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A graph drawing algorithm is presented which results in complete graphs having minimum
crossings equal to that of Guy’s conjecture. It is then generalized and formulated in an evolutionary
algorithm (EA) to perform constrained search for the crossing numbers. The main objective of this
work is to present a suitable two-dimensional scheme which can greatly reduce the complexity
of finding crossing numbers by using computer. Program performance criteria are presented and
discussed. It is shown that the EA implementation provides good confirmation of the predicted
crossing numbers.
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1. Introduction

Let G be a graph. The crossing number of G, denoted by cr(G), is the minimum number of
pairwise intersections of its edges when G is drawn in the plane. Undefined terms in this
paper can be found in [1].

Problem about the crossing number of a graph is an area of active research in both
applied and algorithmic graph theory. Beside being a challenging problem in itself, it also
finds applications in areas of network design and circuit layout. The crossing numbers
problem was proposed in early 1970s [2, 3]. It has been shown that the problem of
determining the crossing number of a given graph is NP-complete [4].

There are some known results or conjectures for some families of graphs including
complete graphs, bipartite graphs, and product of cycles. In particular, the following is known
as Guy’s conjecture [5]:
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Figure 1: K5 drawn on a cylinder using the minimum-length rule.
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Figure 2: Mapping of K5 from cylinder to plane.

where Kp is the complete graph of order p. Some values of (1.1) for p = 5, 6,. . ., 12 are 1, 3, 9,
18, 36, 60, 100, and 150. Guy’s conjecture holds true for complete graphs of up to p = 12 and
provides a known upper bound for p > 12 [6]. Various optimization algorithms [7–9] have
been used in the search for the crossing numbers although none has successfully violated the
conjecture. In this paper, a graph drawing algorithm is presented which results in complete
graphs having the same crossing number given by Guy’s conjecture. A natural extension of
this algorithm is then used as the underlying scheme in an evolutionary algorithm (EA) that
performs a constrained search for the crossing numbers of complete graphs.

2. Graph Drawing Algorithm

In this section, a graph drawing algorithm is proposed, which achieves Guy’s conjecture. An
article by Archdeacon [10] provided a helpful starting point for the graph drawing algorithm.
The key strategy of this drawing method lies in the connection of vertices by weighing
possible edge directions by their positive winding number. In other words, the direction of
an edge connecting a top vertex to a bottom one is chosen according to the minimum-length
criterion. It is plausible that such a method could produce a drawing with the minimum
number of crossings since an edge of minimum length would seem to have lessened its
chance of intersecting with other edges. A complete graph of order 5 drawn using this method
is shown in Figure 1. Note also that there are two groups of vertices on the top and bottom
surfaces of the cylinder connected amongst each other.

The three-dimensional visualization required by such a method is quite difficult for
large p. We simplify the drawing by making a vertical cut on the curved surface of the cylinder
along its entire length and “unfolding” it into a rectangular plane as in Figure 2. The resulting
vertical boundaries are now represented by vertical dotted lines.

In such drawings, edges corresponding to those on the top and bottom surfaces of the
cylinder are not shown and their crossings will be referred to as external crossings as opposed



Discrete Dynamics in Nature and Society 3

cr(K6) = 3 + 0 + 0 cr(K9) = 30 + 5 + 1

Figure 3: K6 and K9 drawn using Algorithm A.

to those on the curved surface of the cylinder which will be referred to as internal crossings.
The reason for the absence of external crossings is due to the fact that their number can easily
be determined by rC4 where r is the number of top or bottom vertices.

It should be noted that this drawing method serves no purpose other than to verify
the upper bound according to Guy’s conjecture (for p ≤ 12 it also verifies the actual crossing
number). It is deterministic and hence it does not actually search for a drawing that satisfies
the minimum number of crossings. Of course, if the conjecture is proven to be true, then the
upper bound is equal to the minimum crossing numbers. The corresponding algorithm is
presented as follows.

Algorithm A (drawing the complete graph with minimum crossing).

A1. Partitions the vertices of Kp into U (the set of upper vertices) and V (the set of
lower vertices):

A1.1. U = {ui} for 0 ≤ i ≤m − 1, where m = �p/2�,
A1.2. V = {vj} for 0 ≤ j ≤ n − 1, where n = p −m.

A2. Place the vertices of U and V on two parallel lines (called the upper and the lower
lines) that are separated by unity distance:

A2.1. place u0 (v0) at x = 0 and x = m × n on the upper (lower) line,
A2.2. place the remaining ui (vj) between x = 0 and x = m × n at intervals of length

n(m) on the upper (lower) line,
A2.3. u0 at x = 0 (x = m × n) is joined to v0 at x = 0 (x = m × n),
A2.4. ui is joined to each vj either by a continuous line or a broken line which crosses

the line x = 0 or x = m × n subject to the minimum length or the positive
direction criteria (the direction is positive for the right going lines).

Figure 3 shows the application of this drawing algorithm on K6 and K9. The total
number of crossings is calculated as the sum of the internal crossings and the upper and
lower external crossings.

