1 + c1k1 − c−1k−1 +
v
∑

i=2

ci
(

ki − k−i
)

for 1 ≤ n ≤N − 1, (2.5)
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where
k1 = hf

(

yn
)

, k−1 = hf
(

yn−1
)

,

k2 = hf
(

yn + a1k1
)

, k−2 = hf
(

yn−1 + a1k−1
)

,

k3 = hf
(

yn + a2k2
)

, k−3 = hf
(

yn−1 + a2k−2
)

,

k4 = hf
(

yn + a3k3
)

, k−4 = hf
(

yn−1 + a3k−3
)

,

k5 = hf
(

yn + a4k4
)

, k−5 = hf
(

yn−1 + a4k−4
)

.

(2.6)

Here, v denotes the number of function evaluations performed at each time step and increases
with the order of local accuracy of the ARK method. In each step of integration, only k1,k2, . . .
are evaluated, while k−1,k−2, . . . are reused from the previous step.

To determine the appropriate values of the parameters c’s and a’s, a three-part process
is performed. (The first and second parts of this process are shown in detail for ARK3 in [11].)
First, the ARK expression (2.5) is expanded using the Taylor series expansion. Second, after
some algebraic manipulation, this expansion is equated to the local solution u(tn+1) at tn+1

given by the Taylor series expansion (see (1.2))

u
(

tn+1
)

= u
(

tn + h
)

= u
(

tn
)

+ hu′
(

tn
)

+
h2

2!
u′′
(

tn
)

+
h3

3!
u′′′
(

tn
)

+ · · ·

= yn + hy′n +
h2

2!
y′′n +

h3

3!
y′′′n + · · · .

(2.7)

This results in the system of nonlinear algebraic order equations (2.8)–(2.13). Third, we attempt
to solve as many order equations as possible because the highest power of h for which all of
the order equations are satisfied is the order of the resulting ARK method. The above process
requires a great deal of algebraic and numeric calculations which were mainly performed using
Maple (see Appendix B).

In the following, we will show what order of accuracy an ARK method can achieve with
a given number of function evaluations v. For v = 1, a second-order method ARK2 is possible.
It is, however, omitted here because such a low order of accuracy is of limited use in accurately
solving differential equations; we will look at cases v = 2, . . . , 5.

2.1. ARK3

For v = 2, from (2.5), we have the 6 parameters c0, c−0, c1, c−1, c2, and a1. The derived order
equations up to O(h4) are

O
(

h0) c0 − c−0 = 1, (2.8a)

O
(

h1) c−0 + c1 − c−1 = 1, (2.8b)

O
(

h2) − 1
2
c−0 + c−1 + c2 =

1
2
, (2.8c)

O
(

h3) − 1
12
c−0 + c2a1 =

5
12
, (2.8d)

O
(

h4) c2a
2
1 =

1
3
, (2.8e)

O
(

h4) 0 =
1
6
. (2.8f)
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Clearly, (2.8f) cannot be satisfied, so it is impossible to achieve a 4th-order method with 2
function evaluations per time step. It is, however, possible to achieve a 3rd-order method ARK3
with 2 function evaluations per time step by satisfying (2.8a)–(2.8d). We solve these equations
in terms of c0, c−0, c1, and c−1 and let the remaining two parameters c2 and a1 become free
parameters.

We use sets of free parameters to optimize the accuracy of an ARK method by
minimizing its local error. The local error is represented by higher order equations (order 4
and above in case of ARK3). The closer these order equations are to being satisfied, the smaller
the local error is. Therefore, we try to minimize the difference between the LHS and RHS of
these order equations. This can be done in several different ways. One popular technique is
to minimize a general bound on the error [5]. A second technique is to minimize a norm of
the error [13]. A third technique is to satisfy as many individual order equations as possible
(hinted to by [4]). In general, there is no way of knowing a priori which technique yields
the most accurate ARK method since the error ultimately depends on the problem at hand. We
have chosen the last technique for two reasons. One, it is straightforward to implement exactly.
Two, for some classes of problems, the differential term multiplying the unsolved higher order
equations may vanish, which could effectively increases the order of the method. For instance,
the differential term multiplying (2.8f) may vanish, and provided (2.8e) is already satisfied,
the resulting ARK method (with 2 function evaluations) will become a 4th-order method.

Using the two free parameters c2 and a1, we can solve two higher-order equations: (2.8e)
and any one of the two 5th-order equations,

O
(

h5) 1
120

c−0 + c2a
3
1 =

31
120

, (2.9a)

O
(

h5) c−0 = 31. (2.9b)

However, we cannot choose (2.9b) because to prove stability, we will need −1 ≤ c−0 < 1 (see
condition (6.16)). Therefore, we choose (2.8e) and (2.9a), which leads to Set 2 of Table 1. We
also present a set in which c−0 = 0 because doing so can increase the stability (see Section 6)
and speed (see Section 4) of an ARK method. Setting c−0 = 0 and solving (2.8a)–(2.8e) leads to
Set 3 of Table 1. Set 1 of Table 1 is the only set of parameters here that is not found by solving all
possible higher order equations. It is found by setting c−0 = 0, solving (2.8a)–(2.8d) for c1, c−1,
and c2, and searching for a value of a1 that leads to a highly accurate ARK method in solving
some standard IVPs (see Section 3 and Appendix A).

2.2. ARK4

For v = 3, we have the 8 parameters c0, c−0, c1, c−1, c2, c3, a1, and a2 along with order
equations up to O(h5) which are

O
(

h0) c0 − c−0 = 1, (2.10a)

O
(

h1) c−0 + c1 − c−1 = 1, (2.10b)

O
(

h2) − 1
2
c−0 + c−1 + c2 + c3 =

1
2
, (2.10c)

O
(

h3) − 1
12
c−0 + c2a1 + c3a2 =

5
12
, (2.10d)
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Table 1: Optimized ARK3 parameter sets.

Set 1 Set 2 Set 3

c0 1 −4

√
41 − 11

9 +
√

41
1

c−0 0 −5

√
41 − 7

9 +
√

41
0

c1
1
2

16(6
√

41 − 1)

3(9 +
√

41)2
47
48

c−1 −1
2

4(3
√

41 − 13)

3(9 +
√

41)2 − 1
48

c2 1
400

3(9 +
√

41)2
25
48

a1
5

12
9 +
√

41
20

4
5

O
(

h4) c2a
2
1 + c3a

2
2 =

1
3
, (2.10e)

O
(

h4) c3a1a2 =
1
6
, (2.10f)

O
(

h5) 1
120

c−0 + c2a
3
1 + c3a

3
2 =

31
120

, (2.10g)

O
(

h5) 1
240

c−0 + c3a1a
2
2 =

31
240

, (2.10h)

O
(

h5) 1
360

c−0 + c3a
2
1a2 =

31
360

, (2.10i)

O
(

h5) c−0 = 31. (2.10j)

Since there are 10 order equations up to O(h5), we cannot achieve a 5th-order method.
However, we can achieve a 4th-order method ARK4 by solving the first 6 order equations
(2.10a)–(2.10f). Therefore, ARK4 requires 3 function evaluations per time step. We have chosen
to solve these equations for the c’s while keeping a1 and a2 as free parameters because all order
equations are linear in terms of the c’s which makes it straightforward to solve for them.

We use a1 and a2 to optimize ARK4’s accuracy by solving two of the O(h5) equations.
We choose (2.10g) and (2.10h) because they were used in deriving the other O(h5) equations.
Set 2 and Set 3 of Table 2 are the two solutions. Set 1 of Table 2 is a set in which c−0 = 0 and is
produced by solving (2.10b) to (2.10g). It is a set of approximate values and naturally contains
some round-off error. The effects of this round-off error (in parameter values) can be significant
if the error produced by the ARK methods is small enough to be of the same order. Therefore,
to measure the accuracy of the ARK methods correctly (see Section 3), we have calculated the
parameter values using 25 digits of computational precision in Maple. Note, however, that
such high precision is not required for the ARK methods to be effective.
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Table 2: Optimized ARK4 parameter sets.

Set 1 Set 2 Set 3

c0 1.0 −4

√
41 − 11

9 +
√

41
−4

√
41 − 11

9 +
√

41

c−0 0.0 −5

√
41 − 7

9 +
√

41
−5

√
41 − 7

9 +
√

41

c1 1.017627673204495246749635
16
3

6
√

41 − 1

(9 +
√

41)
2

16
3

6
√

41 − 1

(9 +
√

41)
2

c−1 0.01762767320449524674963508
4
3

3
√

41 − 13

(9 +
√

41)
2

4
3

3
√

41 − 13

(9 +
√

41)
2

c2 − 0.1330037778097525280771293 0
200

3(9 +
√

41)2

c3 0.6153761046052572813274942
400

3(9 +
√

41)2

200

3(9 +
√

41)2

a1 0.3588861139198819376595942 9 +
√

41
40

9 +
√

41
20

a2 0.7546602348483596232355257 9 +
√

41
20

9 +
√

41
20

2.3. ARK4-4

For v = 4, we have the 10 parameters c0, c−0, c1, c−1, c2, c3, c4, a1, a2, and a3. Order
equations up to O(h5) are

O
(

h0) c0 − c−0 = 1, (2.11a)

O
(

h1) c−0 + c1 − c−1 = 1, (2.11b)

O
(

h2) − 1
2
c−0 + c−1 + c2 + c3 + c4 =

1
2
, (2.11c)

O
(

h3) − 1
12
c−0 + c2a1 + c3a2 + c4a3 =

5
12
, (2.11d)

O
(

h4) c2a
2
1 + c3a

2
2 + c4a

2
3 =

1
3
, (2.11e)

O
(

h4) c3a1a2 + c4a2a3 =
1
6
, (2.11f)

O
(

h5) 1
120

c−0 + c2a
3
1 + c3a

3
2 + c4a

3
3 =

31
120

, (2.11g)

O
(

h5) 1
240

c−0 + c3a1a
2
2 + c4a2a

2
3 =

31
240

, (2.11h)

O
(

h5) 1
360

c−0 + c3a
2
1a2 + c4a

2
2a3 =

31
360

, (2.11i)

O
(

h5) 1
720

c−0 + c4a1a2a3 =
31
720

. (2.11j)
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Table 3: Optimized ARK4-4 parameter sets.

