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1. Introduction

In this paper, we investigate the following discrete nonlinear prey-competition system with
delays:

xi(k + 1) = xi(k) exp

⎡
⎣ri(k) −

n∑
j=1

aij(k)x
αij

j (k) −
n∑
j=1

bij(k)x
βij
j

(
k − τij(k)

)
⎤
⎦,

i = 1, 2, . . . , m,

xi(k + 1) = xi(k) exp

⎡
⎣−ri(k) +

m∑
j=1

aij(k)x
αij

j (k) +
m∑
j=1

bij(k)x
βij
j

(
k − τij(k)

)

−
n∑

j=m+1

aij(k)x
αij

j (k) −
n∑

j=m+1

bij(k)x
βij
j

(
k − τij(k)

)
⎤
⎦,

i = m + 1, 2, . . . , n,

(1.1)
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where xi(k) (i = 1, 2, . . . , m) is the density of prey species i at kth generation, xi(k) (i =
m + 1, . . . , n) is the density of predator species i at kth generation. In this system, the
competition among predator species and among prey species is simultaneously considered.
For more background and biological adjustments of system (1.1), we can see [1–5] and the
references cited therein.

Throughout this paper, we always assume that for all i, j = 1, 2, . . . , n,
(H1) ri(k), aij(k), bij(k) are all bounded nonnegative sequences and al

ii ≥ 0, blii ≥ 0, al
ii+

blii > 0. Here, for any bounded sequence fu = supk∈Nf(k), f l = infk∈Nf(k);
(H2) τij(k) are bounded nonnegative integer sequences, and αij , βij are all positive

constants.
By a solution of system (1.1), we mean a sequence {x1(k), . . . , xn(k)}which defined for

N = {0, 1, . . .} and which satisfies system (1.1) for N = {0, 1, . . .}. Motivated by application
of system (1.1) in population dynamics, we assume that solutions of system (1.1) satisfy the
following initial conditions:

xi(θ) = φi(θ), θ ∈ N[−τ, 0] = [−τ,−τ + 1, . . . , 0], φi(0) > 0, (1.2)

where τ = max{τij(k), i, j = 1, 2, . . . , n}. The exponential forms of system (1.1) assure that the
solution of system (1.1) with initial conditions (1.2) remains positive.

Recently, Chen et al. in [1] proposed the following nonlinear prey-competition system
with delays:

ẋi(t) = xi(t)

⎡
⎣ri(t) −

n∑
j=1

aij(t)x
αij

j (t) −
n∑
j=1

bij(t)x
βij
j

(
t − τij(t)

)
⎤
⎦, i = 1, 2, . . . , m,

ẋi(t) = xi(t)

⎡
⎣−ri(t) +

m∑
j=1

aij(t)x
αij

j (t) +
m∑
j=1

bij(t)x
βij
j

(
t − τij(t)

)

−
n∑

j=m+1

aij(t)x
αij

j (t) −
n∑

j=m+1

bij(t)x
βij
j

(
t − τij(t)

)
⎤
⎦, i = m + 1, 2, . . . , n.

(1.3)

By using Gaines and Mawhins continuation theorem of coincidence degree theory
and by constructing an appropriate Lyapunov functional, they obtained a set of sufficient
conditions which guarantee the existence and global attractivity of positive periodic solutions
of the system (1.3). In addition, sufficient conditions are obtained for the permanence of the
system (1.3) in [2].

On the other hand, thoughmost population dynamics are based on continuousmodels
governed by differential equations, the discrete time models are more appropriate than
the continuous ones when the size of the population is rarely small or the population has
nonoverlapping generations [3–15]. Therefore, it is reasonable to study discrete time prey-
competition models governed by difference equations.

As we know, a more important theme that interested mathematicians as well as
biologists is whether all species in a multispecies community would survive in the long run,
that is, whether the ecosystems are permanent. In fact, no suchwork has been done for system
(1.1).
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The main purpose of this paper is, by developing the analytical technique of [4, 8, 16],
to obtain two sets of sufficient conditions which guarantee the permanence of system (1.1).

2. Main Results

Firstly, we introduce a definition and some lemmas which will be useful in the proof of the
main results of this section.

