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1. Introduction

Initiated by Hilger in his Ph.D. thesis [1] in 1988, the theory of time scales has been
improved ever since, especially in the unification of the theory of differential equations in the
continuous case and the theory of difference equations in the discrete case. For the time being,
it remains a field of vitality and attracts attention of many distinguished scholars worldwide.
In particular, the theory is also widely applied to biology, heat transfer, stock market, wound
healing, epidemic models [2–5], and so forth.

Recent research results indicate that considerable achievement has been made in
the existence problems of positive solutions to dynamic equations on time scales. For
details, please see [6–13] and the references therein. Symmetry and pseudosymmetry have
been widely used in science and engineering [14]. The reason is that symmetry and
pseudosymmetry are not only of its theoretical value in studying the metric manifolds [15]
and symmetric graph [16, 17], and so forth, but also of its practical value, for example, we can
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apply this characteristic to study graph structure [18, 19] and chemistry structure [20]. Yet,
few literature resource [21, 22] is available concerning the characteristics of positive solutions
to p-Laplacian dynamic equations on time scales.

Throughout this paper, we denote the p-Laplacian operator by ϕp(u), that is, ϕp(u) =
|u|p−2u for p > 1 with (ϕp)

−1 = ϕq and 1/p + 1/q = 1.
For convenience, we think of the blanket as an assumption that a, b are points in T, for

an interval (a, b)
T
we always mean (a, b) ∩ T. Other type of intervals is defined similarly.

We would like to mention the results of Sun and Li [11, 12]. In [12], Sun and Li
considered the two-point BVP

(
ϕp

(
uΔ(t)

))Δ
+ h(t)f(uσ(t)) = 0, t ∈ [a, b]

T
,

u(a) − B0

(
uΔ(a)

)
= 0, uΔ(σ(b)) = 0,

(1.1)

and established the existence theory for positive solutions of the above problem. They [11]
also considered the m-point boundary value problem with p-Laplacian

(
ϕp

(
uΔ(t)

))∇
+ h(t)f(t, u(t)) = 0, t ∈ (0, T)

T
,

uΔ(0) = 0, u(T) =
m−2∑
i=1

ciu(ξi),
(1.2)

and gave the existence of single or multiple positive solutions to the above problem. The main
tools used in these two papers are some fixed-point theorems [23–25].

It is also noted that the researchers mentioned above [11, 12] only considered the
existence of positive solutions. As a results, they failed to further provide characteristics of
solutions, such as, symmetry. Naturally, it is quite necessary to consider the characteristics of
solutions to p-Laplacian dynamic equations on time scales.

Let T be a symmetric time scale such that 0, T ∈ T. we consider the following p-
Laplacian boundary value problem on time scales T of the form:

(
ϕp

(
uΔ(t)

))∇
+ h(t)f(u(t)) = 0, t ∈ [0, T]

T
,

u(0) = u(T) = 0, uΔ(0) = −uΔ(T).
(1.3)

By using symmetric technique, the Krasnosel’skii’s fixed point theorem [24], the generalized
Avery-Henderson fixed point theorem [26], and Avery-Peterson fixed point theorem [27],
we obtain the existence of at least single, twin, triple, or arbitrary odd positive symmetric
solutions of problem (1.3). As applications, two examples are given to illustrate the main
results and their differences. These results are even new for the special cases of continuous
and discrete equations as well as in the general time-scale setting.

The rest of the paper is organized as follows. In Section 2, we present several fixed
point results. In Section 3, by using Krasnosel’skii’s fixed point theorem, we obtain the
existence of at least single or twin positive symmetric solutions to problem (1.3). In Section 4,
the existence criteria for at least triple positive or arbitrary odd positive symmetric solutions to
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problem (1.3) are established. In Section 5, we present two simple examples to illustrate our
results.

For convenience, we now give some symmetric definitions.

Definition 1.1. The interval [0, T]
T
is said to be symmetric if any given t ∈ [0, T]

T
, we have

T − t ∈ [0, T]
T
.

We note that such a symmetric time scale T exists. For example, let

T = {0, 0.05, 0.1, 0.15} ∪ [0.22, 0.44] ∪ {0.5, 0.85, 0.9, 0.95, 1} ∪ [0.56, 0.78]. (1.4)

It is obvious that T is a symmetric time scale.

Definition 1.2. A function u : [0, T]
T

→ R is said to be symmetric if u is symmetric over the
interval [0, T]

T
. That is, u(t) = u(T − t), for any given t ∈ [0, T]

T
.

Definition 1.3. We say u is a symmetric solution to problem (1.3) on [0, T]
T
provided that u is

a solution to boundary value problem (1.3) and is symmetric over the interval [0, T]
T
.

Basic definitions on time scale can be found in [6, 7, 28]. Another excellent sources on
dynamical systems on measure chains are the book in [29].

Throughout this paper, it is assumed that

(H1) f : [0,∞) → [0,∞) is continuous, and does not vanish identically;

(H2) h ∈ Cld([0, T]T
, [0,∞)) is symmetric over the interval [0, T]

T
and does not vanish

identically on any closed subinterval of [0, T]
T
, where Cld([0, T]T

, [0,∞)) denotes
the set of all left dense continuous functions from [0, T]

T
to [0,∞).

2. Preliminaries

Let E = Cld([0, T]T
,R) and equip norm

‖u‖ = sup
t∈[0,T]

T

|u(t)|, (2.1)

then E is a Banach space. Define a cone P ⊂ E by

P=
{
u∈E | u(0)=u(T)=0, u is symmetric,nonnegative, and concave on the interval [0, T]

T

}
.

(2.2)

Assume that r, η ∈ (0, T/2)
T
with η < r. By using the symmetric and concave

characters of u ∈ P and u(0) = u(T) = 0, it is easy to obtain the following results.

Lemma 2.1. Assume that r, η ∈ (0, T/2)
T
with η < r. If u ∈ P, then

(i) u(η) ≥ (η/r)u(r);

(ii) (T/2)u(r) ≥ ru(T/2).
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From the previous lemma we know that ‖u‖ = u(T/2) for u ∈ P.
The operator A : P → E is defined by

Au(t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ t

0
ϕq

(∫T/2

s

h(r)f(u(r))∇r

)
Δs, t ∈

[
0,

T

2

]

T

,

∫T

t

ϕq

(∫s

T/2
h(r)f(u(r))∇r

)
Δs, t ∈

[
T

2
, T

]

T

.

(2.3)

It is obvious that A is completely continuous operator and all the fixed points of A are the
solutions to the boundary value problem (1.3).

