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Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy

2Department of Mathematics, Waseda University, 3-4-1 Ohkubo Shinjuku-ku, Tokyo 169-8555, Japan
3 Istituto per le Applicazioni del Calcolo “Mauro Picone”, Sede di Napoli, Via P. Castellino 111,
80131 Napoli, Italy

Correspondence should be addressed to A. Vecchio, vecchio@na.iac.cnr.it

Received 19 June 2007; Revised 14 January 2008; Accepted 5 May 2008

Recommended by A. Matsumoto

We consider nonlinear difference equations of the unbounded order of the form xi = bi −∑i

j=0
ai,jfi−j(xj), i = 0, 1, 2, . . . , where fj(x) (j = 0, . . . , i) are suitable functions. We establish

sufficient conditions for the boundedness and the convergence of xi as i → +∞. Some of these
conditions are interesting mainly for studying stability of numerical methods for Volterra integral
equations.
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1. Introduction

We consider the following nonlinear Volterra discrete equation of nonconvolution type:

xi = bi −
i∑

j=0

ai,jfi−j(xj), i = 0, 1, 2, . . . ,

xi, bi, ai,j ∈ IR, bi /= 0, ∀i = 0, 1, 2, . . . .

(1.1)

The existence problem for solution of Volterra discrete equations arises in the nonlinear implicit
case. For linear implicit equations and nonlinear explicit equations, the problem is easily
solved. Recently, some local and global existence theorems for Volterra discrete equations in
the general case are given in [1, 2].
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From now on, we assume that there exists a strictly increasing function f(x) such that

0 ≤ fi(x) ≤ f(x) for x ≥ 0,

0 ≥ fi(x) ≥ f(x) for x ≤ 0,
i ≥ 0. (1.2)

Note that (1.2) implies that

f(0) = 0, fi(0) = 0, i ≥ 0. (1.3)

The above difference equation can be considered as the discrete counterpart of the Volterra
integral equation whose importance in the applications is well known (see, e.g., [3, 4]), and
arises also in the application of numerical methods to Volterra integral and integrodifferential
equations. The theory of the qualitative behavior of this type of nonlinear difference equation
is very important, in particular for the study of numerical stability of such methods (see, e.g.,
[5–11] and the references therein).

In this paper, we study some sufficient conditions for the boundedness of the solutions
(if they exist) of (1.1), subject to (1.2), and their asymptotic behavior as i → +∞. In particular,
in Section 2 we investigate the asymptotic behavior when |fi(x)| is upper bounded by a linear
function. The case of nonnegative coefficients is investigated in Section 3 and, with additional
monotonicity assumptions, in Section 4.

2. Case of |fi(x)| ≤ |x|, i ≥ 0

Assume that, in (1.1) with (1.2), the following additional hypotheses hold:

inf
i≥0

ai,i > −1,
∣∣fi(x)

∣∣ ≤ |x|, for any x ∈ (−∞,+∞), i ≥ 0. (2.1)

Observe that the second part of (2.1) is true if in (1.2) f(x) = x. The following lemma can be
easily proved.

Lemma 2.1. If

aii ≥ 0, then |x| ≤
∣∣x + aiif0(x)

∣∣,

aii ≤ 0, then
(
1 + aii

)
|x| ≤

∣∣x + aiif0(x)
∣∣,

(2.2)

for all x ∈ R.

Here and in the sequel we assume a sum with a negative superscript to be zero. By using
(2.1) and Lemma 2.1, from (1.1), we have that

∣∣xi
∣∣ ≤

∣∣b̃i
∣∣ +

i−1∑

j=0

∣∣ãi,j
∣∣∣∣xj

∣∣, i ≥ 0, (2.3)

and we set

b̃i =
bi

1 + min
(
0, ai,i

) , ãi,j =
ai,j

1 + min
(
0, ai,i

) , 0 ≤ j ≤ i − 1. (2.4)

This inequality will be useful in order to find sufficient conditions for the boundedness of xi
and for its convergence to zero as i tends to infinity.
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Theorem 2.2. Consider (1.1) with (1.2) and (2.1), if there exists a positive constant A such that

sup
0≤j≤i−1

∣∣ãi,j
∣∣ ≤ A < +∞, ∀i ≥ 1,

B = sup
i≥0

∣∣b̃i
∣∣ < +∞, A0 = sup

i≥i0

i−1∑

j=i0

∣∣ãi,j
∣∣ < 1

(2.5)

for some positive integer i0, then xi is bounded and

∣∣xi
∣∣ ≤ (1 +A)i0B

1 −A0

< +∞, i ≥ i0. (2.6)

Moreover, if

lim
i→∞

bi = 0, lim
i→∞

∣∣ai,j
∣∣ = 0 ∀j ≥ 0, (2.7)

then limi→∞xi = 0.

Proof. Let us consider (2.3), by using (2.5), we have that
∣∣x0

∣∣ ≤
∣∣b̃0

∣∣ ≤ B,
∣∣x1

∣∣ ≤
∣∣b̃1

∣∣ +
∣∣ã1,0

∣∣∣∣x0
∣∣ ≤ B +AB = (1 +A)B,

∣∣x2
∣∣ ≤

∣∣b̃2
∣∣ +

∣∣ã2,0
∣∣∣∣x0

∣∣ +
∣∣ã2,1

∣∣∣∣x1
∣∣ ≤ B +AB +A(1 +A)B = (1 +A)2B, . . . ,

∣∣xi
∣∣ ≤

∣∣b̃i
∣∣ +

i−1∑

j=0

∣∣ãi,j
∣∣∣∣xj

∣∣ ≤ B +
i−1∑

j=0

A
{
(1 +A)jB

}
= B +

{
(1 +A)i − 1

}
B = (1 +A)iB, i ≥ 0.