Definition 2.1. System (1.1) is said to be permanent, if there are positive constants m and M,
such that each positive solution (x1(k), . . . , xn(k)) of system (1.1) satisfies

m ≤ lim inf
k→+∞

xi(k) ≤ lim sup
k→+∞

xi(k) ≤ M, i = 1, 2, . . . , n. (2.1)

Lemma 2.2 (see [8]). Assume that {x(k)} satisfies x(k) > 0 and

x(k + 1) ≤ x(k) exp{r(k)(1 − ax(k))} (2.2)

for k ∈ [k1,+∞), where a is a positive constant. Then

lim sup
k→+∞

x(k) ≤ 1
aru

exp(ru − 1). (2.3)

Lemma 2.3 (see [8]). Assume that {x(k)} satisfies

x(k + 1) ≥ x(k) exp{r(k)(1 − ax(k))}, k ≥ K0, (2.4)

lim supk→+∞ x(k) ≤ x∗ and x(K0) > 0, where a is a constant such that ax∗ > 1 and K0 ∈ N. Then

lim inf
k→+∞

x(k) ≥ 1
a
exp(ru(1 − ax∗)). (2.5)

For system (1.1), we will consider two cases, al
ii > 0, blii ≥ 0 and al

ii ≥ 0, blii > 0
respectively, and then we obtain Lemmas 2.4–2.6.

Lemma 2.4. Assume that al
ii > 0. Then for every positive solution (x1(k), . . . , xn(k)) of system (1.1)

with initial condition (1.2), one has

lim sup
k→+∞

xi(k) ≤ Mi, i = 1, 2, . . . , n, (2.6)
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where

Mi =

(
1

αiia
l
ii

)1/αii

exp
[
rui − 1

αii

]
, i = 1, 2, . . . , m,

Mi =

(
1

αiia
l
ii

)1/αii

exp

⎡
⎣−rli +

n∑
j=1

au
ijM

αij

j +
n∑
j=1

buijM
βij
j − 1

αii

⎤
⎦, i = m + 1, . . . , n.

(2.7)

Proof. Let x(k) = (x1(k), . . . , xn(k)) be any positive solution of system (1.1) with initial
condition (1.2), for i = 1, 2, . . . , m, it follows from system (1.1) that

xi(k + 1) ≤ xi(k) exp
[
ri(k) − aii(k)x

αii

i (k)
]
, (2.8)

thus

xαii

i (k + 1) ≤ xαii

i (k) exp
[
αii

(
ri(k) − aii(k)x

αii

i (k)
)]
. (2.9)

Let ui(k) = xαii

i (k), we can have

ui(k + 1) ≤ ui(k) exp[αii(ri(k) − aii(k)ui(k))]

≤ ui(k) exp

[
αiiri(k)

(
1 − al

ii

rui
ui(k)

)]
.

(2.10)

By applying Lemma 2.2 to (2.10), we obtain

lim sup
k→+∞

ui(k) ≤
(

1

αiia
l
ii

)
exp

[
αiir

u
i − 1

]
=̇Li; (2.11)

so, we immediately get

lim sup
k→+∞

xi(k) ≤ Mi, i = 1, 2, . . . , m. (2.12)

For any ε > 0 small enough, it follows from (2.12) that there exists enough large K1 such that
for all i = 1, 2, . . . , m and k ≥ K1

xi(k) ≤ Mi + ε. (2.13)
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For i = m + 1, . . . , n and k ≥ K1 + τ , (2.13) combining with the i-th equation of system (1.1)
leads to

xi(k + 1) ≤ xi(k) exp

⎡
⎣−ri(k) +

m∑
j=1

aij(k)
(
Mj + ε

)αij +
m∑
j=1

bij(k)
(
Mj + ε

)βij − aii(k)x
αii

i (k)

⎤
⎦,

(2.14)

thus

xαii

i (k + 1) ≤ xαii

i (k) exp

⎡
⎣αii

⎛
⎝−ri(k) +

m∑
j=1

aij(k)
(
Mj + ε

)αij

+
m∑
j=1

bij(k)
(
Mj + ε

)βij − aii(k)x
αii

i (k)

⎞
⎠
⎤
⎦.

(2.15)

Similarly, let ui(k) = xαii

i (k), we get

ui(k + 1) ≤ ui(k) exp

⎡
⎣αii

⎛
⎝−ri(k) +

m∑
j=1

aij(k)
(
Mj + ε

)αij

+
m∑
j=1

bij(k)
(
Mj + ε

)βij − aii(k)ui(k)

⎞
⎠
⎤
⎦

≤ ui(k) exp

⎡
⎣αii

⎛
⎝−ri(k) +

m∑
j=1

aij(k)
(
Mj + ε

)αij +
m∑
j=1

bij(k)
(
Mj + ε

)βij
⎞
⎠

×
⎛
⎝1 − al

ii

−rli +
∑m

j=1 a
u
ij

(
Mj + ε

)αij +
∑m

j=1 b
u
ij

(
Mj + ε

)βij ui(k)

⎞
⎠
⎤
⎦.