In addition, it is easy to see that the operator A is symmetric. In fact, for t ∈ [0, T/2]
T
,

we have T − t ∈ [T/2, T]
T
, by using the integral transform, we have

Au(T − t) =
∫T

T−t
ϕq

(∫ s

T/2
h(r)f(u(r))∇r

)
Δs

s→ T−s=
∫ t

0
ϕq

(∫T−s

T/2
h(r)f(u(r))∇r

)
Δs

r→ T−r=
∫ t

0
ϕq

(∫T/2

s

h(T − r)f(u(T − r))∇r

)
Δs

=
∫ t

0
ϕq

(∫T/2

s

h(r)f(u(r))∇r

)
Δs = Au(t).

(2.4)

Hence, A is symmetric.
Now, we provide some backgroundmaterial from the theory of cones in Banach spaces

[24, 26, 27, 30], and then state several fixed point theorems needed later.
Firstly, we list the Krasnosel’skii’s fixed point theorem [24].

Lemma 2.2 (see [24]). Let P be a cone in a Banach space E. Assume that Ω1, Ω2 are open subsets of
E with 0 ∈ Ω1, Ω1 ⊂ Ω2. If A : P ∩ (Ω2 \ Ω1) → P is a completely continuous operator such that
either

(i) ‖Ax‖ ≤ ‖x‖, for all x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖, for all x ∈ P ∩ ∂Ω2 or

(ii) ‖Ax‖ ≥ ‖x‖, for all x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖, for all x ∈ P ∩ ∂Ω2,

then A has a fixed point in P ∩ (Ω2 \Ω1).

Given a nonnegative continuous functional γ on a cone P of a real Banach space E,we
define, for each d > 0, the set P(γ, d) = {x ∈ P : γ(x) < d}.

Secondly, we state the generalized Avery-Henderson fixed point theorem [26].
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Lemma 2.3 (see [26]). Let P be a cone in a real Banach space E. Let α, β, and γ be increasing,
nonnegative continuous functional on P such that for some c > 0 and H > 0, γ(x) ≤ β(x) ≤ α(x)
and ‖x‖ ≤ Hγ(x) for all x ∈ P(γ, c). Suppose that there exist positive numbers a and bwith a < b < c

and A : P(γ, c) → P is a completely continuous operator such that

(i) γ(Ax) < c for all x ∈ ∂P(γ, c);

(ii) β(Ax) > b for all x ∈ ∂P(β, b);

(iii) P(α, a)/= ∅ and α(Ax) < a for x ∈ ∂P(α, a),

then A has at least three fixed points x1, x2, and x3 belonging to P(γ, c) such that

0 ≤ α(x1) < a < α(x2) with β(x2) < b < β(x3), γ(x3) < c. (2.5)

The following lemma can be found in [21].

Lemma 2.4 (see [21]). Let P be a cone in a real Banach space E. Let α, β, and γ be increasing,
nonnegative continuous functional on P such that for some c > 0 and H > 0, γ(x) ≤ β(x) ≤ α(x)
and ‖x‖ ≤ Hγ(x) for all x ∈ P(γ, c). Suppose that there exist positive numbers a and bwith a < b < c

and A : P(γ, c) → P is a completely continuous operator such that:

(i) γ(Ax) > c for all x ∈ ∂P(γ, c);

(ii) β(Ax) < b for all x ∈ ∂P(β, b);

(iii) P(α, a)/= ∅ and α(Ax) > a for x ∈ ∂P(α, a),

then A has at least three fixed points x1, x2, and x3 belonging to P(γ, c) such that

0 ≤ α(x1) < a < α(x2) with β(x2) < b < β(x3), γ(x3) < c. (2.6)

Let β and φ be nonnegative continuous convex functionals on P , λ is a nonnegative
continuous concave functional on P , and ϕ is a nonnegative continuous functional,
respectively on P.We define the following convex sets:

P
(
φ, λ, b, d

)
=
{
x ∈ P : b ≤ λ(x), φ(x) ≤ d

}
,

P
(
φ, β, λ, b, c, d

)
=
{
x ∈ P : b ≤ λ(x), β(x) ≤ c, φ(x) ≤ d

}
,

(2.7)

and a closed set R(φ, ϕ, a, d) = {x ∈ P : a ≤ ϕ(x), φ(x) ≤ d}.
Finally, we list the fixed point theorem due to Avery-Peterson [27].
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Lemma 2.5 (see [27]). Let P be a cone in a real Banach space E and β, φ, λ, ϕ defined as above,
moreover, ϕ satisfies ϕ(λ′x) ≤ λ′ϕ(x) for 0 ≤ λ′ ≤ 1 such that, for some positive numbers h and d,

λ(x) ≤ ϕ(x), ‖x‖ ≤ hφ(x) (2.8)

for all x ∈ P(φ, d). Suppose that A : P(φ, d) → P(φ, d) is completely continuous and there exist
positive real numbers a, b, c, with a < b such that

(i) {x ∈ P(φ, β, λ, b, c, d) : λ(x) > b}/= ∅ and λ(A(x)) > b for x ∈ P(φ, β, λ, b, c, d);

(ii) λ(A(x)) > b for x ∈ P(φ, λ, b, d) with β(A(x)) > c;

(iii) 0/∈R(φ, ϕ, a, d) and λ(A(x)) < a for all x ∈ R(φ, ϕ, a, d) with ϕ(x) = a,

then A has at least three fixed points x1, x2, x3 ∈ P(φ, d) such that

φ(xi) ≤ d for i = 1, 2, 3, b < λ(x1), a < ϕ(x2), λ(x2) < b with ϕ(x3) < a.
(2.9)

3. Single or Twin Solutions

Let

f0 = lim
u→ 0+

f(u)
ϕp(u)

, f∞ = lim
u→∞

f(u)
ϕp(u)

. (3.1)

We define i0 = number of zeros in the set {f0, f∞} and i∞ = number of infinities in the set
{f0, f∞}. Clearly, i0, i∞ = 0, 1, or 2 and there exist six possible cases: (i) i0 = 1 and i∞ = 1; (ii)
i0 = 0 and i∞ = 0; (iii) i0 = 0 and i∞ = 1; (iv) i0 = 0 and i∞ = 2; (v) i0 = 1 and i∞ = 0; (vi)
i0 = 2 and i∞ = 0. In the following, by using Krasnosel’skii’s fixed point theorem in a cone,
we study the existence of positive symmetric solutions to problem (1.3) under the above six
possible cases.

3.1. For the Case i0 = 1 and i∞ = 1

In this subsection, we discuss the existence of single positive symmetric solution of the
problem (1.3) under i0 = 1 and i∞ = 1.

Theorem 3.1. Problem (1.3) has at least one positive symmetric solution in the case i0 = 1 and
i∞ = 1.

Proof. We divide the proof into two cases.