Set 1 Set 2 Set 3

c0 1.0 1.0 1.0

c−0 0.0 0.0 0.0

c1 1.022831928839203211581411 0.9599983629740523357761292 1.038087495003156301209584
c−1 0.02283192883920321158141016 − 0.04000163702594766422386892 0.03808749500315630120958582
c2 − 0.04515830188318023164196973 0.2483344505743049392964305 − 0.1206952296752875905594747
c3 − 0.08618700613581317473462200 − 0.4400290588051227299292791 0.4307688535040614391640197
c4 0.6085133791797901947951855 0.7316962452567654548567152 0.1518388811680698501858681
a1 0.2464189848045352027663988 0.2128076184231448037007275 0.2340555618293773386595766
a2 0.3794276070851120107016269 0.3807586896791479391397741 0.7532489015566390666145791
a3 0.7567561779707407028536669 0.7262085803548857317347352 0.7932084970935761571360267

Since there are exactly 10 order equations up to O(h5), it would seem that we can achieve a
5th-order method. However, the only two solutions of the above order equations have c−0 = 1
and c−0 = 25, both of which produce unstable methods (see condition (6.16)).

Therefore, we set c−0 = 0 which leaves us with the 8 parameters c1, c−1, c2, c3, c4, a1, a2,
and a3. We solve (2.11b)–(2.11f) for the c’s and solve three of the four O(h5) order equations
using the free parameters a1, a2, and a3. The result is a 4th-order method called ARK4-4 that is
more accurate than ARK4 for most of the IVPs that are investigated herein. The “-4” indicates
that this 4th-order method requires 4 function evaluations, unlike ARK4 which requires only 3.

Set 1 of Table 3 satisfies the higher order equations (2.11g), (2.11h), and (2.11j). Set 3 of
Table 3 satisfies the higher order equations (2.11g), (2.11h), and (2.11i). Set 2 of Table 3 satisfies
the higher order equations (2.11g), (2.11j) and (2.12b). To understand where (2.12b) comes
from, we first need to explain a unique property of the O(h5) order equations.

The O(h5) order equations are fundamentally different from lower order equations. If
the order equations for ARK4-4 are derived with a two-dimensional coupled ODE system, we
get the four O(h5) order equations presented above, that is, (2.11g)–(2.11j). However, if the
derivation is done with a one-dimensional ODE or with a two-dimensional uncoupled ODE
system, we get the three O(h5) equations:

O
(

h5) 1
120

c−0 + c2a
3
1 + c3a

3
2 + c4a

3
3 =

31
120

, (2.12a)

O
(

h5) 1
90
c−0 + c3a1a2

(

a1 + 2a2
)

+ c4a2a3
(

a2 + 2a3
)

=
31
90
, (2.12b)

O
(

h5) 1
720

c−0 + c4a1a2a3 =
31

720
. (2.12c)

Hence, coupling of the ODE system affects the O(h5) order equations but not the O(h0), . . . ,
O(h4) order equations. We see that the difference between the two sets of order equations is
that (2.11h) and (2.11i) are replaced by (2.12b) = 2 × (2.11h) + (2.11i). Therefore, a parameter
set that satisfies (2.11h) and (2.11i) also automatically satisfies (2.12b), but not vice versa. To
ensure that the order equations are valid for all ODE systems, we have considered a two-
dimensional coupled ODE system in our derivations.

Although we have not derived the order equations based on a 3- or higher-dimensional
coupled ODE system, we hypothesize that the order equations would be the same as
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(2.11g)–(2.11j). We base this hypothesis on two observations. One, unlike moving from a
one-dimensional system to a two-dimensional system where the coupling property emerges,
no property emerges when we move from a two-dimensional system to a three-dimensional
system, so there is no perceivable reason for the order equations to change. Two, using a two-
dimensional coupled ODE system, we have derived the same standard RK order equations
that others have reported [13].

With that explanation, it might seem counterintuitive to use a parameter set that satisfies
(2.12b). After all, this equation only applies for uncoupled systems. However, the thinking
is that for uncoupled systems, the resulting ARK4-4 becomes a 5th-order method. While for
coupled systems, the resulting method yields a very accurate 4th-order method because it
satisfies two of the four O(h5) equations as well as a weighted average of the other two order
equations. This is confirmed by our experiments in solving standard problems (see Section 3)
since the accuracy of Set 2 is comparable to that of Set 1 and Set 3.

2.4. ARK5

For v = 5, we have the 12 parameters c0, c−0, c1, c−1, c2, c3, c4, c5, a1, a2, a3, and a4. Order
equations up to O(h6) are

O
(

h0) c0 − c−0 = 1, (2.13a)

O
(

h1) c−0 + c1 − c−1 = 1, (2.13b)

O
(

h2) − 1
2
c−0 + c−1 + c2 + c3 + c4 + c5 =

1
2
, (2.13c)

O
(

h3) − 1
12
c−0 + c2a1 + c3a2 + c4a3 + c5a4 =

5
12
, (2.13d)

O
(

h4) c2a
2
1 + c3a

2
2 + c4a

2
3 + c5a

2
4 =

1
3
, (2.13e)

O
(

h4) c3a1a2 + c4a2a3 + c5a3a4 =
1
6
, (2.13f)

O
(

h5) 1
120

c−0 + c2a
3
1 + c3a

3
2 + c4a

3
3 + c5a

3
4 =

31
120

, (2.13g)

O
(

h5) 1
240

c−0 + c3a1a
2
2 + c4a2a

2
3 + c5a3a

2
4 =

31
240

, (2.13h)

O
(

h5) 1
360

c−0 + c3a
2
1a2 + c4a

2
2a3 + c5a

2
3a4 =

31
360

, (2.13i)

O
(

h5) 1
720

c−0 + c4a1a2a3 + c5a2a3a4 =
31

720
, (2.13j)

O
(

h6) c2a
4
1 + c3a

4
2 + c4a

4
3 + c5a

4
4 =

1
5
, (2.13k)

O
(

h6) c3a1a
3
2 + c4a2a

3
3 + c5a3a

3
4 =

1
10
, (2.13l)

O
(

h6) c3a
3
1a2 + c4a

3
2a3 + c5a

3
3a4 =

1
20
, (2.13m)
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Table 4: Optimized ARK5 parameter sets.

Set 1 Set 2 Set 3

c0 1.0 1.0 1.871204587171582065174140
c−0 0.0 0.0 0.8712045871715820651713061
c1 1.055562151371698936588996 0.8478186116157917768882525 0.2696466886663821637128020
c−1 0.05556215137169893658900796 − 0.1521813883842082231117544 0.1408512758379642288874380
c2 − 0.1550782654901811342349442 0.6342482224050582872925060 0.3158759465556997630808750
c3 0.4259247085606290911168454 0.05195876382507141388229794 0.3212830748049407866018770
c4 0.1103009310583581269934950 − 0.2591900995514652090764061 0.1591061035393050004573704
c5 0.06329047449949497953556305 0.2251645017055437310133241 − 0.001514107152118746437838297
a1 0.2163443321009561697260889 0.9710149514386938952585686 0.5094586945643958664798805
a2 0.7355421089142943499801371 − 0.2556103146331869004586566 0.5161588401001171574027862
a3 0.7046395852850716386939335 1.094599542270692490195102 1.041695566100089398625120
a4 0.9355121795946884014328140 0.4343167743876224145420328 2.134538676833492640695294

O
(

h6) c3a
2
1a

2
2 + c4a

2
2a

2
3 + c5a

2
3a

2
4 =

1
15
, (2.13n)

O
(

h6) c4a1a
2
2a3 + c5a2a

2
3a4 =

1
40
, (2.13o)

O
(

h6) c4a1a2a
2
3 + c5a2a3a

2
4 =

1
60
, (2.13p)

O
(

h6) c4a
2
1a2a3 + c5a

2
2a3a4 =

1
30
, (2.13q)

O
(

h6) c5a1a2a3a4 =
1

120
. (2.13r)

Solving the first 10 equations, (2.13a)–(2.13j), gives us a 5th-order method ARK5 which
requires 5 function evaluations per time step. We solve the first 8 equations for the c’s and
solve equations (2.13i)–(2.13l) for a1, . . . , a4. Among the multiple solutions of this system, we
have found Set 3 in Table 4 to be the most accurate in solving the standard problems given in
Appendix A. Setting c−0 = 0 results in 10 parameters and 9 equations of order up to O(h5). We
use the one free parameter to solve (2.13k) which leads to numerous solutions. Among them,
Set 1 and Set 2 in Table 4 are the most accurate in solving the standard initial value problems
in Section 3.