(2.8)

In particular, assume that the third part of (2.5) holds, then

|xi| ≤
{
∣∣b̃i

∣∣ +
i0−1∑

j=0

∣∣ãi,j
∣∣∣∣xj

∣∣
}
+

i−1∑

j=i0

∣∣ãi,j
∣∣∣∣xj

∣∣, ∀i ≥ i0, (2.9)

and thus,

∣∣xi
∣∣ ≤

{
∣∣b̃i

∣∣ +
i0−1∑

j=0

∣∣ãi,j
∣∣∣∣xj

∣∣
}
+A0 max

i0≤j≤i

∣∣xj
∣∣. (2.10)

Hence, the following inequalities hold for each k ≤ i:

∣∣xk
∣∣ ≤

{
∣∣b̃i

∣∣ +
i0−1∑

j=0

∣∣ãi,j
∣∣∣∣xj

∣∣
}
+A0 max

i0≤j≤k

∣∣xj
∣∣ ≤

{
∣∣b̃i

∣∣ +
i0−1∑

j=0

∣∣ãi,j
∣∣∣∣xj

∣∣
}
+A0 max

i0≤j≤i

∣∣xj
∣∣. (2.11)

For this reason,

max
i0≤j≤i

∣∣xj
∣∣ ≤

{
∣∣b̃i

∣∣ +
i0−1∑

j=0

∣∣ãi,j
∣∣∣∣xj

∣∣
}
+A0 max

i0≤j≤i

∣∣xj
∣∣, (2.12)
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from which we obtain that

max
i0≤j≤i

∣∣xj
∣∣ ≤

{
B +

∑i0−1
j=0 A(1 +A)jB

}

1 −A0

=
(1 +A)i0B

1 −A0

< +∞, i ≥ i0. (2.13)

Thus, |xi| is bounded and satisfies (2.6).
Assume that x = lim supi→∞ |xi| > 0 and put r = supi≥i0

∑i−1
j=i0 |ai,j |, γ = 1+min(0, infi≥i0ai,i)

and M = supi≥0|xi|. Then, since |xi| is bounded and the third of (2.5) holds, we have that M <
+∞ and r < γ . Let’s take any ε > 0 and consider a continuous function F(x) = (r +x)(x+x)+2x
on [0, ε]. Then, by F(0) = r x < γx, there exists a constant 0 < ε0 < ε such that

F
(
ε0
)
=
(
r + ε0

)(
x + ε0

)
+ 2ε0 < γx. (2.14)

For the above ε0 > 0, there exists a positive integer i1 ≥ i0 such that |xi| < x + ε0 and
∑i−1

j=i0 |ai,j | <
r + ε0, for any i ≥ i1. By assumption (2.7), we have that for ε1 = ε0/(1 +M) > 0, there exists a
positive integer i2 ≥ i1 such that

∣∣bi
∣∣ < ε1,

i2−1∑

j=0

∣∣ai,j
∣∣ < ε1 for any i ≥ i2. (2.15)

Then, for i ≥ i2 and c̃i = bi −
∑i2−1

j=0 ai,jfi−j(xj), we have that

∣∣c̃i
∣∣ ≤

∣∣bi
∣∣ +

(
i2−1∑

j=0

∣∣ai,j
∣∣
)
M < ε1 + ε1M = ε0,

∣∣xi
∣∣ ≤

i−1∑

j=i2

∣∣ai,j
∣∣∣∣fi−j

(
xj
)∣∣ +

∣∣c̃i
∣∣ <

(
r + ε0

)(
x + ε0

)
+ ε0 < x − ε0, i ≥ i2,

(2.16)

which is a contradiction with the lim sup definition. Hence, x = 0 and we obtain limi→∞xi
= 0.

Note that the third part of (2.5) is equivalent to r = supi≥i0
∑i−1

j=i0 |ai,j | < γ = 1 + min(0,
infi≥i0ai,i).

The theorem above gives some conditions on the coefficients aij of (1.1) for the
boundedness of xi which supplement the results in [12, Theorem 2.1]. Moreover, it worths
while to compare our result with the ones in [9, Theorem 3.1] and [5, Theorem 4.1]. In order
to do that, we assume aii = 0, bi = 0 and then x0 is given. In this case, following the line of
the proof of Theorem 2.2, we can still show that xi vanishes as i → ∞ provided that (2.5) and
the second part of (2.7) hold. Observe that this represents an additional result with respect to
[9, Theorem 3.1] and [5, Theorem 4.1] which, involving the sum of the coefficients ãi,j on the
second index, enlarges the set of conditions for xi to be bounded and convergent to zero. As an
example, for equation

xi =
i−1∑

j=0

1
(i + 1)2i−j

xj , (2.17)
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(3.2) in [9] or the sufficient condition in [5] is not satisfied, however (2.5) is fulfilled. Moreover,
it is easy to see that, in the convolution case ai,j = ai−j , the third of (2.5) coincides with the
known one [5, 10]

+∞∑

l=0

∣∣al
∣∣ < 1, (2.18)

and the second part of (2.7) is implied by (2.5).
Theorem 2.2 turns out to be quite useful in the linear case when (1.1) represents the

linearized equation for the global error of a numerical method applied to a Volterra integral
equation. In this case, bi represents the local truncation error of the method at the step i. Thus,
if bi is bounded for all i and if (2.5) holds, then the error xi is bounded and the bound is given
in (2.6).

