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1. Introduction
In this article, the nonlocal boundary value problem for the Schrodinger equation
' () + Au(t) = f(t), 0<t<T,
p
u(0) = > amu(An) + ¢, (1.1)

m=1

O<h<dp<-o<A, <T

in a Hilbert space H with the self-adjoint operator A is considered. The Schrédinger equation
plays an important role in the modeling of many phenomena. Methods of solutions for the
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Schrodinger equation have been studied extensively by many researchers (see, e.g., [1-9] and
the references given therein).

The idea in this work is inspired from the works [2, 3, 10, 11]. In the articles [2, 3]
the existence and the uniqueness of the solution of the nonlocal boundary value problem
(1.1) and its general form under some conditions are studied. In the article [8], to find an
approximate solution of the problem (1.1), first-order of accuracy Rothe difference scheme
and second-order of accuracy Crank-Nicolson difference scheme are presented. The stability
estimates for the solution of this problem and the stability of these difference schemes are
established.

The main aim of this paper is to study » modified Crank-Nicolson difference schemes
for the approximate solution of problem (1.1). The paper is organized as follows. In Section 2,
we establish estimates for the stability of higher order derivatives of the solution of problem
(1.1). In Section 3, the second-order of accuracy r modified Crank-Nicolson difference
schemes for the approximate solution of problem (1.1) are presented. The stabilities of these
difference schemes are established. In Section 4, we study the convergence of these difference
schemes. In Section 5, a numerical example is exposed in order to validate the schemes.
A procedure involving the modified Gauss elimination method is used for solving these
difference schemes.

Throughout this paper, the constants used are not necessarily the same at different
occurrences.

2. Nonlocal Boundary Value Problem

Theorem 2.1. Assume that f(t) € C([0,T], H), ¢ € D(A) and
p
> lam| < 1. (2.1)
m=1

Then there exists a unique solution u(t) of problem (1.1) and the following inequalities are satisfied:

522);”11(0”1{ <C(ay, ..., ap) [”(p”H + Tgnax”f(t)”H], (2.2)

<t<T

!
max||u (1) ||H + max|| Au(t)|y

(2.3)
< Cl ) [IAglly + Tmaxl F O+ £V

Proof. The proof of the estimate (2.2) is given in [8]. Now we will obtain the estimate (2.3).
It is known that for smooth data of the problem

i (t) + Au(t) = f(H), O0<t<T,  u(0)=¢ (2.4)
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there exists a unique solution of the problem (1.1), and the following formula holds:

t
u(t) = e tg - J e A=9if (s)ds.
0

Therefore we have

Au(t) = e A + £(0) + f t f'(s)ds - f(0)e A — fte"f‘“-S) f'(s)ds.
0 0

So that we get the estimate
!
max|[u(®)llyr < 1A+ 2[1f O) |1 + 2Tmax|f ® |-

p
m=1

Using the condition u(0) = amu(Ay,) + ¢ and the formula (2.6) we get

p p A p )
Aé = R{ > amf(0)+ D amjo fl(s)ds = f(0) D ame ™
m=1 m=1 m=1

Ao
e A9 f1(5)ds + A(p},
0

p
_Z am
m=1

where

By using estimates

1 .
IRl iy € ——5—— < C(a, ..., @), ”e’At” <1,
1 _an=1lam| H—H

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)
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and the assumption 3 _ |a| < 1, we get

1Agl < Clav, ..., ) {2||f(0)||H +2Tmax||f ()], + ||A¢||H}. (2.11)

0<t<T

By using the estimates (2.7) and (2.11) we obtain an estimate for Au. Then by using the
estimate for Au, the relation iu/(t) = f(t) - Au = f(0) + fg f'(s)ds — Au and the triangle
inequality we can obtain estimate (2.3). This completes the proof of Theorem 2.1. O

3. Difference Schemes, Stability

In this section, we present r-modified Crank-Nicolson difference schemes for the approxi-
mate solutions of problem (1.1) and establish the stabilities of these difference schemes. It is
assumed that 27 < A, for 1 < m < p. Let us associate the nonlocal boundary value problem
(1.1) with the corresponding second-order of accuracy r-modified Crank-Nicolson difference
schemes:

Uk — Upe— A
1M+E(uk+uk_1)=tpk, r+1<k<N,
T
U — Uk
1M+Auk:(pk, 1<k<r,

Ug = Z am((I + ilOmA)ulm - ilOm(le) + Z AmUlm
>\ rT<Ap (31)
A/ TEZY

. 1 .
+ Z an (I + ldmA)E(ulm + Uppi1) — 1 Z A AP + @,
rT<lm rT<\m
An/TEZ* An/TEZ"

O<d<dp<--<A, <T,

for the approximate solutions of this nonlocal boundary value problem. Z* denotes here the
set {2,...,n,...} and L, = A/ 7], lom = A = A/ T)T, d = A — A/ T]T — T/2, @1 =
f(tk = 7/2), tx = kT, where |x] stands for the greatest integer part of the real number x.