Case 1 (f0 = 0 and f∞ = ∞). In view of f0 = 0, there exists an H1 > 0 such that
f(u) ≤ ϕp(ε)ϕp(u) = ϕp(εu) for u ∈ (0,H1], where ε arbitrary small and satisfies 0 <

(εT/2)ϕq(
∫T/2
0 h(r)∇r) ≤ 1.
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If u ∈ P with ‖u‖ = H1, then

‖Au‖ = sup
t∈[0,T]

T

|Au|

= Au

(
T

2

)

=
∫T/2

0
ϕq

(∫T/2

s

h(r)f(u(r))∇r

)
Δs

≤ ε‖u‖
∫T/2

0
ϕq

(∫T/2

0
h(r)∇r

)
Δs

≤ ‖u‖εT
2
ϕq

(∫T/2

0
h(r)∇r

)

≤ ‖u‖.

(3.2)

We let ΩH1 = {u ∈ E : ‖u‖ < H1}, then ‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂ΩH1 .

From f∞ = ∞, there exists an H ′
2 > 0 such that f(u) ≥ ϕp(k)ϕp(u) = ϕp(ku) for

u ∈ [H ′
2,∞), where k > 0, and satisfies the following inequality:

2kη2

T
ϕq

(∫T/2

η

h(r)∇r

)
≥ 1. (3.3)

Set

H2 = max
{
2H1,H

′
2
T

2η

}
, ΩH2 = {u ∈ E : ‖u‖ < H2}. (3.4)

If u ∈ P with ‖u‖ = H2, then, by Lemma 2.1, one has

min
t∈[η,T/2]

T

u(t) ≥ 2η
T
u

(
T

2

)
≥ H ′

2. (3.5)
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For u ∈ P ∩ ∂ΩH2 , in terms of (3.3) and (3.5), we get

‖Au‖ = sup
t∈[0,T]

T

|Au|

≥ Au
(
η
)

=
∫η

0
ϕq

(∫T/2

s

h(r)f(u(r))∇r

)
Δs

≥
∫η

0
ϕq

(∫T/2

η

h(r)f(u(r))∇r

)
Δs

≥
∫η

0
ϕq

(∫T/2

η

h(r)ϕp(ku(r))∇r

)
Δs

≥ 2kη2

T
‖u‖ϕq

(∫T/2

η

h(r)∇r

)

≥ ‖u‖.

(3.6)

Thus, by (i) of Lemma 2.2, problem (1.3) has at least single positive symmetric solution u in
P ∩ (ΩH2 \ΩH1)with H1 ≤ ‖u‖ ≤ H2.

Case 2 (f0 = ∞ and f∞ = 0). Since f0 = ∞, there exists an H3 > 0 such that f(u) ≥
ϕp(m)ϕp(u) = ϕp(mu) for u ∈ (0,H3],where m is such that

2mη2

T
ϕq

(∫T/2

η

h(r)∇r

)
≥ 1. (3.7)

If u ∈ P with ‖u‖ = H3, then, by (3.7), one has

‖Au‖ = sup
t∈[0,T]

T

|Au|

≥
∫η

0
ϕq

(∫T/2

η

h(r)f(u(r))∇r

)
Δs

≥ ηϕq

(∫T/2

η

h(r)ϕp(mu(r))∇r

)

≥ ηm
2η
T
‖u‖ϕq

(∫T/2

η

h(r)∇r

)

≥ ‖u‖.

(3.8)

If we let ΩH3 = {u ∈ E : ‖u‖ < H3}, then ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂ΩH3 .
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Now, we consider f∞ = 0. By definition, there exists H ′
4 > 0 such that

f(u) ≤ ϕp(δ)ϕp(u) = ϕp(δu) for u ∈ [H ′
4,∞
)
, (3.9)

where δ > 0 satisfies

δT

2
ϕq

(∫T/2

0
h(r)∇r

)
≤ 1. (3.10)

Suppose that f is bounded, then f(u) ≤ ϕp(K) for all u ∈ [0,∞) and some constant
K > 0. Pick

H4 = max

{
2H3,

KT

2
ϕq

(∫T/2

0
h(s)Δs

)}
. (3.11)

If u ∈ P with ‖u‖ = H4, then

‖Au‖ = Au

(
T

2

)

≤
∫T/2

0
ϕq

(∫T/2

0
h(r)f(u(r))∇r

)
Δs

≤ K
T

2
ϕq

(∫T/2

0
h(s)Δs

)

≤ H4

= ‖u‖.

(3.12)

Suppose that f is unbounded. From f ∈ C([0,+∞), [0,+∞)), we have f(u) ≤ C3 for
arbitrary u ∈ [0, C4], hereC3 andC4 are arbitrary positive constants. This implies that f(u) →
+∞ if u → +∞. Hence, it is easy to know that there exists H4 ≥ max{2H3, (T/2η)H ′

4} such
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that f(u) ≤ f(H4) for u ∈ [0,H4]. If u ∈ P with ‖u‖ = H4, then by using (3.9) and (3.10), we
have

‖Au‖ = Au

(
T

2

)

=
∫T/2

0
ϕq

(∫T/2

s

h(r)f(u(r))∇r

)
Δs

≤
∫T/2

0
ϕq

(∫T/2

0
h(r)f(H4)∇r

)
Δs

≤ δH4
T

2
ϕq

(∫T/2

0
h(r)∇r

)

≤ ‖u‖.

(3.13)

Consequently, in either case, if we take ΩH4 = {u ∈ E : ‖u‖ < H4}, then, for u ∈ P ∩ ∂ΩH4 , we
have ‖Au‖ ≤ ‖u‖. Thus, condition (ii) of Lemma 2.2 is satisfied. Consequently, problem (1.3)
has at least single positive symmetric solution u in P ∩ (ΩH4 \ΩH3) with H3 ≤ ‖u‖ ≤ H4. The
proof is complete.

3.2. For the Case i0 = 0 and i∞ = 0

In this subsection, we discuss the existence of positive symmetric solutions to problems (1.3)
under i0 = 0 and i∞ = 0 .

First, we will state and prove the following main result of problem (1.3).

Theorem 3.2. Suppose that the following conditions hold:

(i) there exists constant p′ > 0 such that f(u) ≤ ϕp(p′Λ1) for u ∈ [0, p′], where Λ1 =

{(T/2)ϕq(
∫T/2
0 h(r)∇r)}−1;

(ii) there exists constant q′ > 0 such that f(u) ≥ ϕp(q′Λ2) for u ∈ [(2η/T)q′, q′], where

Λ2 = {ηϕq(
∫T/2
η h(r)∇r)}−1, furthermore, p′ /= q′,

then problem (1.3) has at least one positive symmetric solution u such that ‖u‖ lies between p′ and q′.
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Proof. Without loss of generality, we may assume that p′ < q′.
Let Ωp′ = {u ∈ E : ‖u‖ < p′}. For any u ∈ P ∩ ∂Ωp′ , in view of condition (i), we have

‖Au‖ = Au

(
T

2

)

=
∫T/2

0
ϕq

(∫T/2

s

h(r)f(u(r))∇r

)
Δs

≤ p′Λ1
T

2
ϕq

(∫T/2

0
h(r)∇r

)

= p′,

(3.14)

which yields

‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ωp′ . (3.15)

Now, set Ωq′ = {u ∈ E : ‖u‖ < q′}. For u ∈ P ∩ ∂Ωq′ , Lemma 2.1 implies that

2η
T
q′ ≤ u(t) ≤ q′ for t ∈

[
η,

T

2

]

T

. (3.16)

Hence, by condition (ii)we get

‖Au‖ = Au

(
T

2

)

≥
∫η

0
ϕq

(∫T/2

η

h(r)f(u(r))∇r

)
Δs

≥ q′Λ2ηϕq

(∫T/2

η

h(r)∇r

)

= q′.