The following theorem provides some sufficient conditions on the coefficients of (1.1) for
the summability of {xi}+∞i=0 , which turn out to be less restrictive of those stated by [13, Theorem
2.8].

Theorem 2.3. For (1.1) with (1.2), assume (2.1). If

B =
∞∑

i=0

∣∣b̃i
∣∣ < +∞, A = sup

j≥0

∞∑

i=j+1

∣∣ãi,j
∣∣ < 1, (2.19)

then
∑∞

i=0|xi| ≤ B/(1 −A) < +∞, and consequently, limi→∞ xi = 0.

Proof. By (2.3),

i∑

k=0

∣∣xk
∣∣ ≤

i∑

k=0

∣∣b̃k
∣∣ +

i∑

k=0

k−1∑

j=0

∣∣ãk,j
∣∣∣∣xj

∣∣

≤
(

i∑

k=0

∣∣b̃k
∣∣
)

+
i−1∑

j=0

(
i∑

k=j+1

∣∣ãk,j
∣∣
)
∣∣xj

∣∣

≤
(

i∑

k=0

∣∣b̃k
∣∣
)

+

(
sup
j≥0

∞∑

k=j+1

∣∣ãk,j
∣∣
)(

i−1∑

j=0

∣∣xj
∣∣
)
.

(2.20)

Therefore, by (2.19), we have that

i∑

k=0

∣∣xk
∣∣ ≤

∑i
k=0

∣∣b̃k
∣∣

{
1 −

(
supj≥0

∑∞
k=j+1

∣∣ãk,j
∣∣
)} ≤ B

1 −A
< +∞, (2.21)

and then, limi→∞xi = 0.

In the case (1.1) is linear,

xi = bi −
i∑

j=0

ai,jxj , i ≥ 0, (2.22)

the following theorem is easily proved.
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Theorem 2.4. For the linear equation (2.22), assume infi≥0ai,i > −1, and for

γ = 1 + min
(

0, inf
i≥0
ai,i

)
,

c̃i,j =
ai−1,j − ai,j

γ
, i − 2 ≥ j ≥ 0,

c̃i,i−1 =
1 + ai−1,i−1 − ai,i−1

γ
, i ≥ 1,

d̃0 =
b0

γ
, d̃i =

bi − bi−1

γ
, i ≥ 1.

(2.23)

(i) Suppose that

sup
0≤j≤i−1

∣∣c̃i,j
∣∣ = C < +∞, D = sup

i≥0

∣∣d̃i
∣∣ < +∞. (2.24)

Then, |xi| ≤ (1 + C)iD, i ≥ 0. In particular, if there exists a positive integer i0 such that

C0 = sup
i≥i0

i−1∑

j=i0

∣∣c̃i,j
∣∣ < 1, (2.25)

then xi is bounded and

|xi| ≤
(1 + C)i0D

1 − C0

< +∞, i ≥ i0. (2.26)

Moreover, if

lim
i→∞

(
bi − bi−1

)
= 0, lim

i→∞

(
i0−1∑

j=0

∣∣ai,j
∣∣
)

= 0, (2.27)

then limi→∞xi = 0.

(ii) If

C = sup
j≥0

∞∑

i=j+1

∣∣c̃i,j
∣∣ < 1, D =

∑∞
i=0

∣∣bi+1 − bi
∣∣ +

∣∣b0
∣∣

γ
< +∞, (2.28)

then
∑∞

i=0|xi| ≤ D/(1 − C) < +∞, and consequently, limi→∞xi = 0.

Proof. By (2.22), we obtain that

(
1 + ai,i

)
xi =

(
bi − bi−1

)
+
(
1 + ai−1,i−1 − ai,i−1

)
xi−1 +

i−2∑

j=0

(
ai−1,j − ai,j

)
xj, i ≥ 1. (2.29)

Then, we have that

∣∣xi
∣∣ ≤

∣∣d̃i
∣∣ +

i−1∑

j=0

∣∣c̃i,j
∣∣∣∣xj

∣∣, i ≥ 1. (2.30)

Thus, analogously to the proofs of Theorems 2.2 and 2.3, we obtain the conclusion of this
theorem.
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3. Nonnegative coefficients

In this section, we focus on the solutions of (1.1) with (1.2) and

ai,j ≥ 0, i ≥ j ≥ 0. (3.1)

Such discrete equations are useful, above all, in the investigations on the behavior of the
solution of some numerical methods when used to solve nonlinear heat flow in a material with
memory (see [14] and the bibliography therein). Let us start with the following lemma, which
describes some aspects of the solution of (1.1)-(1.2) with (3.1) when xi has a sign eventually
constant for all i ≥ 0. The utility of this lemma is not in itself, but as an instrument to prove
some of the next theorems (see Theorems 3.4, 4.1 and 4.3).

Lemma 3.1. Let {xi}∞i=0 be the solution of (1.1) and assume that

(i) |bi| ≤ B and ai,j ≤ Aj for each i, j ≥ 0;

(ii) there exists i0 > 0 such that xi ≥ 0 (resp., xi ≤ 0) for any i ≥ i0,

then

|c̃i| ≤ C, 0 ≤ xi ≤ c̃i (resp., 0 ≥ xi ≥ c̃i) ∀i ≥ i0, (3.2)

where c̃i = bi −
∑i0−1

j=0 ai,jfi−j(xj) and C is a positive constant.
Moreover, assume that one of the following conditions holds:

(iii1) limi→∞c̃i = 0,

(iii2) a = lim infj→∞ (lim infi→∞ ai,j) > 0 and there exists a strictly increasing function f(x) on
(−∞,+∞) such that f(0) = 0 and infj≥0fj(x) ≥ f(x), x ∈ [0,+∞) (resp., infj≥0fj(x) ≤
f(x), x ∈ (−∞, 0]),

then limi→∞xi = 0.
Furthermore, if, in addition to (iii2), there exists a positive constant δ such that f(x) ≥ δx, x ∈

[0,+∞) (resp., f(x) ≤ δx, x ∈ (−∞, 0]), then
∑∞

i=i0 |xi| ≤ (supi≥i0 |c̃i|)/(δa) < +∞.

