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Total transfer capability (TTC) is an important index in a power system with large volume of
inter-area power exchanges. This paper proposes a novel technique to determine the TTC and its
confidence intervals in the system by considering the uncertainties in the load and line parameters.
The optimal power flow (OPF) method is used to obtain the TTC. Variations in the load and
line parameters are incorporated using the interval arithmetic (IA) method. The IEEE 30 bus test
system is used to illustrate the proposed methodology. Various uncertainties in the line, load and
both line and load are incorporated in the evaluation of total transfer capability. From the results,
it is observed that the solutions obtained through the proposed method provide much wider
information in terms of closed interval form which is more useful in ensuring secured operation
of the interconnected system in the presence of uncertainties in load and line parameters.
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1. Introduction

Due to the deregulation of the power industry, there has been an increasing interest in
quantifying the transmission transfer capabilities of power systems. Interconnected systems
are replacing isolated systems for economic and reliability reasons, but the resulting looped
networks give rise to new technical concerns. Assessment of total transfer capability
and available transfer capability (ATC) are such issues in a power system. ATC can
be mathematically defined as the total transfer capability (TTC) minus the transmission
reliability margin (TRM), minus the sum of existing commitments and the capacity benefit
margin (CBM) [1].

In the past few years, a number of methods have been proposed for ATC
determination. The literature of ATC calculation can be divided into two broad categories:
deterministic methods and probabilistic methods. The deterministic methods can be further
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divided into the continuation power flow (CPF) method [2], the repeated power flow
(RPF) method [3], and the optimal power flow (OPF) methods [4, 5]. Starting from a
solved base case, the CPF method obtains a series of power flow solutions by increasing
the transfer parameter by using a prediction-correction scheme. RPF method starts from a
base case and repeatedly solves the power flow equations, each time increasing the power
transfer by a small increment until it reaches an operation limit. OPF method formulates
the TTC calculation as an optimization problem, with equality constraints of power flow and
inequality constraints from operation limits. The objective function, obviously, is to maximize
power flow on the specified transmission route. These methods seem to be appropriate and
efficient in management of the transmission system. However, because it fails to consider
the probabilistic nature of the power system, the obtained ATC may be too conservative and
therefore lead to costly and inefficient use of system resources.

The quantitative uncertainty is quantifiable in nature and is represented in numerical
terms by a mathematical function with deterministic parameters. This could be achieved
either by probabilistic variables or by interval variables. In the former, the uncertainty is
defined by probability density functions [6, 7]. The application of the interval Arithmetic
method for power flow analysis of transmission networks was first proposed in [8]. This
concept has been applied for radial distribution system analysis [9, 10]. The basic idea in this
paper is to extend the application of interval arithmetic in order to consider the probabilistic
aspects of the system input parameters in the calculation of total transfer capability. The
problem is formulated as an optimization problem, where the objective function is to
maximize the power transfer between a specific set of generator(s) and load(s) without
violating any of the system constraints.

The remainder of this paper is organized as follows: in Section 2, the problem
formulation of TTC is presented; the functional procedure of the interval arithmetic is
discussed in Section 3 and calculation of base case power flow is briefly discussed in Section 4;
the results for two important case studies on transfer capability are discussed in Section 5 and
finally the conclusions are summarized in Section 6.

2. Problem Formulation for Total Transfer Capabilty

The mathematical formulation of TTC can be expressed as follows.

The objective function for the OPF reflects the maximum power transfer from one
bus/area to another bus/area.

Objective function is

f(x) = Max <Z A pDi>. (2.1)

i€Sp

The equality constraints of the OPF reflect the power system. The power system is
enforced through the power flow equations which require that the net injection of real and
reactive power at each bus is equal to zero.

Equality constraints are

n
Pei = Poi = 3| Vi Vj| (Gij cos 65 + Bij sin ) = 0,
j=1

Qci = Qoi = X |Vi|Vi|(Gij cos 6 + By sin &) = 0.
=

(2.2)
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The inequality constraints of the OPF reflect the limits created to ensure system
security. The limiting constraints considered in this paper consist of three types: generation
capacity, transmission line capacity, and voltage level.