(2.16)

By using (2.16), for i = m + 1, . . . , n, according to Lemma 2.2, it follows that

lim sup
k→+∞

ui(k) ≤
(

1

αiia
l
ii

)
exp

⎡
⎣αii

⎛
⎝−rli +

n∑
j=1

au
ij

(
Mj + ε

)αij +
n∑
j=1

buij
(
Mj + ε

)βij
⎞
⎠ − 1

⎤
⎦;

(2.17)
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setting ε → 0 in above inequality, we have

lim sup
k→+∞

ui(k) ≤
(

1

αiia
l
ii

)
exp

⎡
⎣αii

⎛
⎝−rli +

n∑
j=1

au
ijM

αij

j +
n∑
j=1

buijM
βij
j

⎞
⎠ − 1

⎤
⎦=̇Li, (2.18)

then

lim sup
k→+∞

xi(k) ≤ Mi, i = m + 1, . . . , n. (2.19)

This completes the proof.

For convenience, we introduce the following notation.
For i = 1, 2, . . . , m

Ai =
au
ii

rli −
∑n

j=1,j /= i a
u
ijM

αij

j −∑n
j=1 b

u
ijM

βij
j

,

Ru
i = rui −

n∑
j=1,j /= i

al
ijM

αij

j −
n∑
j=1

blijM
βij
j .

(2.20)

For i = m + 1, . . . , n

Ai =
au
ii

−rui +
∑m

j=1 a
l
ijm

αij

j +
∑n

j=1 b
l
ijm

βij
j −∑n

j=m+1,j /= i a
u
ijM

αij

j −∑n
j=m+1 b

u
ijM

βij
j

,

Ru
i = −rli +

m∑
j=1

au
ijm

αij

j +
m∑
j=1

buijm
βij
j −

n∑
j=m+1,j /= i

al
ijM

αij

j −
n∑

j=m+1

blijM
βij
j .

(2.21)

Lemma 2.5. Assume that al
ii > 0 and

min
1≤i≤n

LiAi > 1, (2.22)

hold. Then for any positive solution (x1(k), . . . , xn(k)) of system (1.1) with initial condition (1.2),
one has

lim inf
k→+∞

xi(k) ≥ mi, (2.23)

where

mi =
(

1
Ai

)1/αii

exp
[
Ru

i (1 −AiLi)
]
, i = 1, 2, . . . , n. (2.24)
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Proof. Let x(k) = (x1(k), . . . , xn(k)) be any positive solution of system (1.1) with initial
condition (1.2). From Lemma 2.4, we know that there exists K2 > K1 + τ , such that for
i = 1, 2, . . . , n and k ≥ K2

xi(k) ≤ Mi + ε. (2.25)

For i = 1, . . . , m and k ≥ K2 + τ , (2.25) combining with the i-th equation of system (1.1) lead
to

xi(k + 1) ≥ xi(k) exp

⎡
⎣ri(k) −

n∑
j=1,j /= i

aij(k)
(
Mj + ε

)αij −
n∑
j=1

bij(k)
(
Mj + ε

)βij − aii(k)x
αii

i (k)

⎤
⎦,

(2.26)

thus

xαii

i (k + 1) ≥ xαii

i (k) exp

⎡
⎣αii

⎛
⎝ri(k) −

n∑
j=1,j /= i

aij(k)
(
Mj + ε

)αij

−
n∑
j=1

bij(k)
(
Mj + ε

)βij − aii(k)x
αii

i (k)

⎞
⎠
⎤
⎦;

(2.27)

let ui(k) = xαii

i (k), we can have

ui(k + 1) ≥ ui(k) exp

⎡
⎣αii

⎛
⎝ri(k) −

n∑
j=1,j /= i

aij(k)
(
Mj + ε

)αij

−
n∑
j=1

bij(k)
(
Mj + ε

)βij − aii(k)ui(k)