Proof. Since ai,j ≤ Aj, |bi| ≤ B and f(x) is a continuous function, then |c̃i| is bounded. Assume
that there exists a nonnegative integer i0 such that xi ≥ 0 for any i ≥ i0 (the analysis of the case
xi ≤ 0 for all i ≥ i0 is analogous). Then, by the fact that, for the main hypothesis (1.2), fi−j(x) > 0
whenever x > 0, we have

0 ≤ xi =
{
bi −

i0−1∑

j=0

ai,jfi−j
(
xj
)
}
−

i∑

j=i0

ai,jfi−j
(
xj
)
≤ c̃i, i ≥ i0. (3.3)

Hence, the first part of the lemma is proved. Consider now the two cases (iii1) and (iii2)
separately.

Case (iii1): limi→∞c̃i = 0 of course implies limi→∞xi = 0.
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Case (iii2): put lim supi→∞xi = x. Assume that x > 0, and let {xik}
∞
k=0 be a subsequence of

{xi}∞i=i0 such that limk→∞xik = x. Then, one can prove that lim supk→∞
∑ik

j=i0
f(xj) = +∞. By (1.1)

and assumptions, we have

xik +
ik∑

j=i0

aik,jf
(
xj
)
≤ c̃ik . (3.4)

Therefore,

+∞ > lim sup
k→∞

c̃ik ≥ lim sup
k→∞

{
xik +

ik∑

j=i0

aik,jf
(
xj
)
}
≥ x +

{
lim inf
j→∞

(
lim inf
i→∞

ai,j

)}
lim sup
k→∞

ik∑

j=i0

f
(
xj
)

(3.5)

which is a contradiction because lim infj→∞(lim infi→∞ai,j) > 0 and lim supk→∞
∑ik

j=i0
f(xj) =

+∞. Hence, we have x = limi→∞xi = 0.
In addition, suppose that there exists a positive constant δ such that f(x) ≥ δx, x ∈

[0,+∞). Then, we have that

xi + δ
i∑

j=i0

ai,jxj ≤ c̃i, i ≥ i0. (3.6)

Thus, from a = lim infj→∞(lim infi→∞ai,j) > 0, we conclude that 0 ≤
∑∞

i=i0xi ≤ (supi≥i0 c̃i)/(δa) <
+∞.

The proof is completely analogous when there exists a nonnegative integer i0 such that
xi ≤ 0 for any i ≥ i0.

Remark 3.2. Observe that in the linear case (2.22), the last conditions of Lemma 3.1 are satisfied
whenever δ = 1 and f(x) = x.

Hereafter, we investigate on the boundedness of the solution of (1.1)-(1.2) when

f(x) /= x, lim
x→−∞

f(x) > −∞. (3.7)

Lemma 3.3. Let {xi}∞i=0 be the solution of (1.1) with (1.2) and (3.7), and assume that

sup
i≥0

∣∣bi
∣∣ < +∞, λ = sup

i≥0

i∑

j=0

ai,j < +∞, (3.8)

then |xi| is bounded.

Proof. Let b be the bound for |bi|, i ≥ 0 and limx→−∞f(x) = −β > −∞. Let us write
∑i

j=0ai,jfi−j(xj)
as the sum of the following two contributions:

xi = bi −
i∑

j=0

ai,jfi−j
(
xj
)

= bi −
ip∑

l=1

ai,jlfi−jl
(
xjl

)
−

in∑

l=1

ai,klfi−kl
(
xkl

)
,

(3.9)
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where fi−jl(xjl) ≥ 0, l = 1, . . . , ip, fi−kl(xkl) < 0, l = 1, . . . , in, and ip + in = i + 1. Therefore, since
(1.2), (3.1), (3.7), and (3.8) hold, we have that

xi ≤ b −
in∑

l=1

ai,klfi−kl
(
xkl

)
≤ b −

in∑

l=1

ai,klf
(
xkl

)
≤ b + λβ;

xi ≥ −b −
ip∑

l=1

ai,jlfi−jl
(
xjl

)
≥ −b − f

(
b + βλ

) ip∑

l=1

ai,jl ≥ −b − λf
(
b + βλ

)
.

(3.10)

Thus, xi is bounded and the proof is complete.

As an example we consider the equation

xi = 1 −
i∑

j=0

1
(i + 1)2i−j

exj − 1
1 + x2

j

, (3.11)

in this case f(x) = ex − 1, b = supi≥0|bi| = 1, λ = supi≥0
∑i

j=01/((i + 1)2i−j) = 1, and β =
limx→−∞(ex − 1) = −1. Hence,

−1
e
≤ xi ≤ 0. (3.12)

Another example is given by the explicit equation

xi = (−1)i − 1
10

i−1∑

j=0

1
(i + 1)2i−j

exj − 1
1 + x2

j

. (3.13)

Here b = 1 and λ = 1/40, hence

−1 − 1
40

(
e−1/40 − 1

)
≤ xi ≤

39
40
. (3.14)

From Figure 1 it is clear that the bounds established by Lemma 3.3 (represented by dotted
lines) may be quite sharp. We are able to prove the following result.