3. Accuracy

We consider seven initial value problems (IVPs) to illustrate the accuracy of the ARK methods.
These problems are taken from examples used by previous researchers [11, 14]. They are
named IVP-1 through IVP-7, and are listed in Appendix A. Most of the problems model
real-world phenomena (suggested by [14]) and have been used by other researchers to test
numerical integrators. Specifically, IVP-3 models the Euler equations for a rigid body without
external forces, IVP-4 and IVP-5 model a one-body gravitational problem in the plane, IVP-6
models a radioactive decay chain, and IVP-7 models the gravitational problem for five planets
around the sun (and four inner planets). The first two example problems (IVP-1 and IVP-2) are
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Table 5: RK parameters in Butcher’s notation [15]: (a) RK2, (b) RK3, (c) RK4, and (d) RK5.
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one-dimensional ODEs—the first, autonomous, the second, nonautonomous. The dimension of
the rest of the examples, which include linear and non-linear ODE systems, ranges from 3 to 30.

The approximate solution to each example ODE problem is computed for 0 ≤ t ≤ 15 at
the step sizes: 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, and 0.1 using ARK3, ARK4, ARK4-4, and
ARK5. For comparison, we also show the corresponding results using the RK2, RK3, RK4, and
RK5 methods. Each ARK method is started with an RK method of the same order, taking 10
steps in the first time step at 1/10th the value of step size. For ARK methods, Set 1 parameter
values of Tables 1, 2, 3, and 4 are used, and for RK methods, the parameter values in Table 5
are used.

The accuracy plots for problems IVP-1 through IVP-7 are given in Figures 2, 3, 4, 5, 6,
7, and 8, respectively. Along the ordinate is plotted an average of the 2-norm of the global
error, which is computed by taking the 2-norm of the difference between the solution y(tn)
and approximate solution yn, and then averaging this norm over the interval 10 ≤ t ≤ 15. The
exception is IVP-5 for which the average absolute value of global error in all four components
of the solution are plotted separately. The results obtained when using RK methods are shown
by lines with circles along them, while the results for ARK methods are shown by lines with
squares along them. Lines with the same color indicate methods that have the same number of
function evaluations.

Due to small step sizes, for example 10−3, and the high order of local accuracy for
some of the RK and ARK methods, the global error for some problems reaches 10−24. This
is beyond MATLAB’s precision capabilities. MATLAB has a minimum round-off error of
about eps ≈ 2.3×10−16 (at magnitude 1) and a maximum of 17 significant digits of accuracy.
Therefore, a proper analysis of the accuracy of the ARK and RK methods cannot be done
in MATLAB. In fact, we found that for small step sizes, the higher order ARK and RK plot
lines produced by MATLAB are erroneous; they are jagged lines with slopes different than the
order of the method. That is why the PARI mathematics environment [16] which provides 28
digits of accuracy by default was used for all calculations in this section. This ensures that the
computational round-off error is far smaller than the methods’ global error. Note however, that
using high precision computation is not necessary for the ARK methods to be effective. The
ARK methods should retain their accuracy and efficiency advantages over the RK methods at
any precision.

The slopes of the plot lines confirm the order of our ARK methods; the slopes of ARK3,
ARK4, ARK4-4, and ARK5 lines (except when the time steps are large) are 3, 4, 4, and 5,
respectively. The slope of the ARK5 lines for problems IVP-3 to IVP-7 (Figures 4 to 8) is
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Table 6: Summary of order and number of function evaluations per time step for RK methods and ARK
methods presented herein.

RK2 ARK3 RK3 ARK4 RK4 ARK4-4 RK5 ARK5
Order of method O(h2) O(h3) O(h3) O(h4) O(h4) O(h4) O(h5) O(h5)
No. of function evaluations 2 2 3 3 4 4 6 5

especially important. We hypothesized in Section 2.3 that although our O(h5) order equations
were derived based on a two-dimensional ODE system, they would also apply to higher-
dimensional problems. The fact that problems IVP-3 to IVP-7 are 3-dimensional or higher and
their ARK5 accuracy plot lines have slope 5 (for small step sizes) confirms our hypothesis.

Comparing ARK and RK methods, the plots show that generally speaking, the global
error of the ARK methods is greater than that of the corresponding RK methods by about one
order of magnitude when comparing methods of the same order, such as comparing ARK3
versus RK3. Although great effort was made to find the parameter sets that yield the most
accurate ARK methods, it is possible that better sets can be found which would considerably
improve the accuracy of the ARK methods. Set 1 of ARK4 exemplifies this claim. It is seen
from the accuracy plots that for problems IVP-2, IVP-3, IVP-5, and IVP-7, ARK4 has virtually
the same accuracy as RK4.

A more useful comparison of ARK and RK methods would be to compare those that
have the same number of function evaluations per time step. Table 6 summarizes the order
and number of function evaluations for the ARK and RK methods. In comparing ARK3 versus
RK2, ARK4 versus RK3, and ARK4-4 versus RK4 in the accuracy plots, ARK methods prove
to be more accurate. Because ARK3 and ARK4 are higher-order methods than RK2 and RK3,
respectively, their gain in accuracy grows as the step size decreases. For example, for IVP-5
(see Figure 6) at step size 0.1, ARK3 and ARK4 are less than one order of magnitude more
accurate than RK2 and RK3, respectively, but at step size 0.001, they are three and four orders
of magnitude more accurate than RK2 and RK3, respectively. A similar gain of accuracy can
occur even for ARK4-4 versus RK4 when for some problems (see Figures 2 and 7), ARK4-4
becomes a 5th-order method.

4. Speedup

As mentioned before, the ARK3, ARK4, and ARK5 methods require 2, 3, and 5 function
evaluations per time step of integration, respectively, while the RK3, RK4, and RK5 methods
require 3, 4, and 6 function evaluations per time step, respectively. It is commonly believed
that function evaluations constitute the main computational cost of RK-type methods. Hence,
we can expect that compared to the RK3, RK4, and RK5 methods, the ARK3, ARK4, and ARK5
methods have speedups of approximately (3−2)/3 ≈ 33%, (4−3)/4 = 25%, and (6−5)/6 ≈ 17%,
respectively.

To verify these speedups experimentally, we have implemented the methods in
MATLAB. We have measured the time it takes to solve IVP-2 and IVP-4 for 0 ≤ t ≤ 1000 (with
such a large time span needed to get a reliable time measurement) at the 7 different step sizes
used in Section 3. (We have used the MATLAB utility TIC and TOC for time measurements). We
repeated this integration 100 times and took the average of integration times before calculating
the speedup (tRK − tARK)/tRK. Figures 9 and 10 display the results. Speedup depends on the
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Figure 2: Accuracy plot for IVP-1 using log-log scale. The RK methods are shown by lines with circles. The
ARK methods are shown by lines with squares. Lines of the same color correspond to methods with the
same number of function evaluations per time step.
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Figure 3: Accuracy plot for IVP-2 (see caption of Figure 2).

problem being solved, and among IVP-1 through IVP-7, IVP-2 leads to the lowest speedup,
while IVP-1 leads to the highest. Speedup also depends on the parameter set used because
it affects the computational overhead. The ARK implementations here use values of Set 1 in
Tables 1, 2, and 4, and the RK implementations use parameter values in Table 5. The plots show
a linear least square fit to the points. We expect this line to be fairly flat because the number
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Figure 4: Accuracy plot for IVP-3 (see caption of Figure 2).
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Figure 5: Accuracy plot for IVP-4 (see caption of Figure 2).

of steps for the ARK and RK methods are only slightly different (caused by the startup of the
ARK methods at the first time step) and because speedup does not depend on the step size.

The speedups seen in Figures 9 and 10 are lower than expected. Moreover, we have
found the time measurement and consequently the speedup to be machine dependent.
Through measurements of the computation times at different points in our computer codes, we
have found two main causes for the less-than-expected speedup of our ARK methods. First, the
ARK methods require additional multiplication and addition operations when evaluating the
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Figure 6: Accuracy plots for IVP-5: (a) y1, (b) y2, (c) y3, and (d) y4 (see caption of Figure 2).

expression for yn+1 than the RK methods require. This accounts for about half of the loss in the
expected speedup. Second, the ARK methods require a number of assignment operations to
set yn−1,k−1, . . . to yn,k1, . . . in every step of integration which the RK methods do not require.
Somewhat surprisingly, this takes a significant amount of computation time in the MATLAB
environment and is responsible for about the other half of the loss in the expected speedup.

5. Comparison with other two-step methods

We now compare the ARK4 method (with parameters of Set 1 of Table 2) to the more
sophisticated TSRK4 method presented in [12]. Both are fourth-order methods with 3 function
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Figure 7: Accuracy plot for IVP-6 (see caption of Figure 2).
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Figure 8: Accuracy plot for IVP-7 (see caption of Figure 2).

evaluations per time step. The accuracy of the two methods is calculated in the same way as
in Section 3 but implemented in MATLAB. Because of MATLAB’s lower precision, we have
not calculated the accuracy at the two smallest step sizes. The average of the 2-norm of the
global error for problems IVP-1, IVP-2, and IVP-4 is presented in Figures 11, 12, and 13. The
TSRK4 method is more than one order of magnitude more accurate in solving IVP-1; the ARK4
method is less than one order of magnitude more accurate than the TSRK4 method in solving
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Figure 9: Speedup of ARK methods compared with RK methods for IVP-2.
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Figure 10: Speedup of ARK methods compared with RK methods for IVP-4.