The generators’ maximum and minimum outputs for real and reactive powers are as
follows:

IN

|PGi|m'm < |PGi| |PGi|max’

(2.3)
|QGi|min < |QGi| - |QGi|max‘

AN

For the maintenance of system security, the transmission line MVA ratings are taken
into account

|Sii| < [ (2.4)

max”

To maintain the quality of the electrical service and system security, bus voltage limits
are considered

|Vilmin < Vil < Vi (2.5)

max”’

where

A Pp;: is active power increment of load bus;
Pci, Qgi: are real and reactive power generation at bus i;
Pp;, Qp;: are real and reactive load demand at bus i;
n: is bus number of the system;
Vi, V;: are voltage magnitudes at bus i, j;
Sij: is line MVA limit.

3. Interval Arithmetic Method

Interval arithmetic is a powerful tool to determine the effects of uncertain data. It can deal
with numbers that vary within a range. The basic concepts of interval arithmetic are discussed
as follows.

An interval number X = [ x1, x; ] is the set of real numbers x such that x; < x < x».
Here x; and x, are known as the lower limit and upper limit of the interval number,
respectively. Let X = [x1, xo] and Y = [y, y2 ] be the two interval numbers. The basic
arithmetic operations of addition, subtraction, multiplication, and division of these two

interval numbers are defined as follows [11]:

X+Y = [x1+y1, X2+ 2],

X-Y=[xi-y1, x2-Va],

X*Y = [min (o * y1, 1 % Y2, X2 % Y1, X2 % 2), (3.1)
max (X1 * Y1, X1 % Yo, Xo * Y1, X * yz)],

X+Y=XxY"
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However, for the purpose of power flow analysis, calculations are based on complex
numbers rather than real numbers. The basic relations involving complex interval numbers
are described as follows. In general, any complex number Z = X +iY—where i is the complex
operator—is said to be a complex interval number if both its real and imaginary parts, X and
Y, respectively, are interval numbers. Therefore X can be represented as X = [x1, xp] and ¥
can be represented as Y = [y1, v»].

Let Z; = A; +iB; and Z, = A; + iB, be the two complex interval numbers. The
addition, subtraction, multiplication, and division of these two complex numbers are defined
as follows:

Z1+7Zy = (A1 +A2) + I(B1 + Bz),
Z1—-7Zy = (A1 —Az) + l(B1 - Bz),

3.2
Zl*Zz=(Al*Az—Bl*Bz)+i(A1*B2—A2*B1), ( )
Zl+ZZZC+iD,
where,
C=(A; %A, +B; *By) = (A2 + B,2),
(A1 %Ay + By %By) + (A %) (33)

D= (Ay* By + Ay % By) + (A% + By?).
3.1. Interval Power Flow Analysis

The power flow analysis method used in this work is fast-decoupled load flow algorithm.
However, to account for the uncertainty of the input load parameters, the real and reactive
power loads are treated as interval numbers rather than fixed numbers. Similarly, to account
for the uncertainty of the input line parameters, the resistance and reactance of the line are
treated as interval numbers. Consequently, the complex arithmetic has been replaced by
complex interval arithmetic

P(K) = [P(k),, P(k),],  Q(k) = [Q(k),, Q(k),],
R(jj) = [R(j{)e RG] XGj) = [X(R)e, X()], (3.4)
V(k) = [V(k)e, V(K),],

where,
P(k) is real power load of kth bus;
Q(k) is reactive power load of kth bus;
V(k) is voltage magnitude at kth bus;
R(jj) is resistance of the branch—jj;
X(jj) is reactance of the branch—jj;
P(k), and P(k), are lower and upper limits of real power load of kth bus;
Q(k), and Q(k),, are lower and upper limits of reactive power load of kth bus;
R(jj), and R(jj), are lower and upper limits of resistance of a particular branch—
ir
X(jj), and X(jj), are lower and upper limits of reactance of a particular branch—;jj.
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Represent all the inputs in interval form

Choose one of the following options

(a) Normal operating conditions (b) Uncertainty due to load parameters
(c) Uncertainty due to line parameters (d) Uncertainty due to load and line

!

Select an operating condition

| Run optimal power flow for initial system conditions (base case)

!

| Specify the source bus/area and sink bus/area

!

Increase real and reactive loads at sink bus/area and
generation at source bus/area with constant power factot

)

Power flows and voltage magnitudes are obtained by running the power ﬂov\*

!

Individual bus voltages and branch power flows are compared with their respective limits

Is there any violation?