Theorem 3.4. Assume that f(x) /= x is continuous on (−∞,+∞),

r = lim sup
i→∞

i−1∑

j=0

ai,j < +∞, −rf
(
− rf(L)

)
> L, for any L < 0, (3.15)

lim
i→∞

bi = 0, lim
i→∞

ai,j = 0, (3.16)

for all j ≥ 0. Then limi→∞xi = 0.

Proof. Let x = lim infi→∞xi and assume x < 0. Since we are in the hypotheses of Lemma 3.3,
|xi| is bounded and then M = supi≥0|f(xi)| < +∞. For any fixed ε > 0, consider a continuous



10 Discrete Dynamics in Nature and Society

1.5

1

0.5

0

−0.5

−1

−1.5
0 10 20 30 40 50

Figure 1: Plot of (3.13) and its bounds given by (3.14).

function F(x) = −(r +x)f(−(r +x)f(x−x)+x)−2x on [0, ε]. Then, by F(0) = −rf(−rf(x)) > x,
there exists a constant 0 < ε0 < ε such that

F
(
ε0
)
= −

(
r + ε0

)
f
(
−
(
r + ε0

)
f
(
x − ε0

)
+ ε0

)
− 2ε0 > x. (3.17)

For the above ε0 > 0, there exists a positive integer i0 such that xi > x − ε0 and
∑i−1

j=0ai,j < r + ε0,
for any i ≥ i0. By Assumption (3.16), we have that for ε1 = ε0/(1+M) > 0, there exists a positive
integer i1 ≥ i0 such that

∣∣bi
∣∣ < ε1,

i1−1∑

j=0

ai,j < ε1 for any i ≥ i1. (3.18)

Then, for i ≥ i1 and c̃i = bi −
∑i1−1

j=0 ai,jfi−j(xj), we have that

∣∣c̃i
∣∣ ≤

∣∣bi
∣∣ +

(
i1−1∑

j=0

ai,j

)
M < ε1 + ε1M = ε0. (3.19)

Let us rewrite (1.1) in the following form:

xi = c̃i −
ip∑

l=1

ai,jlfi−jl
(
xjl

)
−

in∑

l=1

ai,klfi−kl
(
xkl

)
, (3.20)

where fi−jl(xjl) ≥ 0, for l = 1, . . . , ip and fi−kl(xkl) < 0, for l = 1, . . . , in and ip + in = i− i1 + 1. Thus,

xi ≤ c̃i −
in∑

l=0

ai,klf
(
xkl

)
< ε0 −

(
r + ε0

)
f
(
x − ε0

)
, ∀i ≥ i1 (3.21)

and, since f(x) is an increasing function, we have that, for all jl ≥ i1,

f
(
xjl

)
< f

(
ε0 −

(
r + ε0

)
f
(
x − ε0

))
. (3.22)
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Since we are in the hypothesis that the coefficients ai,j are nonnegative, it follows that

−
ip∑

l=0

ai,jlf
(
xjl

)
> −

ip∑

l=0

ai,jlf
(
ε0 −

(
r + ε0

)
f
(
x − ε0

))

> −
(
r + ε0

)
f
(
ε0 −

(
r + ε0

)
f
(
x − ε

))
.

(3.23)

In conclusion, from

−
ip∑

l=0

ai,jlf
(
xjl

)
> −

(
r + ε0)f

(
ε0 −

(
r + ε0

)
f
(
x − ε0

))
= F

(
ε0
)
+ 2ε0 (3.24)

and by using (3.20), (3.19), and (3.17), the following inequality holds:

xi ≥ c̃i −
ip∑

l=0

ai,jlf
(
xjl

)
> −ε0 −

(
r + ε0

)
f
(
ε0 −

(
r + ε0

)
f
(
x − ε

))
= F

(
ε0
)
+ ε0 > x + ε0. (3.25)

This result contradicts the lim inf definition. Hence, x ≥ 0, so xi are eventually nonnegative.
Since it is easy to see that we are in the hypotheses of Lemma 3.1 (case (iii1)), then limi→∞xi
= 0.

Remark 3.5. Once again, in the convolution case, the first part of (3.15) implies the second one
of (3.16).

For the special case f(x) = (eαx − 1)/α, α > 0, we establish the following sufficient
condition from Theorem 3.4.

Theorem 3.6. Suppose that f(x) = (eαx − 1)/α, α > 0 and assume that

(3.16), the first part of (3.15) with r ≤ 1 (3.26)

hold, then the solution xi of (1.1) tends to zero as i tends to infinity.

Proof. Put ϕ(x) = −rf(x), −∞ < x < +∞. Since ϕ′(x) = −reαx < 0 for x ∈ (−∞,+∞), hence ϕ(x)
is a strictly monotone decreasing function in (−∞,+∞). Now, we will prove that ϕ(ϕ(x)) > x,
for −∞ < x < 0.

Let g(x) = ϕ(ϕ(x)) − x for −∞ < x < 0. Then we have that

g(x) =
r
{

1 − exp
(
− r

(
eαx − 1

))}

α
− x,

g ′(x) = r
{
reαx exp

(
r − reαx

)}
− 1.

(3.27)

By recalling that r < 1 and x < 0, we have 0 ≤ reαx < 1. Since the function ye−y is increasing for
0 ≤ y ≤ 1, there results (reαx)e−re

αx ≤ e−1. Thus, g ′(x) ≤ r exp(r − 1) − 1 ≤ r − 1 ≤ 0. Hence, we
have that ϕ(ϕ(x)) > x, for −∞ < x < 0. Thus, for f(x) = (eαx − 1)/α with α > 0, the second of
(3.15) is true and, by Theorem 3.4, we have limi→∞xi = 0.