⎞
⎠
⎤
⎦

≥ ui(k) exp[αiiRiε(k)(1 −Aiεui(k))],

(2.28)

where

Riε(k) = ri(k) −
n∑

j=1,j /= i

aij(k)
(
Mj + ε

)αij −
n∑
j=1

bij(k)
(
Mj + ε

)βij ,

Aiε =
au
ii

rli −
∑n

j=1,j /= i a
u
ij

(
Mj + ε

)αij −∑n
j=1 b

u
ij

(
Mj + ε

)βij .
(2.29)
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According to Lemma 2.3, we obtain

lim inf
k→+∞

ui(k) ≥ 1
Aiε

exp
[
αiiR

u
iε(1 −AiεLi)

]
, (2.30)

where

Ru
iε = rui −

n∑
j=1,j /= i

al
ij

(
Mj + ε

)αij −
n∑
j=1

blij
(
Mj + ε

)βij . (2.31)

Setting ε → 0 in (2.30) leads to

lim inf
k→+∞

ui(k) ≥ 1
Ai

exp
[
αiiR

u
i (1 −AiLi)

]
, (2.32)

therefore

lim inf
k→+∞

xi(k) ≥ mi, i = 1, 2, . . . , m. (2.33)

For any ε > 0 small enough, it follows from (2.33) that there exists enough large K3 > K2 + τ
such that for all i = 1, . . . , m and k ≥ K3

xi(k) ≥ mi − ε, (2.34)

and so, for i = m + 1, . . . , n and k ≥ K3 + τ , it follows from system (1.1) that

xi(k + 1) ≥ xi(k) exp

⎡
⎣−ri(k) +

m∑
j=1

aij(k)
(
mj − ε

)αij +
m∑
j=1

bij(k)
(
mj − ε

)βij

−
n∑

j=m+1,j /= i

aij(k)
(
Mj + ε

)αij −
n∑

j=m+1

bij(k)
(
Mj + ε

)βij − aii(k)x
αii

i (k)

⎤
⎦

≥ xi(k) exp
[
Riε(k)

(
1 −Aiεx

αii

i (k)
)]
,

(2.35)
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where

Riε(k) = −ri(k) +
m∑
j=1

aij(k)
(
mj − ε

)αij +
m∑
j=1

bij(k)
(
mj − ε

)βij

−
n∑

j=m+1,j /= i

aij(k)
(
Mj + ε

)αij −
n∑

j=m+1

bij(k)
(
Mj + ε

)βij ,

Aiε = au
ii

/⎧
⎨
⎩−rui +

m∑
j=1

al
ij

(
mj − ε

)αij +
n∑
j=1

blij
(
mj − ε

)βij

−
n∑

j=m+1,j /= i

au
ij

(
Mj + ε

)αij −
n∑

j=m+1

buij
(
Mj + ε

)βij
⎫
⎬
⎭,

(2.36)

by using (2.35), similarly to the analysis of (2.33), for i = m + 1, . . . , n

lim inf
k→+∞

ui(k) ≥ 1
Ai

exp
[
αiiR

u
i (1 −AiLi)

]
, (2.37)

and therefore, we easily get

lim inf
k→+∞

xi(k) ≥ mi, i = m + 1, . . . , n. (2.38)

This ends the proof of Lemma 2.5.

Denote for i = 1, 2, . . . , m

Li =
1

βiib
l
ii

exp
[
βiir

u
i (τ + 1) − 1

]
;

Γi = rli −
n∑
j=1

au
ijM

αij

j −
n∑
j=1

buijM
βij
j ;

Ai =
buii exp

[−βiiΓiτ
]

rli −
∑n

j=1 a
u
ijM

αij

j −∑n
j=1,j /= i b

u
ijM

βij
j

;

R
u

i = rui −
n∑
j=1

al
ijM

αij

j −
n∑

j=1,j /= i

blijM
βij
j .

(2.39)
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For i = m + 1, . . . , n

Υi = −rli +
m∑
j=1

au
ijM

αij

j +
m∑
j=1

buijM
βij
j ;

Li =
1

βiib
l
ii

exp
[
βiiΥi(τ + 1) − 1

]
;

Γi = −rui +
m∑
j=1

al
ijm

αij

j +
m∑
j=1

blijm
βij
j −

n∑
j=m+1

au
ijM

αij

j −
n∑

j=m+1

buij
(
Mj + ε

)βij ;

Ai =
buii exp

[−βiiΓiτ
]

−rui +
∑m

j=1 a
l
ijm

αij

j +
∑n

j=1 b
l
ijm

βij
j −∑n

j=m+1 a
u
ijM

αij

j −∑n
j=m+1,j /= i b

u
ijm

βij
j

;

R
u

i = −rli +
m∑
j=1

au
ijm

αij

j +
n∑
j=1

buijm
βij
j −

n∑
j=m+1

al
ijM

αij

j −
n∑

j=m+1,j /= i

blijm
βij
j .