(3.17)

So, if we take Ωq′ = {u ∈ E : ‖u‖ < q′}, then

‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ωq′ . (3.18)

Consequently, in view of p′ < q′, (3.15) and (3.18), it follows from Lemma 2.2 that problem
(1.3) has a positive symmetric solution u in P ∩ (Ωq′ \Ωp′). The proof is complete.

3.3. For the Case i0 = 1 and i∞ = 0 or i0 = 0 and i∞ = 1

In this subsection, under the conditions i0 = 1 and i∞ = 0 or i0 = 0 and i∞ = 1, we discuss the
existence of positive symmetric solutions to problem (1.3).
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Theorem 3.3. Suppose that f0 ∈ [0, ϕp(Λ1)) and f∞ ∈ (ϕp((T/2η)Λ2),∞) hold. Then problem
(1.3) has at least one positive symmetric solution.

Proof. It is easy to see that under the assumptions, conditions (i) and (ii) in Theorem 3.2 are
satisfied. So the proof is easy and we omit it here.

Theorem 3.4. Suppose that f0 ∈ (ϕp((T/2η)Λ2),∞) and f∞ ∈ [0, ϕp(Λ1)) hold, then problem (1.3)
has at least one positive symmetric solution.

Proof. Firstly, let ε1 = f0−ϕp((T/2η)Λ2) > 0, there exists a sufficiently small q′ > 0 that satisfies

f(u)
ϕp(u)

≥ f0 − ε1 = ϕp

(
T

2η
Λ2

)
for u ∈ (0, q′]. (3.19)

Thus, u ∈ [(2η/T)q′, q′],we have

f(u) ≥ ϕp

(
T

2η
Λ2

)
ϕp(u) ≥ ϕp

(
Λ2q

′), (3.20)

which implies that condition (ii) in Theorem 3.2 holds.
Nextly, for ε2 = ϕp(Λ1) − f∞ > 0, there exists a sufficiently large p′′ (> q′) such that

f(u)
ϕp(u)

≤ f∞ + ε2 = ϕp(Λ1) for u ∈ [p′′,∞). (3.21)

We consider two cases.

Case 1. Assume that f is bounded, that is,

f(u) ≤ ϕp(K1) for u ∈ [0,∞), (3.22)

here K1 > 0 some constant. If we take sufficiently large p′ such that p′ ≥ max{K1/Λ1, p
′′},

then

f(u) ≤ ϕp(K1) ≤ ϕp

(
Λ1p

′) for u ∈ [0, p′]. (3.23)

Consequently, from the above inequality, condition (i) of Theorem 3.2 is true.

Case 2. Assume that f is unbounded.

From f ∈ C([0,∞), [0,∞)), there exists p′ > p′′ such that

f(u) ≤ f
(
p′
)

for u ∈ [0, p′]. (3.24)
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Since p′ > p′′, by (3.21), we get f(p′) ≤ ϕp(Λ1p
′), hence

f(u) ≤ f
(
p′
) ≤ ϕp

(
Λ1p

′) for u ∈ [0, p′]. (3.25)

Thus, condition (i) of Theorem 3.2 is fulfilled.
Consequently, Theorem 3.2 implies that the conclusion of this theorem holds.

From the proof of Theorems 3.1 and 3.2, respectively, we have the following two
results.

Corollary 3.5. Suppose that f0 = 0 and condition (ii) in Theorem 3.2 hold, then problem (1.3) has at
least one positive symmetric solution.

Corollary 3.6. Suppose that f∞ = 0 and condition (ii) in Theorem 3.2 hold, then problem (1.3) has
at least one positive symmetric solution.

Theorem 3.7. Suppose that f0 ∈ (0, ϕp(Λ1)) and f∞ = ∞ hold, then problem (1.3) has at least one
positive symmetric solution.

Proof. First, in view of f∞ = ∞, then by inequality (3.7), we have ‖Au‖ ≥ ‖u‖ for u ∈ P ∩∂ΩH2 .
Next, by f0 ∈ (0, ϕp(Λ1)), for ε3 = ϕp(Λ1) − f0 > 0, there exists a sufficiently small p′ ∈ (0,H2)
such that

f(u) ≤ (f0 + ε3
)
ϕp(u) = ϕp(Λ1u) ≤ ϕp

(
Λ1p

′) for u ∈ [0, p′], (3.26)

which implies that (i) of Theorem 3.2 holds, that is, (3.14) is true. Hence, we obtain ‖Au‖ ≤
‖u‖ for u ∈ P ∩ ∂Ωp′ . The result is obtained and the proof is complete.

Theorem 3.8. Suppose that f0 = ∞ and f∞ ∈ (0, ϕp(Λ1)) hold, then problem (1.3) has at least one
positive symmetric solution.

Proof. On one hand, since f0 = ∞, by inequality (3.9), one gets ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂ΩH3 . On
the other hand, since f∞ ∈ (0, ϕp(Λ1)), from the technique similar to the second part proof
in Theorem 3.4, one obtains that condition (i) of Theorem 3.2 is satisfied, that is, inequality
(3.14) holds, one has ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ωp′ , where p′ > H3. Hence, problem (1.3) has at
least one positive symmetric solution. The proof is complete.

From Theorems 3.7 and 3.8, respectively, it is easy to obtain the following two
corollaries.

Corollary 3.9. Assume that f∞ = ∞ and condition (i) in Theorem 3.2 hold, then problem (1.3) has
at least one positive symmetric solution.

Corollary 3.10. Assume that f0 = ∞ and condition (i) in Theorem 3.2 hold, then problem (1.3) has
at least one positive symmetric solution.
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3.4. For the Case i0 = 0 and i∞ = 2 or i0 = 2 and i∞ = 0

In this subsection, under i0 = 0 and i∞ = 2 or i0 = 2 and i∞ = 0, we study the existence of
multiple positive solutions to problems (1.3).

Combining the proofs of Theorems 3.1 and 3.2, it is easy to prove the following two
theorems.