Remark 3.7. From the proof of Theorem 3.6 it is clear that the second part of (3.15) is satisfied
by f(x) = (eαx − 1)/α(α > 0). By playing with α, this allows us to consider a wide variety of
functions fi which satisfy (1.2). For instance, in the cases α = 1/2 and α = 1 the stained areas
in Figure 2 represent the admissible regions for the functions fi, i = 0, 1, . . . , respectively (the
solid lines show, as an example, the graphs of fi(x) = x/(1 + x2) and fi(x) = (ex − 1)/(1 + x2)).
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Figure 2: Plots of some admissible regions for fi according to Theorem 3.6.

4. Monotonic nonnegative coefficients

In this section, for (1.1), first, we consider the case that

0 ≤ ai,j ≤ ai−1,j , 0 ≤ j ≤ i − 1,
∣∣fi−1(x)

∣∣ ≥
∣∣fi(x)

∣∣, i ≥ 1. (4.1)

We provide the following theorem which generalizes [15, Theorem 2.1] to the nonlinear case.

Theorem 4.1. In addition to condition (4.1), suppose that

bi ≥ bi−1 ≥ 0
(
resp., bi ≤ bi−1 ≤ 0

)
, i ≥ 1. (4.2)

Then, any solution xi of (1.1) satisfies 0 ≤ xi ≤ bi (resp., 0 ≥ xi ≥ bi), i ≥ 0. Moreover, if |bi| ≤ B,
for all i ≥ 0, a = lim infj→∞(limi→∞ai,j) > 0 and there exists a strictly increasing function f(x) on
(−∞,+∞) such that f(0) = 0 and infj≥0fj(x) ≥ f(x), x ∈ [0,+∞) (resp., infj≥0fj(x) ≤ f(x), x ∈
(−∞, 0]), then limi→∞xi = 0.

In addition, if there exists a positive constant δ such that f(x) ≥ δx, x ∈ [0,+∞) (resp.,
f(x) ≤ δx, x ∈ (−∞, 0]), then

∑∞
i=0|xi| ≤ (supi≥0|bi|)/(δa) < +∞.

Proof. We prove the theorem in the case bi ≥ bi−1 ≥ 0, i ≥ 1, the proof for bi ≤ bi−1 ≤ 0, i ≥ 1 is
perfectly symmetric. Then by (1.1), we have that

x0 + a0,0f0
(
x0
)
= b0 ≥ 0, (4.3)

hence, for the properties of fi(x) described in (1.2), it has to be x0 ≥ 0.
Proceeding by induction, suppose that xj ≥ 0, 0 ≤ j ≤ i − 1, i ≥ 1. By (1.1),

xi + ai,if0
(
xi
)
= bi −

i−1∑

j=0

ai,jfi−j
(
xj
)
,

0 = xi−1 − bi−1 +
i−1∑

j=0

ai−1,jfi−j−1
(
xj
)
,

(4.4)
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and hence, by adding the two relations and taking into account that, for the second part of
(4.1), fi−j−1(x) ≥ fi−j(x), we have that

xi + ai,if0
(
xi
)
≥
(
bi − bi−1

)
+ xi−1 +

i−2∑

j=0

(
ai−1,j − ai,j

)
fi−j

(
xj
)

≥ bi − bi−1 ≥ 0, i ≥ 1.

(4.5)

So we have that xi ≥ 0, i ≥ 0 and, from (1.1), xi ≤ bi, i ≥ 0.
Thus, we are in the hypotheses of Lemma 3.1 part (iii2) and, hence, we get the thesis.

Observe that when (1.1) is linear, the last condition of Theorem 4.1 is satisfied by
choosing δ = 1 and f(x) = x. In this case, the hypotheses of Theorem 4.1 include, as
particular cases, those of [15, Theorem 2.1]. In particular we note that, as Theorem 4.1 prove
the summability of the solution xi, it is interesting when applied to the equation satisfied by the
fundamental matrix of a Volterra difference equation (see, e.g., [15, equation (1.4)]). Namely,
in [15] it is underlined that such a result can be employed in the study of the stability of some
numerical methods.

A simple application of Theorem 4.1 in the linear case is given by the following example.

Example 4.2. Let us consider the difference equation

xi = b −
i∑

j=0

cxj , i ≥ 0, (4.6)

whose solution is given by

xi =
b

(1 + c)i+1
, i ≥ 0. (4.7)

Then, for a > 0 and b ≥ 0, all the conditions in Theorem 4.1 are satisfied with δ = 1, which
implies limi→∞xi = 0 and

∑+∞
i=0xi ≤ (b/a) < +∞. Observe that in this case the bound coincides

with the exact value of the sum of the series.

Next, we provide the following theorem whose proof is a direct extension of the proof of
Crisci et al. [6, Theorem 2.1], which gives a priori bound for the solution xi of (1.1) depending
on the forcing terms bi.

Theorem 4.3. In addition to the conditions (4.1), assume that

sup
i≥1

i−1∑

j=0

∣∣bj+1 − bj
∣∣ < +∞. (4.8)

Then, any solution xi of (1.1) is bounded and satisfies

∣∣xi
∣∣ ≤

i−1∑

j=0

∣∣bj+1 − bj
∣∣ +

∣∣b0
∣∣, i ≥ 0. (4.9)
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Moreover, suppose that a = lim infj→∞(limi→∞ai,j) > 0 and there exists a strictly increasing function
f(x) on (−∞,+∞) such that f(0) = 0 and infj≥0fj(x) ≥ f(x), x ∈ [0,+∞) (resp., infj≥0fj(x) ≤
f(x), x ∈ (−∞, 0]), then limi→∞xi = 0.