Find the condition just before violation and calculate the lower limit
and upper limit of TTC as sum of loads in the sink area

!

For any selected option display lower and upper limits of bus voltages
and lower and upper limits of real and reactive power losses

End

Figure 1: Flow diagram for the computation of ATC.

3.2. Uncertainty Parameters in Load and Line Variation Modeling

The system is assumed to operate under normal conditions but line and load parameters
vary within a certain range. In this paper, £10% variations in load parameters and +3% for
line parameters are considered from their rated nominal value

P(k), =090P(k),  P(k), = 1.10P(k),
Q(k), =0.90P(k),  Q(k), =1.10Q(k),
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Figure 2: IEEE 30 bus test system.

R(jj), = 0.97R(jj), R(k), = 1.03R(jj),
X(jj), = 0.97P(jj), X(k), = 1.03X(jj).
(3.5)
Various case studies have been conducted and the results of the following cases are presented:

(i) the system under normal operating conditions,

)

(ii) uncertainties due to load parameters only,

(iii) uncertainties due to line parameters only,
)

(iv) uncertainties due to both load and line parameters.

The basic steps used for computing the TTC using interval arithmetic for each transaction are
given in Figure 1.

4. Basecase Power Flow Calculation

The IEEE 30 bus system shown in Figure 2 is adopted to illustrate the proposed method. The
system is divided into 3 areas. The system has six generators, with two generators in each
area. We assume each area as a utility. The utility in a certain area wants to import power
from another area. Hence TTC is evaluated between areas. The base case load flow for fixed
values of input is given in Table 1.
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Figure 4: Voltage profile for line uncertainties.

4.1. Base Case Power Flow Incorporating Various
Uncertainties Using Interval Arithmetic

The transfer capability is computed from a base case constructed from the system information
available at a given time. Usually, there is some uncertainty or inaccuracy in this computation
because the transfer capability computed at the base case does not reflect evolving system
conditions. These uncertainties include inaccurate or incorrect network parameters, effects
neglected in the data and approximations in transfer capability computations. As already
discussed in Section 3, the uncertainties in load and line parameters have been taken into
account by assuming that they vary over a range. When the load demands in the system vary
within some intervals, the bus voltages and other quantities such as line flows and line losses
also vary within certain intervals. The intervals of variation of bus voltages for the system
under consideration have been calculated for all the three uncertainties and are presented in
Table 2. In this table, the symbols V¢, and V., denote the lower limit and upper limit of the
voltage, respectively.

Figures 3 and 4 show the voltage profile for load uncertainty and line uncertainty
for fixed, lower, and upper limit voltages. One can see that the load uncertainty has a
considerable effect on the voltage profile compared with the line uncertainty. However, when
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Figure 5: Voltage profile for load and line uncertainties.

both load and line uncertainties are taken into account, the effect is much more and is reflected
in the voltage profile shown in Figure 5.

5. Results and Discussions

Several cases on the transfer capability are studied and from them the results of two
important case studies are presented and discussed below.

5.1. Case 1: The Transfer Capability from Area 2 to 1

Using the proposed interval arithmetic method, TTC is evaluated for both fixed input
parameters and for various uncertainties. The loads are modeled as constant power factor
loads. The active loading (in MW) of area 1 before and after the transaction is shown in
Table 3.

The generation of area 2 increases from 56.2 to 70.0 MW and the load at area 1 from
84.5 to 98 MW and the limiting condition was the overloading of lines 6-8. The sum of the
loads at the sink area is taken as the TTC. Table 4 gives the total load of area 1 and total real
and reactive losses in interval parameters. One may observe that the range of the total loss is
higher for load uncertainty compared to line uncertainty. Obviously, the losses increase when
both load and line uncertainties are taken into account.

Table 5 shows the values of different operating parameters after the transaction has
been carried out. The TTC values are presented in interval form for all the categories of
uncertainties. It is observed that the interval arithmetic method indicates a wider range of
intervals.

5.2. Case 2: The Transfer Capability from Area 3 to 1

The generation of area 3 is increased proportionally when the loads in area 1 are increased.
The generation at area 3 is increased from 84.5 to 94 MW. The load active power vector of area
1 in bus number sequence is [0.0, 27.7, 3.06, 9.70, 0.0, 0.0, 29.1, 38.29, 0.0, 0.0]. The limiting
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Table 1: Base case load flow.