IVP-2; and the TSRK4 method is slightly more accurate than ARK4 in solving IVP-4. The TSRK4
method is also more accurate in solving the other problems listed in Appendix A. This is
because the TSRK4 method is more general and possesses more parameters, which have been
effectively optimized. In Figure 14, we have plotted the relative change in computation time
when solving IVP-1, IVP-2, and IVP-4 (similar to Section 4). The lower computation time (see
Figure 14) required by the ARK4 method is due to its lower computational overhead, which is
produced by its simpler form as given in (2.5).
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Figure 11: Comparison of the accuracy of the ARK4 (blue) and TSRK4 (red) methods in solving IVP-1.
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Figure 12: Comparison of the accuracy of the ARK4 (blue) and TSRK4 (red) methods in solving IVP-2.
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Figure 13: Comparison of the accuracy of the ARK4 (blue) and TSRK4 (red) methods in solving IVP-4.



20 Discrete Dynamics in Nature and Society

0

2

4

6

8

10

12

14

16

18

20

22

C
ha

ng
e

in
co

m
pu

ta
ti

on
ti

m
e
(%

)

0 0.02 0.04 0.06 0.08 0.1

Time step size

Figure 14: Relative change in computation time of the TSRK4 method compared with the ARK4 method
in solving IVP-1 (blue), IVP-2 (red), and IVP-4 (black), showing that TSRK4 requires greater computation
time.

6. Stability

We have already established that the error of an ARKp method over a single time step (local
error) has the order O(hp+1) (see Section 1). In this section, we will look at how this error
accumulates over many time steps (global error) by looking at two cases, small step sizes
(approaching zero, D-stability) and large step sizes. Similar results are provided in [12] in
the form of (a) a bound on the global error for small step sizes and (b) a comparable stability
region for finite step sizes.

6.1. Small step sizes

The ARK method given by expression (2.5) yields an approximate solution {yn} (2 ≤ n ≤ N)
to the initial value problem (1.3) and can be written as

[

yn+1

yn

]

=

[

c0I −c−0I
I 0

][

yn
yn−1

]

+

⎡

⎢

⎣

c1k1 − c−1k−1 +
v
∑

i=2

ci
(

ki − k−i
)

0

⎤

⎥

⎦
(6.1)

for 1 ≤ n ≤N − 1, where I is an m by m identity matrix. We can write (6.1) as

yn+1 = Qyn + φ
(

yn, f, h
)

for 1 ≤ n ≤N − 1, (6.2)

where

yn+1 =

[

yn+1

yn

]

, yn =

[

yn
yn−1

]

, (6.3)

Q is the 2m by 2m block matrix given by

Q =

[

c0I −c−0I
I 0

]

, (6.4)



Firdaus E. Udwadia and A. Farahani 21

and φ is the 2m by 1 vector defined as

φ =

[

φ
0

]

=

⎡

⎢

⎣

c1k1 − c−1k−1 +
v
∑

i=2

ci
(

ki − k−i
)

0

⎤

⎥

⎦
. (6.5)

With a slightly different initial condition z0 = y0+Δ0 at time t0, a slightly different approximate
solution z1 = y1 +Δ1 at time t1, and a slightly different recipe φ(zn, f, h) + hδn (1 ≤ n ≤N − 1),
the ARK method yields a “perturbed” approximate solution {zn} (2 ≤ n ≤ N), and can be
written as

[

zn+1

zn

]

=

[

c0I −c−0I
I 0

][

zn
zn−1

]

+

⎡

⎢

⎣

c1k1 − c−1k−1 +
v
∑

i=2

ci(ki − k−i)

0

⎤

⎥

⎦
+ h

[

δn
0

]

(6.6)

for 1 ≤ n ≤N − 1, or can be written as

zn+1 = Qzn + φ
(

zn, f, h
)

+ hδn for 1 ≤ n ≤N − 1, (6.7)

where

δn =

[

δn
0

]

. (6.8)

To prove stability, we will show that under some conditions, ‖zn − yn‖∞ is bounded.
To prove convergence, we will show that ‖y(tn) − yn‖∞ → 0 as h → 0, where y(tn) is the
exact solution of the IVP defined by (1.3). In order to do this, we will assume that the ARK
method is stable and that as h tends to zero, ‖y(t1) − y1‖∞ tends to zero, where t0 is the initial
time and t1 = t0 + h. The stability analysis comprises of two lemmas and two theorems. In
Lemma 6.1, we will consider the eigenvalue problem for the matrix Q. In Lemma 6.2, we will
show that the function φ is Lipschitz continuous. In Theorem 6.3, we will establish stability
of the ARK methods by looking at the difference of (6.2) and (6.7). In Theorem 6.4, we will
prove convergence for ARK methods using the result of Theorem 6.3. This stability analysis is
inspired by Shampine [17].

Lemma 6.1. The eigenvalue problem for the matrix Q given in (6.4) can be written as

QW = WD. (6.9)

If −1 ≤ c−0 < 1, the matrix W is nonsingular and satisfies

∥

∥W−1QW
∥

∥ = 1, (6.10)

‖W‖ = 2, (6.11)

w :=
∥

∥W−1∥
∥ =

2
∣

∣c−0 − 1
∣

∣

, (6.12)

where here and throughout the stability analysis, all norms denote the infinity norm ‖·‖∞.
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Proof. Taking

W =

[

I c−0I
I I

]

, D =

[

I 0
0 c−0I

]

, (6.13)

where we have made use of the O(h0) order equation, c0 = 1 + c−0, we observe that (6.9) is
satisfied. Noting that

W−1 =
1

c−0 − 1

[

−I c−0I
I −I

]

, (6.14)

we require that c−0 /= 1 for W−1 to exist. Recalling that ‖·‖ ≡ ‖·‖∞, we can write

∥

∥W−1QW
∥

∥ = ‖D‖ = max(absolute row sum) = max
(

1,
∣

∣c−0
∣

∣

)

. (6.15)

With the condition

−1 ≤ c−0 < 1, (6.16)

we can see from (6.15) that ‖W−1QW‖ = 1. From condition (6.16) and expression (6.13), we
find that

‖W‖ = max
(

1 +
∣

∣c−0
∣

∣, 2
)

= 2, (6.17)

and from expression (6.14), we obtain

w :=
∥

∥W−1∥
∥ =

1
∣

∣c−0 − 1
∣

∣

max
(

1 +
∣

∣c−0
∣

∣, 2
)

=
2

∣

∣c−0 − 1
∣

∣

. (6.18)

Thus, Lemma 6.1 is proven.

Lemma 6.2. If f is a Lipschitz continuous function so that

∥

∥f
(

zn
)

− f
(

yn
)∥

∥ ≤ L
∥

∥zn − yn
∥

∥ for a constant L, and any zn, yn (1 ≤ n ≤N), (6.19)

then, so is φ, that is,

∥

∥φ
(

zn
)

− φ
(

yn
)∥

∥ ≤ ĥL
∥

∥zn − yn
∥

∥, for a constant ̂L, and any zn, yn (1 ≤ n ≤N). (6.20)

Proof. First, we will show by induction that

∥

∥ki

(

zn
)

− ki

(

yn
)∥

∥ ≤ hγi
∥

∥zn − yn
∥

∥ for a constant γi (1 ≤ i ≤ v), (6.21)

where we recall that ‖·‖ ≡ ‖·‖∞, and that v is the number of function evaluations of the ARK
method. Also, here and throughout this proof, 1 ≤ n ≤N. For i = 1, we have

∥

∥k1
(

zn
)

− k1
(

yn
)∥

∥ =
∥

∥hf
(

zn
)

− hf
(

yn
)∥

∥ ≤ hL
∥

∥zn − yn
∥

∥ = hγ1
∥

∥zn − yn
∥

∥, (6.22)
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where γ1 = L. Assuming inequality (6.21) is true for i = j, we have

∥

∥kj+1
(

zn
)

− kj+1
(

yn
)∥

∥ =
∥

∥hf
(

zn + ajkj(zn
))

− hf
(

yn + ajkj

(

yn
))∥

∥

≤ hL
∥

∥zn − yn + aj
(

kj

(

zn
)

− kj

(

yn
))∥

∥

≤ hL
[∥

∥zn − yn
∥

∥ +
∣

∣aj
∣

∣hγj
∥

∥zn − yn
∥

∥

]

= hL
[

1 + hγj
∣

∣aj
∣

∣

]∥

∥zn − yn
∥

∥

= hγj+1
∥

∥zn − yn
∥

∥,

(6.23)

where γj+1 = L[1 + hγj |aj |]. Hence, inequality (6.21) holds for j + 1 and, therefore, it holds for
1 ≤ i ≤ v. Similarly, we can show that

∥

∥k−i
(

zn−1
)

− k−i
(

yn−1
)∥

∥ ≤ hγi
∥

∥zn−1 − yn−1
∥

∥ for 1 ≤ i ≤ v. (6.24)

Function φ can be written as

φ = c1k1 − c−1k−1 +
v
∑

i=2

ci
(

ki − k−i
)

=
v
∑

i=1

ciki −
v
∑

i=1

c−ik−i, where c−i = ci for 2 ≤ i ≤ v

= φ1 − φ−1.