By [10],

k
Rkg —it) Rki*lg;, k=1,..,r,
Uy = =1 (3.2)

r k
B¥TRTE —it)  BETR g —it > BICy;, k=r+1,...,N
j=1 j=r+l
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is the solution of the r-modified Crank-Nicolson difference schemes for the approximate
solutions of Cauchy problem

iuk — Uk-1

A
- +E(”k+uk—1):‘sz r+1<k<N,

(3.3)
iuk — Uk
T

+Aur =k, 1<k<r ug=2¢.
Here

AN\ A
R=(I-itA)™, C= <1 - iET> , B= <1 + iET>C. (3.4)

For uy, using the formula (3.2) and the condition we obtain

L
=T, <—iT > am +ilomA) D R —i > amlo,ngozm>

rT>An j=1 rT>Ay

r Lin
—iT >, am <ZBlm‘rRr‘f+1<pj+ > Bl'"‘fC(pj>

rT<Ap j=1 j=r+1
A /TEZ"

r L
—it D, am(I+ idmA)% <(I +B) <Z B" TR T+ Y Blm-fcq;,) + C(p1m+1>

rT<Am j=1 j=r+1
An/TEZ*

-i > apdnA+¢y,
rT<A;,
An/TEZF

(3.5)

where

Tr=|1-> and+ilgwAR" - > a,B" R
>\ <Ay
A/ TEZT
(3.6)

-1
. 1 -
- D am(I+zdmA)§(I+B)BmTRT

rT<Am
Am/TEZ*
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Note that, here we considered Zi{’":r . B Cy; = 0 for I, = r. So, for the solution of problem
(3.2), we have the following formula:

( k
Rkuy — iTZ RFTtg;, k=1,...,r,
=1
B*"Rrug — ity B¥ TRy —it 3 B Cyj, k=r+1,...,N,
j=1 j=r+l

Im
Tod =it > am(I +ilomA) D R =i > tnlomtpiom

rT>Am j=1 rT>Am
r I
-it D, am( D, B™TR g+ > BiCy;
rT<Ap, j=1 j=r+1
U = 4 \/TeZt

—it D, aw(l+idyA)
rT<Am
N TgZ*

r L
x% <(1 +B) <Z BRI g+ 3 B C‘Pi) * C‘le+1>

j=1 j=r+1

Il
e

—i Z AP + @ ¢, k

rT<lAm
\ AT Z*

(3.7)

Theorem 3.1. Assume that ¢ € D(A) and
p
> lam| < 1. (3.8)
m=1
Then the solutions of the difference schemes (3.1) satisfy the stability inequalities

maxlully < C(a, .., ap) [||<P||H + T{;}gll(f’kHH]f (3.9)

Uk — Uk-1
T

U + Uj—1 ||
2 H

Jd

max | A

+ max||Auk||y + max
1<k<N 1<k<r

r+1<k<N

(3.10)
Pk — Pr—1
T

< Clan )[4l + ol T max

Proof. Using the estimates

IRlg—-n <1, IBlgog <l  lIClg_p<1, (3.11)
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and the formula (3.2), we can obtain

max el < [l + 7 max el (3.12)

Using the spectral representation of the self-adjoint operators one can establish

< C(le,...,ap>. (3.13)

1
Tl € —=—— <
1 _anﬂlam|

Estimate for ||ug|| should also be examined. By using formula (3.7), the triangle inequality;,
and estimates (3.11), (3.13) the following estimate is obtained:

luollgy < C(a, ..., ap) [”tp”H + 2T11£2>]§]||<pk||H]. (3.14)

The proof of the estimate (3.9) for the difference schemes (3.1) is based on the last estimate
and estimate (3.12).
Now, estimate (3.10) will be obtained. Using (3.2), we get

k
RFA¢ - irz ARK g, k=1,...,r,
Auy = = . (3.15)
B*TRIAé ity BFTAR g —it Y' B¥IACy;, k=r+1,...,N.
j=1 j=r+1
So that
( k
RFAZ + <ZRkf+1((p]-_1—(p]~)+(pk—Rk(p1>, k=1,...,r,
j=2
r
Auy = § BETRTAé+ > BETR T (9j 1 - ¢;) - B¥ "Ry (3.16)
j=2
k .
+Z Bk_]+l((pi_1—()0j)+(pk, k=r+1,...,N.