In addition, if there exists a positive constant δ such that f(x) ≥ δx, x ∈ [0,+∞) (resp.,
f(x) ≤ δx, x ∈ (−∞, 0]), then

∑∞
i=0|xi| ≤ (2/δa)(

∑∞
j=0|bj+1 − bj | + |b0|) < +∞.

Proof. Consider the two possible subcases: (a) x0 ≥ 0, and (b) x0 < 0.
(a) Assume x0 ≥ 0.
If xj ≥ 0, 0 ≤ j ≤ i, then by (1.1), we get bi ≥ 0 and 0 ≤ xi ≤ bi. Hence, (4.9) holds if

{xj}ij=0 is oscillatory about 0. Let m0 = −1 and denote by l1 the time moment of the first passage
of the solution xi through the zero, that is,

xj ≥ 0 for m0 + 1 = 0 ≤ j ≤ l1, xl1+1 < 0. (4.10)

The time moment of the following passage through the zero of the solution after l1 is denoted
by m1, that is,

xj ≤ 0 for l1 + 1 ≤ j ≤ m1, xm1+1 > 0. (4.11)

In a similar way, we introduce the indexes lp, mp, p ≥ 1 as follows:

xj ≥ 0 for mp−1 + 1 ≤ j ≤ lp, xlp+1 < 0,

xj ≤ 0 for lp + 1 ≤ j ≤ mp, xmp+1 > 0.
(4.12)

(1) Consider that mk + 1 ≤ i ≤ lk+1, hence xi ≥ 0. Then, from (1.1), we have that

xi = bi −
i∑

j=mk+1

ai,jfi−j
(
xj
)
−

mk∑

j=0

ai,jfi−j
(
xj
)
,

0 = xmk
− bmk

+
mk∑

j=lk+1

amk,jfmk−j
(
xj
)
+

lk∑

j=0

amk,jfmk−j
(
xj
)
,

0 = −xlk + blk −
lk∑

j=mk−1+1

alk,jflk−j
(
xj
)
−
mk−1∑

j=0

alk,jflk−j
(
xj),

0 = xmk−1 − bmk−1 +
mk−1∑

j=lk−1+1

amk−1,jfmk−1−j
(
xj
)
+

lk−1∑

j=0

amk−1,jfmk−1−j
(
xj
)
,

· · ·

0 = xm1 − bm1 +
m1∑

j=l1+1

am1,jfm1−j
(
xj
)
+

l1∑

j=0

am1,jfm1−j
(
xj
)
,

0 = −xl1 + bl1 −
l1∑

j=0

al1,jfl1−j
(
xj
)
,

(4.13)



E. Messina et al. 15

where every summation of the type
∑lr

j=mr−1+1 involves only positive xj , while
∑mr

j=lr+1 the
negative ones. Now observe that, for lk + 1 ≤ j ≤ mk, by using (4.1) and the fact that mk < i,
we have |fmk−j(xj)| ≥ |fi−j(xj)|, furthermore xj ≤ 0, because of (4.12), hence both fi−j(xj) and
fmk−j(xj) are less than or equal to zero, thus fmk−j(xj) ≤ fi−j(xj). By using these considerations
it is easy to see that the following inequality holds:

mk∑

j=lk+1

[
amk,jfmk−j

(
xj
)
− ai,jfi−j

(
xj
)]
≤

mk∑

j=lk+1

(
amk,j − ai,j

)
fi−j

(
xj
)
. (4.14)

With analogues considerations we get

−
lk∑

j=mk−1+1

[
alk,jflk−j

(
xj
)
− amk,jfmk−j

(
xj
)
+ ai,jfi−j

(
xj
)]

≤ −
lk∑

j=mk−1+1

(
alk,j − amk,j + ai,j

)
fi−j

(
xj
)
,

· · ·

−
l1∑

j=0

[
al1,jfl1−j

(
xj
)
− am1,jfm1−j

(
xj
)
+ · · · + ai,jfi−j

(
xj
)]

≤ −
l1∑

j=0

(
al1,j − am1,j + · · · + ai,j

)
fi−j

(
xj
)
.

(4.15)

By adding each side of (4.13) and taking into account (4.14), (4.15), it comes out that

0 ≤ xi ≤
{
bi − bmk

+ blk − bmk−1 + · · · − bm1 + bl1
}
+
{
xmk
− xlk + xmk−1 − · · · + xm1 − xl1

}

−
i∑

j=mk+1

ai,jfi−j
(
xj
)
+

mk∑

j=lk+1

(
amk,j − ai,j

)
fi−j

(
xj
)

−
lk∑

j=mk−1+1

(
alk,j − amk,j + ai,j

)
fi−j

(
xj
)

+
mk−1∑

j=lk−1+1

(
amk−1,j − alk,j + amk,j − ai,j

)
fi−j

(
xj
)

· · ·

+
m1∑

j=l1+1

(
am1,j − al2,j + am2,j − al3,j + · · · + amk,j − ai,j

)
fi−j

(
xj
)

−
l1∑

j=0

(
al1,j − am1,j + al2,j − am2,j + · · · − amk,j + ai,j

)
fi−j(xj

)
.