(6.25)

Using inequality (6.21), we can write

∥

∥φ1

(

zn
)

− φ1

(

yn
)∥

∥ =

∥

∥

∥

∥

∥

v
∑

i=1

ciki

(

zn
)

−
v
∑

i=1

ciki

(

yn
)

∥

∥

∥

∥

∥

≤
v
∑

i=1

∣

∣ci
∣

∣

∥

∥ki

(

zn
)

− ki

(

yn
)∥

∥

≤ h
[

v
∑

i=1

(∣

∣ci
∣

∣γi
)

]

∥

∥zn − yn
∥

∥.

(6.26)

Similarly, using inequality (6.24), we can write

∥

∥φ−1

(

zn−1
)

− φ−1

(

yn−1
)∥

∥ ≤ h
[

v
∑

i=1

(∣

∣c−i
∣

∣γi
)

]

∥

∥zn−1 − yn−1
∥

∥. (6.27)

Since ‖φ(zn) − φ(yn)‖ ≡ ‖φ(zn) − φ(yn)‖∞ = max(‖φ(zn) − φ(yn)‖, 0), we have

∥

∥φ
(

zn
)

− φ
(

yn
)∥

∥ =
∥

∥φ
(

zn
)

− φ
(

yn
)∥

∥

=
∥

∥φ1

(

zn
)

− φ−1

(

zn−1
)

−
(

φ1

(

yn
)

− φ−1

(

yn−1
))∥

∥

≤
∥

∥φ1

(

zn
)

− φ1

(

yn
)∥

∥ +
∥

∥φ−1

(

zn−1
)

− φ−1

(

yn−1
)∥

∥

≤ h
[

v
∑

i=1

(∣

∣ci
∣

∣γi
)

]

∥

∥zn − yn
∥

∥ + h

[

v
∑

i=1

(∣

∣c−i
∣

∣γi
)

]

∥

∥zn−1 − yn−1
∥

∥.

(6.28)
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Because ‖zn − yn‖ = max(‖zn − yn‖, ‖zn−1 − yn−1‖), we have

∥

∥zn − yn
∥

∥ ≤
∥

∥zn − yn
∥

∥,
∥

∥zn−1 − yn−1
∥

∥ ≤
∥

∥zn − yn
∥

∥. (6.29)

Therefore,

∥

∥φ
(

zn
)

− φ
(

yn
)∥

∥ ≤ h
[

v
∑

i=1

∣

∣ci
∣

∣γi +
v
∑

i=1

∣

∣c−i
∣

∣γi

]

∥

∥zn − yn
∥

∥ = ĥL
∥

∥zn − yn
∥

∥, (6.30)

where ̂L =
∑v

i=1(|ci| + |c−i|)γi. Thus, Lemma 6.2 is proven.

Theorem 6.3. Suppose that an ARK method is used to solve the IVP given in (1.3), and that f is a
Lipschitz continuous function throughout the integration span. If −1 ≤ c−0 < 1, the ARKp method is
stable for all sufficiently small step sizes, and

∥

∥zn − yn
∥

∥ ≤ Emax
(

max
r=0,1

∥

∥zr − yr
∥

∥, max
1≤m<n

∥

∥δm
∥

∥

)

for 2 ≤ n ≤N, (6.31)

where

E = 4we2̂Lw(tn−t1) max
(

tn − t1, 1
)

. (6.32)

Proof. Subtracting (6.7) from (6.2), we have

zn+1 − yn+1 = Q
(

zn − yn
)

+ φ
(

zn, f, h
)

− φ
(

yn, f, h
)

+ hδn for 1 ≤ n ≤N − 1. (6.33)

We multiply this equation by W−1 to get

W−1(zn+1 − yn+1

)

= W−1Q
(

zn − yn
)

+ W−1[φ
(

zn, f, h
)

− φ
(

yn, f, h
)]

+ hW−1δn. (6.34)

Let

dn = W−1(zn − yn
)

so that Wdn =
(

zn − yn
)

for 1 ≤ n ≤N, (6.35)

and we get

dn+1 = W−1QWdn + W−1[φ
(

zn, f, h
)

− φ
(

yn, f, h
)]

+ hW−1δn. (6.36)

Taking the infinity norm and using the Lipschitz condition on φ (Lemma 6.2), we can
write

∥

∥dn+1
∥

∥ ≤
∥

∥W−1QW
∥

∥

∥

∥dn

∥

∥ + ĥL
∥

∥W−1∥
∥

∥

∥zn − yn
∥

∥ + h
∥

∥W−1∥
∥

∥

∥δn
∥

∥ for 1 ≤ n ≤N − 1. (6.37)

Considering expressions (6.10) and (6.12), we have

∥

∥dn+1
∥

∥ ≤
∥

∥dn

∥

∥ + ĥLw
∥

∥zn − yn
∥

∥ + hw
∥

∥δn
∥

∥. (6.38)
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Also, using expressions (6.35) and (6.11), we have

∥

∥zn − yn
∥

∥ =
∥

∥Wdn

∥

∥ ≤ ‖W‖
∥

∥dn

∥

∥ = 2
∥

∥dn

∥

∥, (6.39)

so inequality (6.38) becomes

∥

∥dn+1
∥

∥ ≤
(

1 + 2ĥLw
)∥

∥dn

∥

∥ + hw
∥

∥δn
∥

∥ for 1 ≤ n ≤N − 1. (6.40)

Relation (6.40) establishes a bound on ‖dn+1‖ based on ‖dn‖. This is not very useful
because we do not know how large ‖dn‖ is. Instead, we want to find a bound based on ‖d1‖.
We will now show by induction that this bound can be written as

∥

∥dn

∥

∥ ≤ e2̂Lw(tn−t1)
∥

∥d1
∥

∥ + hw
n−1
∑

m=1

e2̂Lw(tn−tm+1)
∥

∥δm
∥

∥ for 2 ≤ n ≤N. (6.41)

In the following, we will use the inequality

1 ≤ 1 + t ≤ et for t ≥ 0, (6.42)

which follows from the expression et = 1 + t + (1/2)t2 + · · · . For n = 2, the right hand side of
inequality (6.41) becomes

e2̂Lw(t2−t1)
∥

∥d1
∥

∥ + hwe2̂Lw(t2−t2)
∥

∥δ1
∥

∥ = e2̂Lwh∥
∥d1
∥

∥ + hw
∥

∥δ1
∥

∥. (6.43)

Inequality (6.40) can be written as

∥

∥dn

∥

∥ ≤
(

1 + 2ĥLw
)∥

∥dn−1
∥

∥ + hw
∥

∥δn−1
∥

∥ for 2 ≤ n ≤N, (6.44)

and for n = 2 as

∥

∥d2
∥

∥ ≤
(

1 + 2ĥLw
)∥

∥d1
∥

∥ + hw
∥

∥δ1
∥

∥ ≤ e2̂Lwh∥
∥d1
∥

∥ + hw
∥

∥δ1
∥

∥. (6.45)

Comparing expressions (6.45) and (6.43), we can see that inequality (6.41) holds for n = 2.
Assuming it holds for n = k, we have from inequality (6.40) that

∥

∥dk+1
∥

∥ ≤
(

1 + 2ĥLw
)∥

∥dk

∥

∥ + hw
∥

∥δk
∥

∥ for 1 ≤ k ≤N − 1

≤ e2ĥLw

(

e2̂Lw(tk−t1)
∥

∥d1
∥

∥ + hw
k−1
∑

m=1

e2̂Lw(tk−tm+1)
∥

∥δm
∥

∥

)

+ hw
∥

∥δk
∥

∥.
(6.46)

Since for any r, h + (tk − tr) = tk+1 − tr , we have that

∥

∥dk+1
∥

∥ ≤ e2̂Lw(tk+1−t1)
∥

∥d1
∥

∥ + hw
k−1
∑

m=1

e2̂Lw(tk+1−tm+1)
∥

∥δm
∥

∥ + hwe2̂Lw(tk+1−tk+1)
∥

∥δk
∥

∥

= e2̂Lw(tk+1−t1)
∥

∥d1
∥

∥ + hw
k
∑

m=1

e2̂Lw(tk+1−tm+1)
∥

∥δm
∥

∥ for 1 ≤ k ≤N − 1.

(6.47)

Therefore, inequality (6.41) holds for k + 1 and by induction, it holds for 2 ≤ n ≤N.
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We can simplify inequality (6.41) by writing

∥

∥dn

∥

∥ ≤ e2̂Lw(tn−t1)
∥

∥d1
∥

∥ + hw
n−1
∑

m=1

e2̂Lw(tn−tm+1)
∥

∥δm
∥

∥ for 2 ≤ n ≤N

≤ e2̂Lw(tn−t1)
∥

∥d1
∥

∥ + hwe2̂Lw(tn−t2)(n − 1)max
1≤m<n

∥

∥δm
∥

∥

≤ e2̂Lw(tn−t1)
∥

∥d1
∥

∥ + hwe2̂Lw(tn−t1)(n − 1)max
1≤m<n

∥

∥δm
∥

∥

= e2̂Lw(tn−t1)
∥

∥W−1(z1 − y1

)∥

∥ +we2̂Lw(tn−t1)(tn − t1
)

max
1≤m<n

∥

∥δm
∥

∥

≤ e2̂Lw(tn−t1)w

[

∥

∥z1 − y1

∥

∥ +
(

tn − t1
)

max
1≤m<n

∥

∥δm
∥

∥

]

≤ e2̂Lw(tn−t1)w

[

max
(

tn − t1, 1
)∥

∥z1 − y1

∥

∥ + max
(

tn − t1, 1
)

max
1≤m<n

∥

∥δm
∥

∥

]

≤ 2we2̂Lw(tn−t1) max
(

tn − t1, 1
)

max
(

∥

∥z1 − y1

∥

∥, max
1≤m<n

∥

∥δm
∥

∥

)

.