Bus number Area number V (p.u) Angle (deg) Generation Load

P Q P Q
1 1 1 0 25.97 0.99 0 0
2 1 1 —0.415491 60.97 31.99 21.7 12.7
3 1 0.983138 -1.522074 — — 2.4 1.2
4 1 0.980093 -1.794728 — — 7.6 1.6
5 1 0.982406 -1.863823 — — 0 0
6 1 0.973184 —2.266957 — — 0 0
7 1 0.967355 -2.651837 — — 22.8 10.9
8 1 0.960624 -2.725769 — — 30 30
9 1 0.980506 -2.996933 — — 0 0
10 3 0.984404 -3.374936 — — 5.8 2
11 1 0.980506 —-2.996933 — — 0 0
12 2 0.985468 -1.536912 — — 11.2 7.5
13 2 1 1.476163 37 11.36 0 0
14 2 0.976677 —-2.308035 — — 6.2 1.6
15 2 0.980229 -2.311835 — — 8.2 25
16 2 0.977396 —2.644486 — — 3.5 1.8
17 2 0.976865 -3.392339 — — 9 5.8
18 2 0.96844 -3.478388 — — 32 0.9
19 2 0.965287 -3.958205 — — 9.5 34
20 2 0.969166 -3.871024 — — 2.2 0.7
21 3 0.993383 —3.488393 — — 17.5 11.2
22 3 1 -3.392729 21.59 39.56 0 0
23 2 1 —1.589228 19.2 7.95 3.2 1.6
24 3 0.988566 —-2.631461 — — 8.7 6.7
25 3 0.990215 -1.689989 — — 0 0
26 3 0.972194 -2.139346 — — 3.5 2.3
27 3 1 —-0.828439 26.91 10.54 0 0
28 1 0.974715 —2.265929 — — 0 0
29 3 0.979597 —-2.128498 — — 2.4 0.9
30 3 0.967883 -3.041524 — — 10.6 1.9

conditions are overloading in lines 6-8 and 21-22. It is observed that the TTC lower limit
and upper limit vary over a wide range when both load and line uncertainties are taken into
account. Table 6 shows the values of TTC and other system parameters in interval form after
the transaction has been carried out.

6. Conclusion

The need for efficiency in electrical power deregulation has increased the need for improved
calculations of TTC by incorporating the uncertainties in transmission. This paper proposes
a probabilistic approach using interval arithmetic to estimate the TTC. The solution obtained
from the interval arithmetic method is found to be more informative in qualitative terms
about the system analysis when compared to the conventional deterministic approach. It
is conjectured that power planners and operators may benefit not only from the expected
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Table 2: Bus voltage magnitudes with different uncertainties.

Load uncertainty Line uncertainty Load & line uncertainties
Bus number Fixed values Lower limit Upper limit Lower limit Upper limit Lower limit Upper limit

Vee(pu)  Vue(pu)  Vee(pu)  Vye(pu)  Vee(pu) Ve (pu)

1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
3 0.983138 0.981306 0.986537 0.982488 0.984535 0.980683 0.986972
4 0.980093 0.9773 0.983761 0.979993 0.981257 0.976548 0.984285
5 0.982406 0.979675 0.984989 0.981824 0.982977 0.978998 0.985475
6 0.973184 0.96903 0.977216 0.972369 0.974102 0.968013 0.977945
7 0.967355 0.963214 0.972314 0.966832 0.9689 0.962015 0.973196
8 0.960624 0.95401 0.965198 0.958474 0.961055 0.952516 0.966304
9 0.980506 0.977627 0.982225 0.979353 0.980634 0.9769 0.982787
10 0.984404 0.982294 0.984897 0.983113 0.984147 0.981728 0.98537
11 0.980506 0.977627 0.982225 0.979353 0.980634 0.9769 0.982787
12 0.985468 0.983673 0.986949 0.984867 0.985837 0.983129 0.98738
13 1 1 1 1 1 1 1
14 0.976677 0.974063 0.978931 0.975781 0.977289 0.973224 0.979605
15 0.980229 0.978056 0.982241 0.979542 0.980819 0.977344 0.98281
16 0.977396 0.974298 0.97883 0.975853 0.977355 0.973467 0.979506
17 0.976865 0.973539 0.977869 0.974976 0.976508 0.972696 0.978563
18 0.96844 0.965117 0.971416 0.967297 0.969315 0.963998 0.972322
19 0.965287 0.961235 0.968089 0.963586 0.965822 0.959998 0.969093
20 0.969166 0.965531 0.971485 0.967554 0.969544 0.964431 0.972382
21 0.993383 0.992167 0.992787 0.992253 0.992718 0.991922 0.993009
22 1 1 1 1 1 1 1
23 1 1 1 1 1 1 1
24 0.988566 0.987247 0.989803 0.988173 0.988881 0.986853 0.990118
25 0.990215 0.989156 0.991279 0.989914 0.990527 0.988815 0.991552
26 0.972194 0.969092 0.974968 097117 0.972908 0.968128 0.975744
27 1 1 1 1 1 1 1
28 0.974715 0.970329 0.978686 0.973798 0.975448 0.969353 0.979372
29 0.979597 0.977483 0.981787 0.979001 0.980292 0.976763 0.98236
30 0.967883 0.964467 0.97125 0.966859 0.967859 0.963333 0.972154
Table 3: Active loading of area 1.
Bus number 2 3 4 7 8
Before 21.7 24 7.6 22.8 30.0
After 23.5 5.1 11.2 25.8 324