(4.16)



16 Discrete Dynamics in Nature and Society

By using the monotonicity of ai,j stated by (4.1) and the main hypothesis (1.2), taking into
account (4.12), we have that

0 ≤ xi ≤ bi − bmk
+ blk − bmk−1 + · · · − bm1 + bl1 ≤

i−1∑

j=0

∣∣bj − bj−1
∣∣ +

∣∣b0
∣∣. (4.17)

(2) Consider that lk + 1 ≤ i ≤ mk, hence xi ≤ 0. Proceeding as above, we have

0 ≥ xi ≥ −
i−1∑

j=0

∣∣bj − bj−1
∣∣ +

∣∣b0
∣∣. (4.18)

Hence, from (1) and (2), we obtain (4.9). Part (b) of the proof is essentially mirror-like of part
(a) and leads once again to (4.9). Thus, any solution xi of (1.1) is bounded and satisfies (4.9).

Moreover, suppose that a = lim infj→∞(limi→∞ai,j) > 0 and there exists a strictly
increasing function f(x) on (−∞,+∞) such that f(0) = 0 and infj≥0fj(x) ≥ f(x), x ∈ [0,+∞)
(resp., infj≥0fj(x) ≤ f(x), x ∈ (−∞, 0]).

If there exists a nonnegative integer i0 such that xi ≥ 0 (resp., xi ≤ 0) for any i ≥ i0, since
|bi| ≤

∑i−1
j=0|bj −bj−1|+ |b0| and 0 ≤ ai,j ≤ a0,j , for all j, we are in the hypotheses of Lemma 3.1 part

(iii2) and we obtain limi→∞xi = 0. On the contrary, if such an index does not exist, let x0 ≥ 0
and consider the extract subsequence {xip}

∞
p=0

of all the positive values in {xi}∞i=0. Assume that
x = lim supp→+∞xip > 0, then

lim sup
p→+∞

p∑

j=0

f
(
xij

)
= +∞. (4.19)

Taking into account (4.12), there exists an index k ≥ 0 such that mk +1 ≤ ip ≤ lk+1, then xip plays
the role of xi in (4.13) and, analogously to (4.16), we have

xip +
ip∑

j=mk+1

aip,jfip−j
(
xj
)
+

lk∑

j=mk−1+1

(
alk,j − amk,j + aip,j

)
fip−j

(
xj
)
+ · · ·

+
l1∑

j=0

(
al1,j − am1,j + al2,j − am2,j + · · · − amk,j + aip,j

)
fip−j

(
xj
)

≤
{
bip − bmk

+ blk − bmk−1 + · · · − bm1 + bl1
}

+
{
xmk
− xlk + xmk−1 − · · · + xm1 − xl1

}
+

mk∑

j=lk+1

(
amk,j − aip,j

)
fip−j

(
xj
)

+
mk−1∑

j=lk−1+1

(
amk−1,j − alk,j + amk,j − aip,j

)
fip−j

(
xj
)

· · ·

+
m1∑

j=l1+1

(
am1,j − al2,j + am2,j − al3,j + · · · + amk,j − aip,j

)
fip−j

(
xj
)

≤ bip − bmk
+ blk − bmk−1 + · · · − bm1 + bl1 ≤

ip−1∑

j=0

∣∣bj+1 − bj
∣∣ +

∣∣b0
∣∣ < +∞.

(4.20)
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Hence, since f(x) ≤ fj(x), for all x ≥ 0, we have that

xip +
ip∑

j=mk+1

aip,jf
(
xj
)
+

lk∑

j=mk−1+1

(
alk,j − amk,j + aip,j

)
f
(
xj
)
+ · · ·

+
l1∑

j=0

(
al1,j − am1,j + al2,j − am2,j + · · · − amk,j + aip,j

)
f
(
xj
)
≤

ip−1∑

j=0

∣∣bj+1 − bj
∣∣ +

∣∣b0
∣∣ < +∞,

(4.21)

and so, since only positive quantities are involved, we get

a

( ip∑

j=mk+1

f
(
xj
)
+

lk∑

j=mk−1+1

f
(
xj
)
+ · · · +

l1∑

j=0

f
(
xj
)
)
≤

ip−1∑

j=0

∣∣bj+1 − bj
∣∣ +

∣∣b0
∣∣ < +∞. (4.22)

Passing to the lim sup as p → +∞, we have that

alim sup
p→+∞

( ip∑

j=mk+1

f
(
xj
)
+

lk∑

j=mk−1+1

f
(
xj
)
+ · · · +

l1∑

j=0

f
(
xj
)
)
< +∞. (4.23)

Taking into account that all the xj involved in the summations above form the extract {xip}
+∞
p=0

of the positive values in {xi}+∞i=0 , we get lim supp→+∞
∑p

j=0f(xij ) < +∞, which is a contradiction
with (4.19), so x = 0. An analogous proof on the extract subsequence of all negative values of
{xi}+∞i=0 leads to lim infn→+∞xin = 0. The same happens when x0 < 0. Hence, in conclusion, we
obtain that limi→∞xi = 0.

In addition, suppose that there exists a positive constant δ such that f(x) ≥ δx, x ∈
[0,+∞). Then, by (4.22) and the fact that a is strictly positive, we conclude that 0 ≤∑∞

i=0 max(0, xi) ≤ 1/δa(
∑∞

j=0|bj+1 − bj | + |b0|). Similarly, we obtain that 0 ≥
∑∞

i=0 min(0, xi) ≥
−1/δa(

∑∞
j=0|bj+1 − bj | + |b0|). Hence,

∑∞
i=0|xi| ≤ 2/δa(

∑∞
j=0|bj+1 − bj | + |b0|) < +∞.
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