Theorem 3.11. Suppose that i0 = 0 and i∞ = 2 and condition (i) of Theorem 3.2 hold, then problem
(1.3) has at least two positive solutions u1, u2 ∈ P such that 0 < ‖u1‖ < p′ < ‖u2‖.

Theorem 3.12. Suppose that i0 = 2 and i∞ = 0 and condition (ii) of Theorem 3.2 hold, then problem
(1.3) has at least two positive solutions u1, u2 ∈ P such that 0 < ‖u1‖ < q′ < ‖u2‖.

4. Triple Solutions

In the previous section, we have obtained some results on the existence of at least single or
twin positive symmetric solutions to problem (1.3). In this section, we will further discuss the
existence of positive symmetric solutions to problem (1.3) by using two different methods.
And the conclusions we will arrive at are different with their own distinctive advantages.

Based on the obtained symmetric solution position and local properties, we can only
get some local properties of solutions by usingmethod one; however, the position of solutions
is not determined. In contrast, by means of method two, we cannot only get some local
properties of solutions but also give the position of all solutions, with regard to some subsets
of the cone, which has to meet some conditions which are stronger than those of method one.
Obviously, the local properties of obtained solutions are different by using the two different
methods. Hence, it is convenient for us to comprehensively comprehend the solutions of the
models by using the two different techniques.

In Section 5, two examples are given to illustrate the differences of the results obtained
by the two different methods.

For the notational convenience, we denote

Mξ = ηϕq

(∫T/2

0
h(r)∇r

)
, Nξ = ηϕq

(∫T/2

η

h(r)∇r

)
,

Lξ = rϕq

(∫T/2

0
h(r)∇r

)
, Lθ = rϕq

(∫T/2

r

h(r)∇r

)
, Wξ =

T

2
ϕq

(∫T/2

0
h(r)∇r

)
.

(4.1)

4.1. Result 1

In this subsection, in view of the generalized Avery-Henderson fixed-point theorem [26], the
existence criteria for at least triple and arbitrary odd positive symmetric solutions to problems
(1.3) are established.

For u ∈ P,we define the nonnegative, increasing, continuous functionals γ, β, and α by

γ(u) = max
t∈[0,η]

T

u(t) = u
(
η
)
, β(u) = min

t∈[η,T/2]
T

u(t) = u
(
η
)
,

α(u) = max
t∈[0,r]

T

u(t) = u(r).
(4.2)
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It is obvious that γ(u) ≤ β(u) ≤ α(u) for each u ∈ P. By Lemma 2.1, one obtains ‖u‖ ≤ C∗γ(u)
for all u ∈ P , here C∗ = T/2η.

We now present the results in this subsection.

Theorem 4.1. If there are positive numbers a′, b′, c′ such that a′ < (2r/T)b′ < (2r/T)(c′Nξ/Mξ).
In addition, f(u) satisfies the following conditions:

(i) f(u) < ϕp(c′/Mξ) for u ∈ [0, (T/2η)c′];

(ii) f(u) > ϕp(b′/Nξ) for u ∈ [b′, (T/2η)b′];

(iii) f(u) < ϕp(a′/Lξ) for u ∈ [0, (T/2r)a′].

Then problem (1.3) has at least three positive symmetric solutions u1, u2, and u3 such that

0 < max
t∈[0,r]

T

u1(t) < a′ < max
t∈[0,r]

T

u2(t),

min
t∈[η,T/2]

T

u2(t) < b′ < min
t∈[η,T/2]

T

u3(t), max
t∈[0,η]

T

u3(t) < c′.
(4.3)

Proof. By the definition of completely continuous operator A and its properties, it has to be
demonstrated that all the conditions of Lemma 2.3 hold with respect to A. It is easy to obtain
that A : P(γ, c) → P.

Firstly, we verify that if u ∈ ∂P(γ, c′), then γ(Au) < c′.
If u ∈ ∂P(γ, c′), then

γ(u) = max
t∈[0,η]

T

u(t) = u
(
η
)
= c′. (4.4)

Lemma 2.1 implies that

‖u‖ ≤ T

2η
u
(
η
)
=

T

2η
c′, (4.5)

we have

0 ≤ u(t) ≤ T

2η
c′, t ∈

[
0,

T

2

]

T

. (4.6)
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Thus, by condition (i), one has

γ(Au) = max
t∈[0,η]

T

Au(t)

= Au
(
η
)

=
∫η

0
ϕq

(∫T/2

s

h(r)f(u(r))∇r

)
Δs

≤
∫η

0
ϕq

(∫T/2

0
h(r)f(u(r))∇r

)
Δs

< ηϕq

(∫T/2

0
h(r)ϕp

(
c′

Mξ

)
∇r

)

=
c′

Mξ
ηϕq

(∫T/2

0
h(r)∇r

)

= c′.

(4.7)

Secondly, we show that β(Au) > b′ for u ∈ ∂P(β, b′).
If we choose u ∈ ∂P(β, b′), then β(u) = mint∈[η,T/2]

T
u(t) = b′. In view of Lemma 2.1, we

have

‖u‖ ≤ T

2η
u
(
η
)
=

T

2η
b′. (4.8)

So

b′ ≤ u(t) ≤ T

2η
b′, t ∈

[
η,

T

2

]

T

. (4.9)

Using condition (ii), we get

β(Au) = Au
(
η
)

≥
∫η

0
ϕq

(∫T/2

η

h(r)f(u(r))∇r

)
Δs

> ηϕq

(∫T/2

η

h(r)ϕp

(
b′

Nξ

)
∇r

)

>
b′

Nξ
ηϕq

(∫T/2

η

h(r)∇r

)

= b′.

(4.10)
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Finally, we prove that P(α, a′)/= ∅ and α(Au) < a′ for all u ∈ ∂P(α, a′).
In fact, the constant function a′/2 ∈ P(α, a′). Moreover, for u ∈ ∂P(α, a′), we have

α(u) = maxt∈[0,r]
T
u(t) = a′,which implies 0 ≤ u(t) ≤ a′ for t ∈ [0, r]

T
.Hence, ‖u‖ ≤ (T/2r)u(r).

Therefore

0 ≤ u(t) ≤ T

2r
a′, t ∈

[
0,

T

2

]

T

. (4.11)

By using assumption (iii), one has

α(Au) = (Au)(r)

=
∫ r

0
ϕq

(∫T/2

s

h(r)f(u(r))

)
∇rΔs

≤
∫ r

0
ϕq

(∫T/2

0
h(r)f(u(r))∇r

)
Δs

≤
∫ r

0
ϕq

(∫T/2

0
h(r)ϕp

(
a′

Lξ

)
∇r

)
Δs

=
a′

Lξ
rϕq

(∫T/2

0
h(r)∇r

)

= a′.