\ j=r+1

For the estimate (3.10) the two cases should be examined separately: (i) k = 1,...,r, (ii)
k=r+1,...,N.Let1 < k <r. Then, using (3.16) we get

max| At s < IRAGs + 2N max g = pica 1 + 20l (3.17)

Therefore,

Pk — Pr-1

max||Au < ||RA + 2T max
1SkSrII kg < IRASI max -

+ 2|1 || - (3.18)
H
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Estimate for || RA¢||;; should also be obtained. Using the formula (3.5) and the formula (3.16)
we get

L .
¢=T, Z an (I + iIOmA)R<Z Rim=j+l (<Pj—1 _ (P].) - lelp1>

T2\ j=2

—i Z Amlom RAQ, + Z a,, R <Z Blnr Rr-7+1 (pji-1—oj) - R’(p1>

T2y rT<My j=2
A/ TEZY

lm
+ Z amR< Z B"IC(pj-1 - ¢5) +(p,m> + Z (I +id,, A)

rT<dp j=r+l rT<Apm
A/ TEZ" An/TEZ*
1 . 1 i+1 & Ln—j+1
x SR\ ( 2B TR g0 =) - R+ 3, B"7 (g1 = 97) + g,
j=2 j=r+1

r Ln+1 )
+ < > BRI (i —gj) — R+ D, B (g0 - ;) + wzm+1> >

=2 j=r+l

-i > amdnARg, + RAgp

rT<Am
An/TRZ*
(3.19)
So that
Pk — Pr-1
IRAgly < Ci (.., ) [”A(p”H #llgrlly + Tma | 2225 H]. (3.20)
Therefore, using the estimates (3.18) and (3.20) we obtain
Pk — Pr-1
{2&>§||Auk||H <Cyay, ... ap) [”Atp”H +loa|l + Tg}g)ﬁj — H]. (3.21)

Then using the estimate for Auy, the relation i((ux — ux-1)/7T) = @ — Aug = (1 — Z?:z(‘/’j—l -
;) — Auy, and the triangle inequality we get the estimate

U — Uk
T

max
1<k<r

+ {rslggllAukllH .

3.22

Pk — Pr-1
T

A

< Cae ) 140l + gl + T
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Now, letk =r+1,..., N. Then using the formula (3.16) and the identity (1/2)(I + B) = C we
get

;
A% — Bk_r_lcr_l(:RAé + Z CBk—l—rRr—j+1 ((10]'—1 _ (P]) _ Rr(Pl
j=2
k (3.23)
i + P
+ Z CBki ((Pj71 - (p]') + B(‘Pk—l - (Pk) + w
j=r+1
So that
uk + ukfl (Pk — (Pk*1
max [|ARE < IRAL + 3T max |PE wsllgnlly (329
Therefore, using the estimates (3.20) and (3.24), the estimate
Uk + Uk Pk — Pr1
max AR < Catane ) [0l + ol + Tmax | 222 | 629)

is obtained. Then, by using the estimate (3.25), the relation i((ux — ux-1)/7) = ¢ — A((ux +
Uk-1)/2) = 1 — Z;Lz((pj_l - ¢;) — A((ux + ux-1)/2), and the triangle inequality we get the
estimate

U — Uk-1
T

max
r+1<k<N

+ max
H r+1<k<N

st
e ps (3.26)

SC4((X1,...,6¥p) -

14l + llgsly + Tmax

|

The result (3.10) follows from the estimates (3.22) and (3.26). So the proof is complete. O

4. Convergence

Theorem 4.1. Assume that Zf;zl || < 1. Assume also that Au"(t) (0 <t <T)and u"”(£) (0 <t <
T') are continuous, then the solution of the difference scheme (3.1) satisfies the convergence estimate