(6.48)

Using the inequality (6.39), we have

∥

∥zn − yn
∥

∥ ≤ 4we2̂Lw(tn−t1) max
(

tn − t1, 1
)

max
(

∥

∥z1 − y1

∥

∥, max
1≤m<n

∥

∥δm
∥

∥

)

. (6.49)

Since ‖zn − yn‖ ≤ ‖zn − yn‖, and ‖δm‖ = ‖δm‖, we have

∥

∥zn − yn
∥

∥ ≤ Emax
(

max
r=0,1

∥

∥zr − yr
∥

∥, max
1≤m<n

∥

∥δm
∥

∥

)

for 2 ≤ n ≤N, (6.50)

where

E = 4we2̂Lw(tn−t1) max
(

tn − t1, 1
)

. (6.51)

Hence, stability of ARK methods is established. Recall that the ARK methods require to
be provided with the initial condition y0 at the beginning of the first time step t0 and the
approximate solution y1 at the end of the first time step t1. The maxr=0,1‖zr − yr‖ term in
expression (6.31) refers to the perturbations in these values.

Theorem 6.4. Consider an ARKp method that is used to solve the IVP given by (1.3), where f is a
sufficiently smooth Lipschitz continuous function throughout the integration span. If −1 ≤ c−0 < 1 and
the approximate solution y1 at time t1 is accurate to O(hq), the ARKp method is convergent to order
min(p, q), and

∥

∥y(tn) − yn
∥

∥ ≤ Emax
(

O
(

hq
)

, O
(

hp
))

for 2 ≤ n ≤N, (6.52)

where

E = 4we2̂Lw(tn−t1) max
(

tn − t1, 1
)

. (6.53)

In particular, ‖y(tn) − yn‖ → 0 as h → 0.
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Proof. Consider again the approximate solution {yn} (2 ≤ n ≤ N) and the perturbed solution
{zn} (2 ≤ n ≤N) of the ARKp method given by

yn+1 = c0yn − c−0yn−1 + φ
(

yn,yn−1, f, h
)

for 1 ≤ n ≤N − 1, (6.54)

zn+1 = c0zn − c−0zn−1 + φ
(

zn, zn−1, f, h
)

+ hδn for 1 ≤ n ≤N − 1, (6.55)

where z0 = y0 + Δ0, z1 = y1 + Δ1, and zn’s recipe is perturbed by hδn. The truncation error
hδ∗n is defined as the difference between the exact and approximate solutions at the end of the
current step if the method is provided with the exact solution at the beginning of the current
and previous steps. Therefore, the exact solution y(tn) satisfies

y
(

tn+1
)

= c0y
(

tn
)

− c−0y
(

tn−1
)

+ φ
(

y
(

tn
)

,y
(

tn−1
)

, f, h
)

+ hδ∗n. (6.56)

We will now show that {y(tn)} (2 ≤ n ≤ N) is a perturbed solution of the ARK method. For
n = 1, we have

y2 = c0y1 − c−0y0 + φ
(

y1,y0, f, h
)

, (6.57)

z2 = c0z1 − c−0z0 + φ
(

z1, z0, f, h
)

+ hδ1, (6.58)

y(t2) = c0y
(

t1
)

− c−0y
(

t0
)

+ φ
(

y(t1
)

,y
(

t0
)

, f, h
)

+ hδ∗1. (6.59)

We set

z0 = y(t0) = y0,

z1 = y(t1) = y1 +Δ∗1,

δ1 = δ∗1,

(6.60)

and from (6.58) and (6.59), we have z2 = y(t2). Similarly, we set δn = δ∗n for 1 ≤ n ≤N − 1, and
from (6.55) and (6.56), we get zn = y(tn) for 2 ≤ n ≤N.

Since we have made the same assumptions as Theorem 6.3, relations (6.31) and (6.32)
hold, and we have

∥

∥y(tn) − yn
∥

∥ ≤ Emax
(

∥

∥y
(

t1
)

− y1
∥

∥, max
1≤m<n

∥

∥δ∗m
∥

∥

)

for 2 ≤ n ≤N. (6.61)

For ARKp, δ∗m = O(hp). The approximate solution y1 at time t1 which is required by the ARKp
method is supplied by a one-step method such as RKp. If y1 is accurate of order q, that is,
‖y(t1) − y1‖ = O(hq), the above inequality shows that the ARKp method is convergent of order
min(p, q), that is,

∥

∥y(tn) − yn
∥

∥ ≤ Emax
(

O
(

hq
)

, O
(

hp
))

for 2 ≤ n ≤N. (6.62)

In particular, ‖y(tn) − yn‖ → 0 as h → 0, and Theorem 6.4 is proven.
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6.2. Large step sizes

To produce the stability region of ARK methods for finite step sizes, we look at the approximate
solution of the linear one-dimensional problem y′ = λy, where λ is a complex number. After
some simplification using the order equations, the ARK method’s approximate solution of this
problem becomes

[

yn+1

yn

]

=

⎡

⎣

1 + c−0 +
1
2
(

3 − c−0
)

(λh) + S −c−0 −
1
2
(

1 + c−0
)

(λh) − S
1 0

⎤

⎦

[

yn
yn−1

]

, (6.63)

where for ARK3,

S =
1
12
(

5 + c−0
)

(λh)2, (6.64)

for ARK4,

S =
1

12
(

5 + c−0
)

(λh)2 +
1
6
(λh)3, (6.65)

for ARK4-4,

S =
1
12
(

5 + c−0
)

(λh)2 +
1
6
(λh)3 + c4a1a2a3(λh)

4, (6.66)

and for ARK5,

S =
1

12
(

5 + c−0
)

(λh)2 +
1
6
(λh)3 +

1
720
(

31 − c−0
)

(λh)4 + c5a1a2a3a4(λh)
5. (6.67)

For stability, we require that the modulus of the eigenvalues of the matrix in (6.63) be
smaller than 1. Figures 15, 16, 17, and 18 show the stability regions of ARK and RK methods
produced in this way. The curves represent the points at which the computed maximum
modulus of the eigenvalues equals 1. The region of stability is the area enclosed by the curves
and the real axis. It is clear from (6.64) and (6.65) that the stability region of ARK3 and ARK4
depends only on c−0, but the stability of ARK4-4 and ARK5 depends also on the products
c4a1a2a3 and c5a1a2a3a4, respectively.

7. Conclusion

In this paper, we have developed a simple set of constant step size, explicit, accelerated
Runge-Kutta (ARK) methods for the numerical integration of initial value problems. They
rely on the general form posited in (2.5). The simplicity of this form facilitates their detailed
treatment, an aspect missing in previous work on similar multistep methods. Specifically,
we have provided a study of their motivation, derivation, optimization, accuracy, speedup,
stability, and convergence.
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Figure 15: Stability region of ARK3 sets of Table 1 and RK3 set of Table 5.
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Figure 16: Stability region of ARK4 sets of Table 2 and RK4 set of Table 5.

Our main conclusions are as follows.

(1) The ARK methods developed in this paper are simple to analyze and implement and
they lead to an elegant set of order equations. Three accuracy-optimized parameter
sets for ARK3, ARK4, ARK4-4, and ARK5 have been provided. The accuracy of the
methods obtained from these sets is confirmed by numerically solving a standard set
of seven initial value problems.

(2) The ARK methods are more computationally efficient than RK methods at providing
the same order of local accuracy because they reuse function evaluations from
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Figure 18: Stability region of ARK5 sets of Table 4 and RK5 set of Table 5.

previous steps of integration. ARK3, ARK4, and ARK5 require one less function
evaluation per time step of integration than RK3, RK4, and RK5, respectively.

(3) Numerical examples show that the accuracy-optimized ARK3, ARK4, ARK4-4, and
ARK5 methods presented here are superior to RK methods that computationally cost
the same in terms of the number of function evaluations. Also, the ARK methods are
comparable to RK methods that have the same order of local accuracy.

(4) ARK methods require to be initially started by a one-step method of equal or higher
order such as an RK method; however, this extra computation occurs only at the first
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step of integration and is insignificant compared to the computational savings of ARK
methods over the subsequent steps.

(5) In solving the standard initial value problems considered here, the ARK3, ARK4,
and ARK5 methods exhibit minimum speedups of 19%, 17%, and 15% compared to
RK3, RK4, and RK5 methods, respectively, on our computer. However, the theoretical
speedups of the ARK methods are approximately 33%, 25%, and 17%, respectively,
based on the smaller number of function evaluations required. This reduction in
speedup is found to be caused by the higher computational overheads in the ARK
methods, when compared to the RK methods.