(4.12)

Thus, all the conditions in Lemma 2.3 are satisfied. From (H1) and (H2), we have that the
solutions to problem (1.3) do not vanish identically on any closed subinterval of [0, T]

T
.

Consequently, problem (1.3) has at least three positive symmetric solutions u1, u2, and u3

belonging to P(γ, c′), and satisfying (4.3). The proof is complete.

From Theorem 4.1, we see that, when assumptions as (i), (ii), and (iii) are imposed
appropriately on f, we can establish the existence of an arbitrary odd number of positive
symmetric solutions to problem (1.3).

Theorem 4.2. Let l = 1, 2, . . . , n. Suppose that there exist positive numbers a′
sl , b

′
sl , c

′
sl such that

a′
s1 <

2r
T
b′s1 <

2r
T

Nξ

Mξ
c′s1 < a′

s2 <
2T
r
b′s2 <

2r
T

Nξ

Mξ
c′s2 < a′

s3 < · · · < a′
sl . (4.13)

In addition, f(u) satisfies the following conditions:

(i) f(u) < ϕp(c′sl/Mξ) for u ∈ [0, (T/2η)c′sl];

(ii) f(u) > ϕp(b′sl/Nξ) for u ∈ [b′sl , (T/2η)b
′
sl];

(iii) f(u) < ϕp(a′
sl/Lξ) for u ∈ [0, (T/2r)a′

sl].

Then problem (1.3) has at least 2l + 1 positive symmetric solutions.
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Proof. When l = 1, it is clear that Theorem 4.1 holds. Then we can obtain at least three positive
symmetric solutions u1, u2, and u3 satisfying

0 < max
t∈[0,r]

T

u1(t) < as1 < max
t∈[0,r]

T

u2(t),

min
ti∈[η,T/2]T

u2(t) < bs1 < min
ti∈[η,T/2]T

u3(t), max
t∈[0,η]

T

u3(t) < cs1 .
(4.14)

Following this way, we finish the proof by induction. The proof is complete.

Using Lemma 2.4, it is easy to have the following results.

Theorem 4.3. Suppose that there are positive numbers a′, b′, c′ such that a′ < (Lθ/Mξ)b′ <
(2η/T)(Lθ/Mξ)c′. In addition, f(u) satisfies the following conditions:

(i) f(u) > ϕp(c′/Nξ) for u ∈ [c′, (T/2η)c′];

(ii) f(u) < ϕp(b′/Mξ) for u ∈ [0, (T/2η)b′];

(iii) f(u) > ϕp(a′/Lθ) for u ∈ [a′, (T/2r)a′].

Then problem (1.3) has at least three positive symmetric solutions u1, u2, and u3 such that

0 < max
t∈[0,r]

T

u1(t) < a′ < max
t∈[0,r]

T

u2(t),

min
t∈[η,T/2]

T

u2(t) < b′ < min
t∈[η,T/2]

T

u3(t), max
t∈[0,η]

T

u3(t) < c′.
(4.15)

From Theorem 4.3, we can obtain Theorem 4.4 and Corollary 4.5.

Theorem 4.4. Let l = 1, 2, . . . , n. Suppose that there existence positive numbers a′
λl
, b′λl , c

′
λl
such that

a′
λ1

<
Lθ

Mξ
b′λ1 <

2η
T

Lθc
′
λ1

Nξ
< a′

λ2
<

Lθ

Mξ
b′λ2 <

2η
T

Lθc
′
λ2

Nξ
< a′

λ3
< · · · < a′

λl
. (4.16)

In addition, f(u) satisfies the following conditions:

(i) f(u) > ϕp(c′λl/Nξ) for u ∈ [c′
λl
, (T/2η)c′

λl
];

(ii) f(u) < ϕp(b′λl/Mξ) for u ∈ [0, (T/2η)b′λl];

(iii) f(u) > ϕp(a′
λl
/Lθ) for u ∈ [a′

λl
, (T/2r)a′

λl
].

Then problem (1.3) has at least 2l + 1 positive symmetric solutions.

Corollary 4.5. Assume that f satisfies the following conditions:

(i) f0 = ∞, f∞ = ∞,

(ii) there exists c0 > 0 such that f(u) < ϕp((2η/T)(c0/Mξ)) for u ∈ [0, c0],

then problem (1.3) has at least three positive symmetric solutions.
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Proof. First, by condition (ii), let b′ = (2η/T)c0, one gets

f(u) < ϕp

(
b′

Mξ

)
for u ∈

[
0,

T

2η
b′
]
, (4.17)

which implies that (ii) of Theorem 4.3 holds.
Second, choose K3 sufficiently large to satisfy

K3Lθ = K3rϕq

(∫T/2

r

h(r)∇r

)
> 1. (4.18)

Since f0 = ∞, there exists r ′1 > 0 sufficiently small such that

f(u) ≥ ϕp(K3)ϕp(u) = ϕp(K3u) for u ∈ [0, r ′1
]
. (4.19)

Without loss of generality, suppose r ′1 ≤ (LθT/2rMξ)b′. Choose a′ > 0 such that a′ < (2r/T)r ′1.
For a′ ≤ u ≤ (T/2r)a′,we have u ≤ r ′1 and a′ < (Lθ/Mξ)b′. Thus, by (4.18) and (4.19), we have

f(u) ≥ ϕp(K3u) ≥ ϕp(K3a
′) > ϕp

(
a′

Lθ

)
for u ∈

[
a′,

T

2r
a′
]
, (4.20)

this implies that (iii) of Theorem 4.3 is true.
Third, choose K2 sufficiently large such that

K2Nξ = K2ηϕq

(∫T/2

η

h(r)∇r

)
> 1. (4.21)

Since f∞ = ∞, there exists r ′2 > 0 sufficiently large such that

f(u) ≥ ϕp(K2)ϕp(u) = ϕp(K2u) for u ≥ r ′2. (4.22)

Without loss of generality, suppose r ′2 > (T/2η)b′. Choose c′ = r ′2. Then

f(u) ≥ ϕp(K2u) ≥ ϕp(K2c
′) > ϕp

(
c′

Nξ

)
for u ∈

[
c′,

T

2η
c′
]
, (4.23)

which means that (i) of Theorem 4.3 holds.
From above analysis, we get

0 < a′ <
Lθ

Mξ
b′ <

2η
T

Lθc
′

Mξ
, (4.24)

then, all conditions in Theorem 4.3 are satisfied. Hence, problem (1.3) has at least three
positive symmetric solutions.
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In terms of Theorem 4.1, we also have the following corollary.

Corollary 4.6. Assume that f satisfies conditions

(i) f0 = 0, f∞ = 0;

(ii) there exists c0 > 0 such that f(u) > ϕp((2η/T)(c0/Nξ)) for u ∈ [(2η/T)c0, c0],

then problem (1.3) has at least three positive symmetric solutions.