_ < * 2 i
Orﬁr}c%lluk u(t)lly < M*(r)7?, (4.1)

where M*(r) does not depend on T but depends on r.
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Proof. If we subtract (1.1) from (3.1) we obtain

—z A
iETE L D za) = Ay rH1<k<N,
- 2
i@‘FAZk:Ak' l<k<r,
zZy = Z am((I + ilOmA)Zlm - llomAlm) * Z ozt
= rT<Ay, (42)
A /TEZT

. 1 .
+ Z ‘xm(I + ldmA)E(zlm + Zlm+1) -1 Z ‘xmdmAlm + AO/

rT<Am rT<Am,
Am/TEZ* Am/TRZ*

O<Ai<ly< <A, LT,
where z = u — u(ty) and Ay is defined by the formula
(./d tr) — u(te_
i( i) - SO At ) - uw), 1<k<r,

i(( i) - MY g () - M) pcren,

Z W (I + ilom A)u(tin,) + Z amu(tim)

_ rT>A\ rr<l,
Ak = " A/ rez*

P
+ > I+ idmA)%(u(tlm) + (b)) = D Amtt(Am)
m=1

rT<Ap,
Am/TEZY
+i Z Amlom (Alm - (le) +1i Z amdm (Alm - (le)/ k=0.
rT>Am rT<lm
\ An/TEZ"

(4.3)

Then the difference problem (4.2) has a solution in the form (3.7), but instead of u, i, ¢ we
take zx, Ak, Ao, k =1,..., N, respectively. Using the estimates

IRlg—~m <1, IBlgog<l,  lIClg_g<1, (4.4)

and the formula obtained for the solution of (4.2), we can obtain

max||z < Z r7Tmax||A
1sksr” kil < [II oll g + Tlskgll k”H]/
(4.5)

max ||z < ||z + T max||A .
e [zl < (ol + T max Ay
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By the estimate (3.14) we have
< e + . .
1zoll C(“ll /ap) | Aoll 1 ZTlg}g)ﬁ]”AkHH (4.6)

Therefore, in order to obtain the inequality (4.1) we need estimates for Ay for 0 < k < N.
For 0 < k < N, by the use of the triangle inequality, Taylor’s formula, continuity of
Au'"(t) (0<t<T)and u"(t) (0 <t <T), the estimates

max|| Akl < MiT, max ||Axlly < Mo7?, Aol < Mp7? 47
max|| Ay < Mir,  max Ay € Mot Aol < M; (47)
are obtained. From the last estimates the result follows. O

5. Numerical Results
In this section, the numerical experiments of the nonlocal boundary value problem

ou(t, x)
ot

i

- ((x+1Duy), = ft,x), 0<t,x<1,

u(0,x) = 1u<1,x> +p(x), O0<x<l1,
3°\2
u(t,0) =u(t,1) =0, 0<t<l, (6.1)

ft, x)= [.71'2 sinarx — or cos rx + o (x + 1) sin :n'x] exp(-it),

p(x) = <1 - % exp <—é>>(sinyrx).

by using modified Crank-Nicolson difference scheme (3.1) are investigated. The exact
solution of this problem is

u(t, x) = (sinxrx) exp(—it). (5.2)

For the approximate solution of problem (5.1), the set [0, 1] x [0, 1], of a family of grid points
depending on the small parameters 7 and h

[0,1], x [0,1],, = {(tx, xn) 1 tx =kT, 1<k <N-1,Nt=1,x,=nh, 1<n<M-1, Mh =1}
(5.3)

is defined.
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Applying the second-order of accuracy modified Crank-Nicolson difference schemes

(3.1) we present following second-order of accuracy difference schemes for the approximate
solutions of problem (5.1)

n
T 2 2h 2h 2 *

k k-1 kK _ .k k-1 _ k-1 kK _»n4k k k-1 _ ~ k-1 k-1
iun — Uy _1 Upi1 ~ Uy + Uil ~ Uy _ Xp +1 Ui zun + U1 Ui Zun + Uy
h? h?