(6) Convergence and stability for small step sizes are proven for ARK methods with some
conditions. The stability regions of ARK methods for large step sizes are shown to be
generally smaller than, but comparable to, those of RK methods.

Appendices

A. Standard initial value problems

The following are seven initial value problems (IVPs) that we have chosen from the literature
for numerical experiments. Most of the problems model real-world phenomena (suggested
by [14]) and have been used by other researchers to test numerical integrators. They help
to illustrate the accuracy, speedup, and stability of ARK methods in comparison with RK
methods. These problems are solved for 0 ≤ t ≤ 15.

The first problem is a simple IVP which has the form
IVP-1 [14]

y′ = −y, y
(

t0
)

= 1, with solution y(t) = e−t. (A.1)

The second problem is an example of a simple nonautonomous ODE. We use it to
illustrate that such problems can be readily converted to autonomous form and solved by ARK
methods without difficulty. The problem is written as

IVP-2 [11]

y′ = −
ty

1 + t2
, y

(

t0
)

= 1, with solution y(t) =
1√

1 + t2
. (A.2)

The third problem is the Euler equations of motion for a rigid body without external
forces. This problem has no closed form solution, so its exact solution is approximated by RK6
with a step size of 10−4. We have

IVP-3 [14]

y′1 = y2y3, y1
(

t0
)

= 0,

y′2 = −y1y3, y2
(

t0
)

= 1,

y′3 = −0.51y1y2, y3
(

t0
)

= 1.

(A.3)

The fourth problem is a 1-body gravitational problem with eccentricity e = 0.8. The
solution, which is the orbit of a body revolving around a center body, has regions of high
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stability and low stability as pointed out by the high and low values of the spectral norm of
the Jacobian. We use this problem to show the effects of such a stability behavior on the ARK
methods’ performance. The ARK and RK methods fail to maintain their order of accuracy
for step sizes larger than about 0.01. This is due to the instability of the solution particulary
in the region where the revolving body is passing close to the center body. This problem is
commonly solved by employing a variable-step numerical method which reduces the step size
in this region. The problem is written as

IVP-4 [14]

y′1 = y3, y1
(

t0
)

= 1 − e, y1(t) = cos(u) − e,

y′2 = y4, y2
(

t0
)

= 0, y2(t) =
√

1 − e2 sin(u),

y′3 = −
y1

(

y2
1 + y

2
2

)3/2
, y3

(

t0
)

= 0, with solution y3(t) =
− sin(u)

1 − e cos(u)
,

y′4 = −
y2

(

y2
1 + y

2
2

)3/2
, y4

(

t0
)

=

√

1 + e
1 − e , y4(t) =

√
1 − e2 cos(u)
1 − e cos(u)

,

(A.4)

where u is the solution of the Kepler equation u = t + e sin(u).
The fifth problem is similar to the above problem but with e = 0. With consistent stability

behavior, it is a good example to compare with the previous problem. It has the form
IVP-5 [14]

y′1 = y3, y1
(

t0
)

= 1, y1(t) = cos(t),

y′2 = y4, y2
(

t0
)

= 0, y2(t) = sin(t),

y′3 = −
y1

(

y2
1 + y

2
2

)3/2
, y3

(

t0
)

= 0, with solution
y3(t) = − sin(t),

y′4 = −
y2

(

y2
1 + y

2
2

)3/2
, y4

(

t0
)

= 1, y4(t) = cos(t).

(A.5)

The sixth problem is a linear 10th-order system that models a radioactive decay chain.
This problem and the next are used to measure the performance of the ARK methods when
solving larger systems of ODEs. Although this problem has a closed form solution, because of
numerical errors in computing it, it was approximated by RK6 with a step size of 10−4. It takes
the form

IVP-6 [14]

⎡

⎢

⎢

⎢

⎣

y′1
y′2
...
y′10

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1
1 −2 0

2 −3
· ·
· ·
· ·

0 8 −9
9 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

y1

y2
...
y10

⎤

⎥

⎥

⎥

⎦

, y
(

t0
)

=

⎡

⎢

⎢

⎢

⎣

1
0
...
0

⎤

⎥

⎥

⎥

⎦

. (A.6)
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The seventh problem is a 5-body gravitational problem for the orbit of 5 outer planets
around the sun and 4 inner planets. The orbit eccentricity of the planets 1 through 5 are 0.31,
0.33, 0.30, 0.13, and 0.63, respectively. The subscripts p and c denote the planet and coordinate,
respectively. The exact solution of this problem was also approximated by RK6 with a step size
of 10−4. It is a 30-dimensional system of first-order ODEs, and can be written as

IVP-7 [14]

y′′pc = G

[

−
(

m0 +mp

)ypc

r3
p

+
5
∑

k=1
k /= p

mk

(

ykc − ypc
d3
pk

−
ykc

r3
k

)

]

, p = 1, . . . , 5, c = 1, . . . , 3, (A.7)

where

r2
p =

3
∑

c=1

y2
pc, d2

kp =
3
∑

c=1

(

ykc − ypc
)2
, k = 1, . . . , 5. (A.8)

The gravity constant and planet masses are

G = 2.95912208286, m3 = 0.0000437273164546 (Uranus),

m0 = 1.00000597682 (sun & 4 inner planets), m4 = 0.0000517759138449 (Neptune),

m1 = 0.000954786104043 (Jupiter), m5 = 0.00000277777777778 (Pluto).

m2 = 0.000285583733151 (Saturn),
(A.9)

The initial values are

y11
(

t0
)

= 3.42947415189, y′11

(

t0
)

= −0.557160570446,

y12
(

t0
)

= 3.35386959711, y′12

(

t0
)

= 0.505696783289,

y13
(

t0
)

= 1.35494901715, y′13

(

t0
)

= 0.230578543901,

y21
(

t0
)

= 6.64145542550, y′21

(

t0
)

= −0.415570776342,

y22
(

t0
)

= 5.97156957878, y′22
(

t0
)

= 0.365682722812,

y23
(

t0
)

= 2.18231499728, y′23
(

t0
)

= 0.169143213293,

y31
(

t0
)

= 11.2630437207, y′31

(

t0
)

= −0.325325669158,

y32
(

t0
)

= 14.6952576794, y′32
(

t0
)

= 0.189706021964,

y33
(

t0
)

= 6.27960525067, y′33
(

t0
)

= 0.0877265322780,

y41
(

t0
)

= −30.1552268759, y′41

(

t0
)

= −0.0240476254170,

y42
(

t0
)

= 1.65699966404, y′42

(

t0
)

= −0.287659532608,

y43
(

t0
)

= 1.43785752721, y′43

(

t0
)

= −0.117219543175,

y51
(

t0
)

= −21.1238353380, y′51

(

t0
)

= −0.176860753121,

y52
(

t0
)

= 28.4465098142, y′52
(

t0
)

= −0.216393453025,

y53
(

t0
)

= 15.3882659679, y′53
(

t0
)

= −0.0148647893090.

(A.10)
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B. Maple code for ARK3

The following is the Maple code that generates the ARK3 order equations of up toO(h4). ARK4,
ARK4-4, and ARK5 codes are extensions to this code. They were not included for brevity.

restart:
tay_o := 4:
yp[1] := D(y[1])(t) = f[1](y[1](t),y[2](t)):
yp[2] := D(y[2])(t) = f[2](y[1](t),y[2](t)):
y2p[1] := (D@@2)(y[1])(t) = convert(diff(f[1](y[1](t),y[2](t)), t), D):
y2p[1] := subs({yp[1], yp[2]}, y2p[1]):
y2p[2] := (D@@2)(y[2])(t) = convert(diff(f[2](y[1](t),y[2](t)), t), D):
y2p[2] := subs({yp[1], yp[2]}, y2p[2]):
y3p[1] := (D@@3)(y[1])(t) = expand( convert(diff( f[1](y[1](t),
y[2](t)), t$2), D) ):
y3p[1] := subs({y2p[1], y2p[2]}, y3p[1]):
y3p[1] := subs({yp[1], yp[2]}, y3p[1]):
y3p[1] := expand(y3p[1]):
y3p[2] := (D@@3)(y[2])(t) = expand( convert(diff( f[2](y[1](t),y[2](t)),
t$2), D) ):
y3p[2] := subs({y2p[1], y2p[2]}, y3p[2]):
y3p[2] := subs({yp[1], yp[2]}, y3p[2]):
y3p[2] := expand(y3p[2]):
y4p[1] := (D@@4)(y[1])(t) = expand( convert(diff( f[1](y[1](t),y[2](t)),
t$3), D) ):
y4p[1] := subs({y3p[1],y3p[2]}, y4p[1]):
y4p[1] := subs({y2p[1],y2p[2]}, y4p[1]):
y4p[1] := subs({yp[1],yp[2]}, y4p[1]):
y4p[1] := expand(y4p[1]):
y4p[2] := (D@@4)(y[2])(t) = expand( convert(diff( f[2](y[1](t),y[2](t)),
t$3), D) ):
y4p[2] := subs({y3p[1],y3p[2]}, y4p[2]):
y4p[2] := subs({y2p[1],y2p[2]}, y4p[2]):
y4p[2] := subs({yp[1],yp[2]}, y4p[2]):
y4p[2] := expand(y4p[2]):
ynm1[1] := convert( taylor(y[1](t-h), h=0, tay_o+1), polynom):
k1[1] := h*f[1](y[1](t),y[2](t)):
k1[2] := h*f[2](y[1](t),y[2](t)):
km1[1] := collect(h*convert(taylor(f[1](y[1](t-h), y[2](t-h)), h=0,
tay_o), polynom), h):
km1[1] := sort(km1[1], h, ascending):
km1[2] := collect(h*convert(taylor(f[2](y[1](t-h), y[2](t-h)), h=0,
tay_o),
polynom), h):
km1[2] := sort(km1[2], h, ascending):
k2[1] := expand( h * convert( taylor( f[1](y[1](t)+a1*k1[1],
y[2](t)+a1*k1[2]),