3. The Evolutionary Algorithm (EA)

3.1. Introduction

In this section, we present an evolutionary formulation for the crossing number problem. The
proposed algorithm initializes by randomly generating a population of genomes. As shown
in Figure 4, initial populations of size N are selected from the solution space of 2p, where
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Figure 4: An initial population G0 containing N genomes is selected from the solution space of 2p.
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Figure 5: The coding convention for genome g3 ∈ K5; coding conventions, R: right-going edge, L: left-going
edge, for the case where (ui, vi) forms a vertical line, either R or L can be used.

each genome encodes a complete graph of order p by a binary-valued �p/2�×�p/2� adjacency
matrix. Figure 5 illustrates an example of the coding convention for K5.

From the initial population, the evolutionary algorithm (Algorithm B) recombines,
mutates, and selects genomes for the population of subsequent generations. The algorithm
terminates after K generations, or when the optimum solution (the conjecture upper bound)
is achieved.

Algorithm B (optimization search for minimum crossing based on EA).

B1 Initialization.

An initial population, G0, of N genomes is randomly drawn,
Set G0 ← {g1, g2, . . . , gN}.

B2 For k = 1 to K, make the following:

B2.1 Recombination.

two parent genomes ga and gb are selected from the populationGk−1 using
Roulette selection and recombined to produce an offspring genome gr . This
process is repeated Nr times:
Initialize Gr

k
← 0.

For n = 1 to Nr , do:

Pick ga ← roulette (Gk−1) and gb ← roulette (Gk−1 − ga).
Make gr ← recombine (ga, gb).
Update Gr

k
← Gr

k
+ gr.
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End For
Update Gr

k
← Gk−1 +Gr

k
.

B2.2 Mutation.

Every genome in the population Gr
k is mutated at a (preset) mutation rate

Pmut :
Initialize Gm

k
← 0.

For every gn ∈ Gr
k
, do:

Make gm ←mutate (Pmut, gn).
Update Gm

k
← Gm

k
+ gm.

End For

B2.3 Selection.

The selection stage is divided into two parts, that is, Elite selection and Non-
elite selection. In the elite selection, the best Ns genomes of the population
Gm
k

is initially selected and removed from Gm
k
. The remaining N − Ns

genomes are then selected from the depleted Gm
k to retain the population

size at N:
Initialize Gk ← 0.
For n = 1 to Ns, do:

Pick gs ←− best of(Gm
k
).

Update Gm
k
←− Gm

k
− gs.

Update Gk ←− Gk + gs.

⎫
⎪⎪⎬

⎪⎪⎭
Elite Selection

End For
For n = 1 to N −Ns, do:

Pick gs ←− roulette(Gm
k
).

Update Gm
k
←− Gm

k
− gs.

Update Gk ←− Gk + gs.

⎫
⎪⎪⎬

⎪⎪⎭
Non-elite Selection

End For

End For

3.2. Evolutionary Functions

To evaluate the “goodness” of a genome in a population, a fitness function is required. A
genome with a high fitness value is more likely to survive than one with a low fitness value.
For this particular problem, the following fitness function F is used to evaluate the fitness of
graph g :

F
(
g
)
= max

(

0, 1 − log2

(
cr
(
g
)

cr0

))

, (3.1)

where cr(g) is the crossing number of graph g and cr0 is the conjectured lower bound of
cr(g). As shown in Figure 6, the fitness function is a monotone function which has the
widest dynamic range as compared to other functions. If Guy’s conjecture holds true, the
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Figure 6: Fitness Functions.

optimum (maximum) value for F(g) is 1. A value greater than 1 will indicate a violation of
the conjecture.

Roulette selection is a selection mechanism in which a genome of populationG is picked
based on some fitness measure. To select a genome from the population G = {g1, g2, . . . , gN},
a random number r is drawn from the uniform distribution [0, 1]. Genome gn is selected if

∑n−1
i=1 F

(
gi
)

F0
≤ r <

∑n
i=1 F

(
gi
)

F0
, (3.2)

where

F0 =
N∑

i=1

F
(
gi
)
. (3.3)

The function recombine (ga, gb) combines two parent genomes ga and gb to
produce an offspring genome. The offspring gr inherits genetic material from ga with
a probabilityF(ga)/F(ga) + F(gb), otherwise, genetic material from gb is inherited. The
recombination process is illustrated in Figure 7.

The function mutate (Pmut, g) mutates genome g with mutation rate Pmut. Mutation
generally involves toggling the binary value of the coded genome. The function bestof (G)
picks the best genome gb from population G, where

b = arg max
{
F
(
gn
)

: ∀gn ∈ G
}
. (3.4)
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Figure 7: The recombination process.