4.2. Result 2

In this subsection, the existence criteria for at least triple positive or arbitrary odd positive
symmetric solutions to problems (1.3) are established by using the Avery-Peterson fixed point
theorem [27].

Define the nonnegative continuous convex functionals φ and β, nonnegative
continuous concave functional λ, and nonnegative continuous functional ϕ, respectively, on
P by

φ(u) = max
t∈[0,T/2]

T

u(t) = u

(
T

2

)
, β(u) = max

t∈[r,T/2]
Tκ

∣∣∣uΔ(t)
∣∣∣ =
∣∣∣uΔ(r)

∣∣∣,

λ(u) = ϕ(u) = min
t∈[η,T/2]

T

u(t) = u
(
η
)
.

(4.25)

Now, we list and prove the results in this subsection.

Theorem 4.7. Suppose that there exist constants a∗, b∗, d∗ such that 0 < a∗ < (2η/T)b∗ <

(2η/T)(Nξd
∗/Wξ). In addition, suppose that Wξ > ϕq(

∫T/2
η h(s)∇s) holds, f satisfies the following

conditions:

(i) f(u) ≤ ϕp(d∗/Wξ) for u ∈ [0, d∗];

(ii) f(u) > ϕp(b∗/Nξ) for u ∈ [b∗, d∗];

(iii) f(u) < ϕp(a∗/Mξ) for u ∈ [0, (T/2η)a∗],

then problem (1.3) has at least three positive symmetric solutions u1, u2, u3 such that

‖ui‖ ≤ d∗, i = 1, 2, 3, b∗ < u1
(
η
)
, u2

(
η
)
< b∗, u3

(
η
)
< a∗. (4.26)

Proof. By the definition of completely continuous operator A and its properties, it suffices to
show that all the conditions of Lemma 2.5 hold with respect to A.

For all u ∈ P, λ(u) = ϕ(u) and ‖u‖ = u(T/2) = φ(u). Hence, condition (2.8) is satisfied.
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Firstly, we show that A : P(φ, d∗) → P(φ, d∗).
For any u ∈ P(φ, d∗), in view of φ(u) = ‖u‖ ≤ d∗ and assumption (i), one has

‖Au‖ = Au

(
T

2

)

=
∫T/2

0
ϕq

(∫T/2

s

h(r)f(u(r))∇r

)
Δs

≤
∫T/2

0
ϕq

(∫T/2

0
h(r)f(u(r))∇r

)
Δs

≤ d∗

Wξ

T

2
ϕq

(∫T/2

0
h(r)∇r

)

= d∗.

(4.27)

From the above analysis, it remains to show that (i)–(iii) of Lemma 2.5 hold.
Secondly, we verify that condition (i) of Lemma 2.5 holds, let u(t) ≡ kb∗ with k =

Wξ/Nξ > 1. From the definitions of Nξ,Wξ, and β(u), respectively, it is easy to see that u(t) =
kb∗ > b∗ and β(u) = 0 < kb∗. In addition, in view of b∗ < (Nξ/Wξ)d∗, we have φ(u) = kb∗ < d∗.
Thus

{
u ∈ P

(
φ, β, λ, b∗, kb∗, d∗) : λ(x) > b∗

}
/= ∅. (4.28)

For any u ∈ P(φ, β, λ, b∗, kb∗, d∗), then we get b∗ ≤ u(t) ≤ d∗ for all t ∈ [η, T/2]
T
. Hence, by

assumption (ii), we have

λ(Au) = Au
(
η
)

=
∫η

0
ϕq

(∫T/2

s

h(r)f(u(r))∇r

)
Δs

≥
∫η

0
ϕq

(∫T/2

η

h(r)f(u(r))∇r

)
Δs

>
b∗

Nξ
ηϕq

(∫T/2

η

h(r)∇r

)

= b∗.

(4.29)

Thirdly, we prove that condition (ii) of Lemma 2.5 holds. For any u ∈ P(φ, λ, b∗, d∗)
with β(Au) > kb∗, that is,

β(Au) =
∣∣∣(Au)Δ(r)

∣∣∣ = ϕq

(∫T/2

r

h(s)f(u(s))∇s

)
> kb∗. (4.30)
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So, in view of k = Wξ/Nξ,Wξ > ϕq(
∫T/2
η h(s)∇s) and (4.30), one has

λ(Au) = Au
(
η
)

=
∫η

0
ϕq

(∫T/2

s

h(r)f(u(r))∇r

)
Δs

≥
∫η

0
ϕq

(∫T/2

η

h(r)f(u(r))∇r

)
Δs

>

∫η

0
ϕq

(∫T/2

r

h(r)f(u(r))∇r

)
Δs

> ηkb∗

> b∗.

(4.31)

Finally, we check condition (iii) of Lemma 2.5. Clearly, since ϕ(0) = 0 < a∗, we have
0/∈R(φ, ϕ, a∗, d∗). If u ∈ R(φ, ϕ, a∗, d∗) with ϕ(u) = mint∈[η,T/2]

T
u(t) = a∗, then Lemma 2.1

implies that

‖u‖ ≤ T

2η
u
(
η
)
=

T

2η
a∗. (4.32)

This yields 0 ≤ u(t) ≤ (T/2η)a∗ for all t ∈ [0, T/2]
T
.Hence, by assumption (iii), we have

λ(Au) = Au
(
η
) ≤
∫η

0
ϕq

(∫T/2

0
h(r)f(u(r))∇r

)
Δs <

a∗

Mξ
ηϕq

(∫T/2

0
h(r)∇r

)
= a∗. (4.33)

Consequently, all conditions of Lemma 2.5 are satisfied. The proof is completed.

We remark that condition (i) in Theorem 4.7 can be replaced by the following condition
(i′):

lim
u→∞

f(u)
ϕp(u)

≤ ϕp

(
1
Wξ

)
, (4.34)

which is a special case of (i).

Corollary 4.8. If condition (i) in Theorem 4.7 is replaced by (i′), then the conclusion of Theorem 4.7
also holds.

Proof. By Theorem 4.7, we only need to prove that (i’) implies that (i) holds, that is, if (i’)
holds, then there is a number d∗ ≥ max{(T/2η)a∗, (Wξ/Nξ)b∗} such that f(u) ≤ ϕp(d∗/Wξ)
for u ∈ [0, d∗].
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Suppose on the contrary that for any d∗ ≥ max{(T/2η)a∗, (Wξ/Nξ)b∗}, there exists
uc ∈ [0, d∗] such that f(uc) > ϕp(d∗/Wξ).Hence, if we choose

c′n > max
{

T

2η
a∗,

Wξ

Nξ
b∗
}

(n = 1, 2, . . .) (4.35)

with c′n → ∞, then there exist un ∈ [0, c′n] such that

f(un) > ϕp

(
c′n
Wξ

)
, (4.36)

and so

lim
n→∞

f(un) = ∞. (4.37)

Since condition (i′) holds, then there exists τ > 0 such that

f(u) ≤ ϕp

(
u

Wξ

)
for u ∈ (τ,∞). (4.38)

Hence, we have un ≤ τ. Otherwise, if un > τ, then it follows from (4.38) that

f(un) ≤ ϕp

(
un

Wξ

)
≤ ϕp

(
c′n
Wξ

)
, (4.39)

which contradicts (4.36).
Let W = maxu∈[0,τ]f(u), then f(un) ≤ W (n = 1, 2, . . .), which also contradicts (4.37).