TTC evaluation, but also from an evaluation of confidence intervals of the calculation. The
transfer capability from area 2 to 1 and 3 to 1 of the IEEE 30 bus test system is computed with
fixed line and load, with line uncertainty, with load uncertainty, and with both line and load
uncertainties. The total loss for the lower limit and upper limit is computed for all four types
and compared. The results clearly elucidate that the total loss occurring is minimum when
the bus is operated with line uncertainty. The obtained results are useful to ensure a secured
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Table 4: Base case for Cases 1 and 2.
Varvin Real Real Reactive Reactive Total Total E;)ggiive Frré);?’:ive
yms load load load load real loss  real loss
parameters loss loss
Py Py Qee Que Py, Pye Qee Que
(MW) (MW) (MVAr) (MVAr) (MW) (MW) (MVAr) (MVAr)
Fixedline g/ 5 84.5 56.4 56.4 244 2.44 8.9 8.9
and load
Load . 76.05 92.95 50.86 62.14 1.96 3.215 7.34 11.47
uncertainty
Line
. 84.5 84.5 56.4 56.4 2.382 2.542 8.72 9.30
uncertainty
Load and
line 76.05 92.95 50.86 62.14 1.845 3.322 7.10 11.85
uncertainty
Table 5: Interval values for the operating parameters in case 1.
Varvi Total transfer Reactive Total real Total reactive Total
p:g;rlft ers capability load loss loss loss
L U
hrc;vivter hrl;lijter Qe Que Py, Pue Qe Que See Sue
(MW)  (MW) (MVAr) (MVAr) (MW) (MW) (MVAr) (MVAr) (MVA) (MVA)
Fixedline oo 98 6337 6337 268 268 1152 1152 11.83  11.83
and load
Load
. 88.89 108.65 59.45 72.64 2.22 3.874 8.78 14 9.06 14.53
Uncertainty
{}lne . 90.49 104.23 59.9 734 2.808 2.99 10.27 13.44 10.65 13.77
ncertainty
Load and
Line 86.45 106.43  56.02 65.99 2.65 3.3 10.75 14.86 11.07 15.22
Uncertainty
Table 6: Interval values for the operating parameters in case 2.
Varvi Total Transfer Reactive Total real Total reactive Total
ng;g;gt ers capability load loss loss loss
L U
hrc;v;;er hr};liater Qe Que 7y Pue Qe Que See Sue
MW)  vmw)  MVAD (MVAD) (MW)  (MW)  (MVAr) (MVAT) (MVA) (MVA)
Fixedline 10705 10785 7198 7198 26 26 1004 1004 1037 1037
and load
Load
. 97.058 118.63 64.9 79.31 2.05 3.39 8.8 12.2 9.04 12.66
uncertainty
Line 40235 11452 6633 8041 251 2.69 9.71 1036 1003  10.70
uncertainty
Load and
line 95.03 116.28 65.83 73.73 1.98 3.5 8.52 12.63 8.75 13.11

uncertainty
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operation of the interconnected network when dealing with extensively large uncertainties
in load and line parameters.
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