Firdaus E. Udwadia and A. Farahani 35

h=0, tay_o), polynom) ):
k2[2] := expand( h * convert( taylor( f[2](y[1](t)+a1*k1[1],
y[2](t)+a1*k1[2]),
h=0, tay_o), polynom) ):
km2[1] := collect(h*convert(taylor(f[1](y[1](t-h)+a1*km1[1],
y[2](t-h)+a1*km1[2]),
h=0, tay_o), polynom), h):
km2[1] := sort(km2[1], h, ascending):
km2[2] := collect(h*convert(taylor(f[2](y[1](t-h)+a1*km1[1],
y[2](t-h)+a1*km1[2]),
h=0, tay_o), polynom), h):
km2[2] := sort(km2[2], h, ascending):
ynp1[1] := c0*y[1](t) - cm0*ynm1[1] + c1*k1[1]
- cm1*km1[1] + c2*(k2[1]-km2[1]):
ynp1[1] := subs({yp[1], yp[2], y2p[1], y2p[2], y3p[1], y3p[2], y4p[1], y4p[2]},
ynp1[1]):
ynp1[1] := collect(expand(ynp1[1]), h):
ynp1_tay[1] := convert( taylor(y[1](t+h), h=0, tay_o+1), polynom ):
h0termO[1] := coeff(ynp1[1], h, 0):
h0term[1] := collect(h0termO[1], y[1](t)):
eqn0 := coeff(h0term[1], y[1](t)) = coeff( coeff(ynp1_tay[1], h, 0),
y[1](t) ):
h1termO[1] := coeff(ynp1[1], h, 1):
h1term[1] := applyrule( rhs(yp[1])=lhs(yp[1]), h1termO[1]):
h1term[1] := collect(h1term[1], D(y[1])(t)):
eqn1 := coeff(h1term[1], D(y[1])(t)) = coeff( coeff(ynp1_tay[1], h, 1),
D(y[1])(t)):
h2termO[1] := coeff(ynp1[1], h, 2):
( D[1](f[1])(y[1](t),y[2](t)) = solve(y2p[1], D[1](f[1])(y[1](t),
y[2](t))) ) * f[1](y[1](t),y[2](t)):
h2term[1] := applyrule(%, h2termO[1]):
h2term[1] := collect(h2term[1], (D@@2)(y[1])(t)):
eqn2 := coeff(h2term[1], (D@@2)(y[1])(t)) = coeff( coeff(ynp1_tay[1], h, 2),
(D@@2)(y[1])(t)):
h3termO[1] := coeff(ynp1[1], h, 3):
( D[1,1](f[1])(y[1](t),y[2](t)) = solve(y3p[1], D[1,1](f[1])(y[1](t),
y[2](t))) ) * f[1](y[1](t),y[2](t))^2:
h3term[1] := applyrule(%, h3termO[1]):
h3term[1] := collect(expand(h3term[1]), (D@@3)(y[1])(t)):
eqn3 := coeff(h3term[1], (D@@3)(y[1])(t)) = coeff( coeff(ynp1_tay[1], h, 3),
(D@@3)(y[1])(t)):
fsubs := {
f[1](y[1](t),y[2](t)) = x[1],
f[2](y[1](t),y[2](t)) = x[2],
D[1](f[1])(y[1](t),y[2](t)) = x[3],
D[1](f[2])(y[1](t),y[2](t)) = x[4],



36 Discrete Dynamics in Nature and Society

D[2](f[1])(y[1](t),y[2](t)) = x[5],
D[2](f[2])(y[1](t),y[2](t)) = x[6],
D[1,1](f[1])(y[1](t),y[2](t)) = x[7],
D[1,1](f[2])(y[1](t),y[2](t)) = x[8],
D[1,2](f[1])(y[1](t),y[2](t)) = x[9],
D[1,2](f[2])(y[1](t),y[2](t)) = x[10],
D[2,2](f[1])(y[1](t),y[2](t)) = x[11],
D[2,2](f[2])(y[1](t),y[2](t)) = x[12],
D[1,1,1](f[1])(y[1](t),y[2](t)) = x[13],
D[1,1,1](f[2])(y[1](t),y[2](t)) = x[14],
D[1,1,2](f[1])(y[1](t),y[2](t)) = x[15],
D[1,1,2](f[2])(y[1](t),y[2](t)) = x[16],
D[1,2,2](f[1])(y[1](t),y[2](t)) = x[17],
D[1,2,2](f[2])(y[1](t),y[2](t)) = x[18],
D[2,2,2](f[1])(y[1](t),y[2](t)) = x[19],
D[2,2,2](f[2])(y[1](t),y[2](t)) = x[20]}:
psubs :={c0=1, cm0=2, c1=3, cm1=4, c2=5, a1=6}:
qsubs :={c0=100, cm0=99, c1=98, cm1=97, c2=96, a1=95}:
rsubs :={c0=7, cm0=24, c1=947, cm1=14, c2=85, a1=13}:
subs( psubs, subs(fsubs, ynp1[1]) ):
nops(expand(%)):
subs( qsubs, subs(fsubs, ynp1[1]) ):
nops(expand(%)):
subs( rsubs, subs(fsubs, ynp1[1]) ):
nops(expand(%)):
h4termO[1] := coeff(ynp1[1], h, 4):
( D[1,1,1](f[1])(y[1](t),y[2](t)) = solve(y4p[1],
D[1,1,1](f[1])(y[1](t),y[2](t))) ) * f[1](y[1](t),y[2](t))^3:
h4term[1] := applyrule(%, h4termO[1]):
h4term[1] := collect(expand(h4term[1]), (D@@4)(y[1])(t)):
h4termx[1] := subs(fsubs, h4term[1]):
collect( subs(psubs, h4termx[1]), [(D@@4)(y[1])(t), x[1], x[2], x[3],
x[4], x[5]]):
eqn4_1 := coeff(h4termx[1], (D@@4)(y[1])(t)) = coeff (coeff(ynp1_tay[1], h, 4),
(D@@4)(y[1])(t)):
eqn4_2 := coeff( coeff( coeff(h4termx[1], x[1], 2), x[9]), x[4]) = 0:
eqn4_3 := coeff( coeff( coeff(h4termx[1], x[1], 2), x[7]), x[3]) = 0:
eqn4_4 := coeff( coeff( coeff(h4termx[1], x[1], 2), x[5]), x[8]) = 0:
eqn4_5 := coeff( coeff( coeff( coeff(h4termx[1], x[1]), x[2]), x[9]),
x[3]) = 0:
eqn4_6 := coeff( coeff( coeff( coeff(h4termx[1], x[1]), x[2]), x[11]),
x[4]) = 0:
eqn4_7 := coeff( coeff( coeff( coeff(h4termx[1], x[1]), x[2]), x[5]),
x[7]) = 0:
eqn4_8 := coeff( coeff( coeff( coeff(h4termx[1], x[1]), x[2]), x[5]),
x[10]) = 0:
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eqn4_9 := coeff( coeff( coeff( coeff(h4termx[1], x[1]), x[2]), x[9]),
x[6]) = 0:
eqn4_10 := coeff( coeff( coeff( coeff(h4termx[1], x[1]), x[5]), x[6]),
x[4]) = 0:
eqn4_11 := coeff( coeff( coeff( coeff(h4termx[1], x[1]), x[3]), x[5]),
x[4]) = 0:
eqn4_12 := coeff( coeff(h4termx[1], x[1]), x[3], 3) = 0:
eqn4_13 := coeff( coeff( coeff(h4termx[1], x[2], 2), x[3]), x[11]) = 0:
eqn4_14 := coeff( coeff( coeff(h4termx[1], x[2], 2), x[9]), x[5]) = 0:
eqn4_15 := coeff( coeff( coeff(h4termx[1], x[2], 2), x[12]), x[5]) = 0:
eqn4_16 := coeff( coeff( coeff(h4termx[1], x[2], 2), x[11]), x[6]) = 0:
eqn4_17 := coeff( coeff( coeff(h4termx[1], x[2]), x[4]), x[5], 2) = 0:
eqn4_18 := coeff( coeff( coeff(h4termx[1], x[2]), x[3], 2), x[5]) = 0:
eqn4_19 := coeff( coeff( coeff(h4termx[1], x[2]), x[5]), x[6], 2) = 0:
eqn4_20 := coeff( coeff( coeff( coeff(h4termx[1], x[2]), x[3]),
x[5]), x[6]) = 0:
eqn0s := eqn0;
eqn1s := eqn1;
eqn2s := eqn2;
eqn3s := eqn3 + 1/2*eqn2;
eqn4_1s := 2*( eqn4_1 - 1/6*eqn2s + 1/2*eqn3s );
eqn4_2s := eqn4_2 + 1/2*eqn4_1s;
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