The proof is complete.

Theorem 4.9. Let l = 1, 2, . . . , n. Suppose that there exist constants a∗
l
, b∗

l
, d∗

l
such that

0 < a∗
1 <

2η
T
b∗1 <

2η
T

d∗
1Nξ

Wξ
< a∗

2 <
2ηi
T

b∗2 <
2η
T

d∗
2Nξ

Wξ
< a∗

3 < · · · < a∗
l
. (4.40)

In addition, suppose that Wξ > ϕq(
∫T/2
η h(s)∇s) holds, then f satisfies the following conditions:

(i) f(u) < ϕp(d∗
l /Wξ) for u ∈ [0, d∗

l ];

(ii) f(u) > ϕp(b∗l /Nξ) for u ∈ [b∗
l
, d∗

l
];

(iii) f(u) < ϕp(a∗
l
/Mξ) for u ∈ [0, (T/2η)a∗

l
],

then problem (1.3) has at least 2l + 1 positive symmetric solutions.

Proof. Similar to the proof of Theorem 4.2, we omit it here.
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5. Examples

In this section, we give two simple examples to illustrate that the conclusions we will arrive
at are different with their own distinctive advantages.

Example 5.1. Let

T = {0, 0.05, 0.1, 0.15, 0.45, 0.48, 0.5, 0.55, 0.52, 0.85, 0.9, 0.95, 1} ∪ [0.22, 0.44] ∪ [0.56, 0.78].
(5.1)

Consider the following boundary value problem with p = 3:

(
ϕp

(
uΔ(t)

))∇
+ h(t)f(u(t)) = 0, t ∈ (0, 1)

T
,

u(0) = u(1) = 0, uΔ(0) = −uΔ(1),

(5.2)

where

h(t) =

⎧
⎨
⎩
t + ρ(t), t ∈ [0, 0.5]

T
,

1 − t + ρ(1 − t), t ∈ [0.5, 1]
T
,

f(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.16, u ∈ [0, 0.6],

1049.6u − 629.6, u ∈ [0.6, 1],

420, u ∈ [1, 5],

2.8364u + 405.82, u ∈ [5, 60],

576, u ∈ [60,∞).

(5.3)

Note that T = 1. If we choose η = 0.1, r = 0.25, then direct calculation shows that

Mξ = ηϕq

(∫1/2

0
h(r)∇r

)
= 0.05, (5.4)

and Nξ ≈ 0.0489, Lξ = 0.125, Wξ = 0.2500. If we take a′ = 0.3, b′ = 1, c′ = 12, then

a′ = 0.3 <
2r
T
b′ ≈ 0.9714 <

2r
T

c′Nξ

Mξ
≈ 9.173. (5.5)
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Furthermore,

f(u) = 0.16 < 5.76 = ϕp

(
a′

Lξ

)
, u ∈ [0, 0.6],

f(u) = 420 > 418.2 ≈ ϕp

(
b′

Nξ

)
, u ∈ [1, 5],

f(u) ≤ 576 < 57600 = ϕp

(
c′

Mξ

)
, u ∈ [0, 60].

(5.6)

By Theorem 4.1 we see that the boundary value problem (5.2) has at least three positive
symmetric solutions u1, u2, and u3 such that

0 < u1(0.25) < 0.3 < u2(0.25), u2(0.1) < 1 < u3(0.1), u3(0.1) < 12. (5.7)

Yet, ϕq(
∫1/2
0.1 h(s)∇s) ≈ 0.489 > Wξ ≈ 0.25, hence, the existence of positive solutions of

boundary value problem (5.2) is not obtained by using Theorem 4.7.

Example 5.2. Let

T = {0, 0.05, 0.1, 0.15, 0.45, 0.46, 0.48, 0.5, 0.52, 0.54, 0.55, 0.85, 0.9, 0.95, 1}

∪[0.22, 0.44] ∪ [0.56, 0.78].
(5.8)

Consider the following boundary value problem:

(
ϕp

(
uΔ(t)

))∇
+ h(t)f(u(t)) = 0, t ∈ (0, 1)

T
,

u(0) = u(1) = 0, uΔ(0) = −uΔ(1),
(5.9)

where

h(t) =

⎧
⎨
⎩
t + ρ(t), t ∈ [0, 0.5]

T
,

1 − t + ρ(1 − t), t ∈ [0.5, 1]
T
.

(5.10)

Note that T = 1. If we choose η = 0.45, r = 0.48, then a direct calculation shows that

Mξ = ηϕq

(∫1/2

0
h(r)∇r

)
= 0.225,

Nξ ≈ 0.0981, Lξ ≈ 0.24, Wξ ≈ 0.25, Wξ ≈ 0.25 > 0.218 ≈ ϕq

(∫0.5

0.45
h(r)∇r

)
.

(5.11)
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Let ε be an arbitrary small positive number, a∗, b∗, and d∗ are arbitrary positive numbers with

0 < a∗ < 2ηb∗ < 2η
Nξd

∗

Wξ
. (5.12)

That is

0 < a∗ < 0.9b∗ < 0.3924d∗,

f(u) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕp

(
a∗

0.225

)
− ε, 0 ≤ u ≤ a∗,

l(u), a∗ ≤ u ≤ b∗,

ϕp

(
b∗

0.0981

)
+ ε, b∗ ≤ u ≤ d∗,

(5.13)

where l(u) satisfy l(a∗) = ϕp(a∗/0.225)− ε, l(b∗) = ϕp(b∗/0.0981) + ε, (lΔ(u))Δ = 0, u ∈ [a∗, b∗].
It is obvious that (i), (ii), and (iii) in Theorem 4.7 are satisfied. By Theorem 4.7, we see

that the boundary value problem (5.9) has at least three positive solutions u1, u2, and u3 such
that

‖ui‖ ≤ d∗, i = 1, 2, 3, b∗ < u1(0.45), a∗ < u2(0.45), u3(0.45) < a∗. (5.14)

However, for arbitrary positive numbers a∗, b∗, d∗, condition (iii) of Theorem 4.1 is not
satisfied. Therefore, Theorem 4.1 is not fit to study the boundary value problem (5.9).
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