(2.40)

Lemma 2.6. Assume that blii > 0 and

(
H3

)
min
1≤i≤n

LiAi > 1, (2.41)

hold. Then for any positive solution (x1(k), . . . , xn(k)) of system (1.1) with initial condition (1.2),
one has

mi ≤ lim inf
k→+∞

xi(k) ≤ lim sup
k→+∞

xi(k) ≤ Mi, i = 1, 2, . . . , n. (2.42)

where

Mi = L
1/βii
i , mi =

(
1

Ai

)1/βii

exp
[
R

u

i

(
1 −AiLi

)]
. (2.43)

Proof. Let x(k) = (x1(k), . . . , xn(k)) be any positive solution of system (1.1) with initial
condition (1.2), for i = 1, 2, . . . , m, it follows from system (1.1) that

xi(k + 1) ≤ xi(k) exp[ri(k)] ≤ xi(k) exp
[
rui
]
, (2.44)

xi(k + 1) ≤ xi(k) exp
[
ri(k) − bii(k)x

βii
i (k − τii(k))

]
, (2.45)

It follows from (2.44)that

k−1∏
j=k−τii(k)

xi

(
j + 1

)

xi

(
j
) ≤

k−1∏
j=k−τii(k)

exp
[
rui
] ≤ exp

[
rui τ

]
, (2.46)
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and hence

xi(k − τii(k)) ≥ xi(k) exp
[−rui τ

]
, (2.47)

which, together with (2.45), produces

xi(k + 1) ≤ xi(k) exp
[
ri(k) − bii(k) exp

[−βiirui τ
]
x
βii
i (k)

]

≤ xi(k) exp

[
ri(k)

(
1 − blii exp

[−βiirui τ
]

rui
x
βii
i (k)

)]
,

(2.48)

similar to the analysis of (2.11) and (2.12), for i = 1, 2, . . . , m

lim sup
k→+∞

ui(k) ≤ Li, (2.49)

and thus, we immediately get

lim sup
k→+∞

xi(k) ≤ Mi, i = 1, 2, . . . , m. (2.50)

For any ε > 0 small enough, it follows from (2.50) that there exists enough largeK1 such that
for all i = 1, 2, . . . , m and k ≥ K1

xi(k) ≤ Mi + ε. (2.51)

For i = m + 1, . . . , n and k ≥ K1 + τ , (2.51) combining with the i-th equation of system (1.1)
lead to

xi(k + 1) ≤ xi(k) exp

⎡
⎣−rli +

m∑
j=1

au
ij

(
Mj + ε

)αij +
m∑
j=1

buij
(
Mj + ε

)βij
⎤
⎦

= xi(k) exp[Υiε],

(2.52)

xi(k + 1) ≤ xi(k) exp

⎡
⎣−ri(k) +

m∑
j=1

aij(k)
(
Mj + ε

)αij

+
m∑
j=1

bij(k)
(
Mj + ε

)βij − bii(k)x
βii
i (k − τii(k))

⎤
⎦,

(2.53)

from (2.53), similar to the argument of (2.44) and (2.47), for k ≥ K1 + τ, we have

xi(k − τii(k)) ≥ xi(k) exp[−Υiετ], (2.54)
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substituting (2.54) into (2.53), we get

xi(k + 1) ≤ xi(k) exp

⎡
⎣−ri(k) +

m∑
j=1

aij(k)
(
Mj + ε

)αij

+
m∑
j=1

bij(k)
(
Mj + ε

)βij − bii(k) exp
[−βiiΥiετ

]
x
βii
i (k)

⎤
⎦,

(2.55)

similar to the analysis of (2.18) and (2.19), for i = m + 1, . . . , n

lim sup
k→+∞

ui(k) ≤ Li, (2.56)

then,

lim sup
k→+∞

xi(k) ≤ Mi, i = m + 1, . . . , n. (2.57)

For any ε > 0 small enough, it follows from (2.51) and (2.57) that there exists enough
large K2 > K1 + τ such that for all i = 1, 2, . . . , n and k ≥ K2

xi(k) ≤ Mi + ε. (2.58)