:f(tk—l/Z/xn)/ r+1SkSN_1/1SnSM_]-/

k k-1 kK _ .k k
Uy — Uy Uy — Uy Uy
i - —(xp+1)

T 2h

k

—2uk +uk |

hZ

=f<tk—%,xn>, 1<k<r,1<n<M-1,

1
tk_1/2=<k—§>7', x,=nh,1<k<N,1<n<M-1,

(5.4)

So for each r, we have (N + 1) x (N + 1) system of linear equations which can be written in
the matrix form as

AUp + B U, +C Uy 1 =Dy, 1<n<M-1,

(5.5)
UO = 0, uM = 0/

where

1 i .
o) . <1 ~3 exp<—§>> (sinxrx,), k=0,

f(tk—l/Zr xn)/ ]. S k S N,
N
P d N1y
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0 a, 0 --- 0 0 0 O 07
0O 0 a, --- 0 0 O O O
O 0 0 --0 0 O0 OO
A,=10 0 0 0 e, e, 0 0 0],
0 0 O 0 e, e, 0
0 0 O 0 0 0 e, e,
|0 0 O 0O 0 0 0 0]
b, ¢, O 0 0 0
0 b, ¢, - 0 0 0 0 O
0 0 «or oov ee- 0 0 0
B, = 0O 0 0 - 0 Up Sp 0 0
0 0 O 0 0 0 v, s,
0 0 - 0 0 0 o,
1 0 0 - —1 0 0 0 O
| 3
[0 d, O -0 0 0 O T
0o 0d,---0 0 O O O
0 0 O -0 0 0 O
C,=]10 0 0 - gn g 0 0 0],
0 0 0 -0 0 g g O
0 0 -0 0 0 gu gn
0 0 0 --- 0 0O O 0 0]

D = In+1((N +1) x (N + 1) identity matrix),

r U
u;

U, = o |, s=n-1,nn+1.
unN-1
uN

L s J

13

(5.6)
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Table 1: Comparison of the errors for the approximate solution of problem (5.1).

Method N=M-=20 N=M=40 N=M=80 N =M =160
One-modified Crank-Nicholson 0.0137 0.0038 0.0010 0.00025
Two-modified Crank-Nicholson 0.0226 0.0071 0.0019 0.00048
Three-modified Crank-Nicholson 0.0272 0.0099 0.0028 0.00072

In the above matrices entries are given as

oo L _mh+l i 1 2mh+]) d_(i_M>

"T 2n R "o "t [ "T\2h R?

__ 1 mnh+l _(_i, mh+l _ i nh+l _ 1 mh+l
=TT Tz T\ T ) TR TR 8T o

(5.7)

Thus, we have the second-order difference equation (5.5) with respect to n with matrix
coefficients. To solve this difference equation we have applied the same modified Gauss
elimination method for the difference equation with respect to n with matrix coefficients.
Hence, we seek a solution of the matrix in the following form:

un = an+1un+l + ﬁn-%—l/ n= M - 1/ . -/2/ 1/ 0/ (58)

wherea; (j=1,..., M) are (N+1)x(N+1) square matricesand f; (j = 1, ..., M) are (N +1) x1
column matrices defined by

Apyl = _(Bn + Cnan)_lAn/ ,Bn+1 = (Bn + Cnfxn)_1 (D(Pn - Cnﬂn)/ n=123,... M-1
(5.9)

Note that for obtaining a1, fus1,n = 1,..., M — 1, first we need to find ay, f;1. As in [8], we
take a; is an identity matrix, f; is the zero column vector.
For their comparison, first the errors computed by

1/2
2
h> (5.10)

of the numerical solutions of problem (5.1) are recorded for different values of N and M,

where u(ty, x,) represents the exact solution and u,’; represents the numerical solution at

(tk, x5). The results are shown in Table 1 for N = M = 20,40, 80, and 160, respectively.
Second, for their comparison, the relative errors are computed by

M-1
EN = max 'u te, x,) — uk
M 1SkSN—1<r§ ( ks Yl) n

M EX
rel E\; = max , (5.11)

1<k<N 1/2
(=0 lu(te, x) h)

and Table 2 is constructed for N = M = 20,40, 80, and 160, respectively.
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Table 2: Relative errors for the approximate solution of problem (5.1).

Method N=M-=20 N=M=40 N=M=80 N =M =160
One-modified Crank-Nicholson 0.0194 0.0054 0.0014 0.00035
Two-modified Crank-Nicholson 0.0320 0.0101 0.0027 0.00069
Three-modified Crank-Nicholson 0.0385 0.0141 0.0040 0.00100

In the article [12] it can also be found, an example that Crank-Nicolson difference
scheme is divergent but modified Crank-Nicolson is convergent.
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