4. Performance Evaluation

The EA algorithm is deemed successful when it finds the number of crossings equal to
(1.1). We will examine the performance of the algorithm based on the number of functions
evaluated to achieve the conjectured upper bound. Four variables are considered for such
evaluation: graph order (p), mating probability (Pmate) defined as Nr/N, mutation rate
(Pmut), and elite percentage (Pelite) defined as Ns/N. In each experiment, three of the four
input variables are held constant while the variable selected for evaluation takes on values
of a given range. Figures 8, 9, and 10 summarizes the experiment results by varying the
Pmate, Pmut, and Pelite, at p = 12. Each experiment is conducted for 50 trials and the final
result is averaged over these 50 trials. In a subsequent experiment shown in Figure 11, a set
of optimum parameters (Pmate = 0.5, Pmut = 0.05, and Pelite = 0.1) is applied to search for
the conjecture upper bound. Finally, Table 1 summarizes the success rates of the proposed
formulation for graph order up to 20. The success rates improve as the population size (N)
and the number of iterations increase. However, this will increase the computational time
since larger solution space is evaluated. Based on the empirical data, N = 50 and Iteration =
200 are good compromise for this problem.

5. Conclusions and Future Work

In this paper a graph-drawing algorithm is proposed to represent the graphical equivalent
of Guy’s conjecture. The results are then extended, generalized, and employed in an
evolutionary algorithm that performed a constrained search for the crossing number.
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Figure 8: Plot of number of functions evaluated against mating probability (p = 12, Pmut = 0.05, Pelite = 0.1).
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Figure 9: Plot of number of functions evaluated against mutation rate (p = 12, Pmate = 0.5, Pelite = 0.1).

Performance of the EA is evaluated and presented. It is demonstrated that the EA is
successful in finding the upper bound as set by (1.1). The success of the EA is dependent on
the actual evolutionary mechanisms of selection, recombination, mutation, and reinsertion.
As expected, the number of generations required to achieve optimum solution increases as
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Figure 10: Plot of number of functions evaluated against elite percentage (p = 12, Pmate = 0.5, Pmut = 0.05).
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Figure 11: Plot of number of functions evaluated against graph order (Pmate = 0.5, Pmut = 0.05, Pelite = 0.1).

the graph order becomes larger. The algorithm performed well at lower rates of mutation,
which prevents the EA from degenerating into a random search.

It is natural to ask whether a graph with fewer crossings can be found by removing
adherence to the conjecture upper bound. The future work is focused on optimizing various
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Table 1: Success Rates of the EA.

Graph
order,
p

N = 25, N = 25, N = 50, N = 50,
Max iteration = 100 Max iteration = 200 Max iteration = 100 Max iteration = 200

Average
iteration

Success
rate (%)

Average
iteration

Success
rate (%)

Average
iteration

Success
rate (%)

Average
iteration

Success
rate (%)

5 1 100 1 100 1 100 1 100
6 1 100 1 100 1 100 1 100
7 1 100 1 100 1 100 1 100
8 3 100 4 100 2 100 2 100
9 4 100 5 100 3 100 3 100
10 9 100 9 100 6 100 7 100
11 11 100 11 100 8 100 8 100
12 21 100 20 100 15 100 15 100
13 25 100 24 100 18 100 17 100
14 42 98 42 100 30 100 28 100
15 47 100 48 100 33 100 35 100
16 72 84 73 100 50 98 59 100
17 75 66 98 100 58 94 68 100
18 89 16 137 82 77 46 108 96
19 82 2 147 64 79 3 115 94
20 100 0 154 18 89 2 156 64

parameters and generalizing the algorithm such that given an initial set of randomly drawn
complete graphs, an optimized solution is to be found with minimum crossing numbers.

References

[1] G. Chartrand and L. Lesniak, Graphs & Digraphs, Chapman & Hall, London, UK, 3rd edition, 1996.
[2] W. T. Tutte, “Toward a theory of crossing numbers,” Journal of Combinatorial Theory Series B, vol. 8, pp.

45–53, 1970.
[3] P. Turán, “A note of welcome,” Journal of Graph Theory, vol. 1, pp. 7–9, 1977.
[4] M. R. Garey and D. S. Johnson, “Crossing number is NP-complete,” SIAM Journal on Algebraic and

Discrete Methods, vol. 4, no. 3, pp. 312–316, 1983.
[5] R. K. Guy, “Crossing numbers of graphs,” in Graph Theory and Applications, pp. 111–124, Springer,

New York, NY, USA, 1972.
[6] S. Pan and R. B. Richter, “The crossing number of K11 is 100,” Journal of Graph Theory, vol. 56, no. 2,

pp. 128–134, 2007.
[7] F. C. Harris Jr. and R. H. Cynthia, “A proposed algorithm for calculating the minimum crossing

number of a graph,” in Proceedings of the 8th Quadrennial International Conference on Graph Theory,
Combinatorics, Algorithms, and Applications, Kalamazoo, Mich, USA, June 1996.

[8] C. Gutwenger and P. Mutzel, “An experimental study of crossing minimization heuristics,” in Graph
Drawing, G. Liotta, Ed., vol. 2912 of Lecture Notes in Computer Science, pp. 13–24, Springer, Berlin,
Germany, 2004.

[9] U. Tadjiev, Parallel computation and graphical visualization of the minimum crossing number of a graph, M.S.
thesis, University of Nevada, 1998.

[10] D. Archdeacon, December 2003, http://www.emba.uvm.edu/∼archdeac/problems/crosskn.htm.