Hence, for i = 1, 2, . . . , m, and k ≥ K2 + τ , it follows from system (1.1) that

xi(k + 1) ≥ xi(k) exp

⎡
⎣rli −

n∑
j=1

au
ij

(
Mj + ε

)αij −
n∑
j=1

buij
(
Mj + ε

)βij
⎤
⎦

= xi(k) exp[Γiε],

(2.59)

xi(k + 1) ≥ xi(k) exp

⎡
⎣ri(k) −

n∑
j=1

aij(k)
(
Mj + ε

)αij

−
n∑

j=1,j /= i

bij(k)
(
Mj + ε

)βij − bii(k)x
βii
i (k − τii(k))

⎤
⎦,

(2.60)

from(2.59), similar to the argument of (2.44) and (2.47), for k ≥ K2 + τ, we have

xi(k − τii(k)) ≤ xi(k) exp[−Γiετ], (2.61)
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and this combined with (2.60) gives

xi(k + 1) ≥ xi(k) exp

⎡
⎣ri(k) −

n∑
j=1

aij(k)
(
Mj + ε

)αij

−
n∑

j=1,j /= i

bij(k)
(
Mj + ε

)βij − bii(k) exp
[−βiiΓiετ

]
x
βii
i (k)

⎤
⎦.

(2.62)

Similar to the argument of (2.32) and (2.33), for k ≥ K2 + τ, we obtain

lim inf
k→+∞

ui(k) ≥ 1

Ai

exp
[
βiiR

u

i

(
1 −AiLi

)]
, (2.63)

then

lim inf
k→+∞

xi(k) ≥ mi, i = 1, 2, . . . , m. (2.64)

For any ε > 0 small enough, it follows from (2.63) that there exists enough large K3 > K2 + τ

such that for all i = 1, . . . , m and k ≥ K3

xi(k) ≥ mi − ε, (2.65)

and so, for i = m + 1, . . . , n and k ≥ K3 + τ , it follows from system (1.1) that

xi(k + 1) ≥ xi(k) exp

⎡
⎣−rui +

m∑
j=1

al
ij

(
mj − ε

)αij +
m∑
j=1

blij
(
mj − ε

)βij

−
n∑

j=m+1

au
ij

(
Mj + ε

)αij −
n∑

j=m+1

buij
(
Mj + ε

)βij
⎤
⎦ = xi(k) exp[Γiε],

xi(k + 1) ≥ xi(k) exp

⎡
⎣−ri(k) +

m∑
j=1

aij(k)
(
mj − ε

)αij +
m∑
j=1

bij(k)
(
mj − ε

)βij −
n∑

j=m+1

aij(k)
(
Mj + ε

)αij

−
n∑

j=m+1,j /= i

bij(k)
(
Mj + ε

)βij − bii(k)x
βii
i (k − τii(k))

⎤
⎦.

(2.66)

Similar to the argument of (2.61) and (2.62), for k ≥ K3 + τ, we have

lim inf
k→+∞

ui(k) ≥ 1

Ai

exp
[
βiiR

u

i

(
1 −AiLi

)]
, (2.67)
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then

lim inf
k→+∞

xi(k) ≥ mi, i = m + 1, . . . , n. (2.68)

This ends the proof of Lemma 2.6.

Denote (H3)

al
ii > 0, min

1≤i≤n
LiAi > 1, (2.69)

or

blii > 0, min
1≤i≤n

LiAi > 1, (2.70)

Ourmain result in this paper is the following theorem about the permanence of system
(1.1).

Theorem 2.7. Assume that (H1), (H2), and (H3) hold, then system (1.1) is permanent.

Proof. Let x(k) = (x1(k), . . . , xn(k)) be any positive solution of system (1.1) with initial
condition (1.2). Suppose M = maxi=1,...,n{Mi,Mi}, m = mini=1,...,n{mi,mi}. By Lemmas 2.4–
2.6, if system (1.1) satisfies (H1), (H2), and (H3), then we have

m ≤ lim inf
k→+∞

xi(k) ≤ lim sup
k→+∞

xi(k) ≤ M, i = 1, 2, . . . , n. (2.71)

The proof is completed.

In this paper, we study a discrete nonlinear predator-prey system with m-preys and
(n-m)-predators and delays, which can be seen as the modification of the traditional Lotka-
Volterra prey-competition model. From our main results, Theorem 2.7 gives two sets of
sufficient conditions on the permanence of the system (1.1). One set is delay independent,
while the other set is delay dependent.
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