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This paper studies the dynamic behavior of the positive solutions to the difference equation xn =
A + x

p

n−k/x
r
n−1, n = 1, 2, . . ., where A, p, and r are positive real numbers, and the initial conditions

are arbitrary positive numbers. We establish some results regarding the stability and oscillation
character of this equation for p ∈ (0, 1).
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1. Introduction

In recent years, there has been intense interest in the dynamic behavior of the positive
solutions to a class of difference equations of the form

xn = A +
x
p

n−k
x
p

n−1
, n ∈ N, (1.1)

whereA and p are positive real numbers. Now, let us make a brief review on the advances in
this class of difference equations.

In 1999, Amleh et al. [1] studied the second-order rational difference equation

xn = A +
xn−2
xn−1

, n ∈ N. (1.2)

Later, Berenhaut and Stević [2], Stević [3], and El-Owaidy et al. [4] extended this work
to the following more general second-order difference equation:

xn = A +
x
p

n−2
x
p

n−1
, n ∈ N. (1.3)
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On the other hand, DeVault et al. [5] investigated the following higher-order version
of (1.2):

xn = A +
xn−k
xn−1

, n ∈ N. (1.4)

By combining (1.3) and (1.4), Berenhaut and Stević [6] examined a larger class of
difference equations, which are of the form

xn = A +
x
p

n−k
x
p

n−1
, n ∈ N. (1.5)

Very recently, Berenhaut et al. [7] studied the following generalization of (1.5):

xn = A +
x
p

n−k
x
p
n−m

, n ∈ N. (1.6)

For some related work, the interested reader is referred to [1, 3, 8–19].
Inspired by the previous work and by the work owing to Stević [15], this paper studies

the behavior of the recursive equation

xn = A +
x
p

n−k
xr
n−1

, n ∈ N. (1.7)

We establish some interesting results regarding the stability and oscillation character of this
equation for p ∈ (0, 1).

2. Stability Character

In this section we investigate the stability character of the positive solutions to (1.7).
A point x ∈ R is an equilibrium point of (1.7) if and only if it is a root for the function

g(x) = x − xp−r −A, (2.1)

that is,

x = xp−r +A. (2.2)

Lemma 2.1. Let 0 < p < r + 1, then (1.7) has a unique equilibrium point x > 1.

Proof

Case 1. p = r. Then x = A + 1 > 1.
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Case 2. r < p < r+1. Then g defined by (2.1) is decreasing on [0, (p − r)1/(r−p+1)] and increasing
on [(p − r)1/(r−p+1),∞). Since g(1) = −A and limx→∞ g(x) = ∞, then g has a unique zero x > 1.
Case 3. 0 < p < r. Since g is increasing on [0,∞), g(1) = −A and limx→∞ g(x) = ∞, then g has
a unique zero x > 1.

Lemma 2.2. Let 0 < p < r + 1. Assume that x is the equilibrium point of (1.7). If
(p + r)(p−r)/(r+1−p)(p + r − 1) < A, then x is locally asymptotically stable.

Proof. By the Linearized Stability Theorem [11], x is locally asymptotically stable if and only
if xr+1−p > p + r. A simple calculations shows that

g
(
(p + r)1/(r+1−p)

)
= (p + r)(p−r)/(r+1−p)

(
p + r − 1

) −A < 0, (2.3)

where g is defined by (2.1). Then since limx→∞ g(x) = ∞, we have x > (p + r)1/(r+1−p) and
xr+1−p > p + r. The proof is complete.

Lemma 2.3. If p ∈ (0, 1), then every positive solution to (1.7) is bounded.

Proof. Note that each n ∈ N can bewritten in the form lk+i for some l ∈ N0 and i ∈ {0, 1, . . . , k−
1}. From (1.7) and since xn > A for every n ≥ 0, we have that

xlk+i = A +
x
p

(l−1)k+i
xr
lk+i−1

< A +
x
p

(l−1)k+i
Ar

, (2.4)

for every l ∈ N0 and i ∈ {0, 1, . . . , k−1}. Let (u(i)
l
)l∈N0

be the solution to the difference equation

u
(i)
l

= A +

(
u
(i)
l−1

)p

Ar
, u

(i)
0 = x−k+i. (2.5)

From (2.4) and by induction we see that x(l−1)k+i ≤ u
(i)
l
, l ∈ N0. Hence it is enough to

prove that the sequences (u(i)
l
)l≥0, i ∈ {0, 1, . . . , k − 1} are bounded.

Since the function f(x) = A+xp/Ar, x ∈ (0,∞) is increasing and concave for p ∈ (0, 1),
it follows that there is a unique fixed point x of the equation f(x) = x and that the function f
satisfies

(
f(x) − x

)
(x − x) < 0, x ∈ (0,∞). (2.6)

Using this fact it is easy to see that if u(i)
l

∈ (0, x], the sequence is nondecreasing and
bounded from above by x, and if u(i)

l ≥ x, it is nonincreasing and bounded from below by x.
Hence for every u

(i)
0 ∈ (0,∞), each of the sequences u(i)

l , i ∈ {0, 1, . . . , k − 1} is bounded. The
claimed result follows.
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Lemma 2.4 (see [18]). Let s, t be distinct nonnegative integers. Consider the difference equation

xn = f(xn−s, xn−t), n = 1, 2, 3, . . . ,

x1−max(s,t), x2−max(s,t), . . . , x0 ∈ [a, b].
(2.7)

Suppose f satisfies the following conditions.

(H1) f : [a, b]2 → [a, b] is a continuous function that is nondecreasing in the first argument
and is nonincreasing in the second argument.

(H2) The system

x = f
(
x, y

)
,

y = f
(
y, x

) (2.8)

has a unique solution (x, x) ∈ [a, b] × [a, b].

Then x is the global attractor of all solutions to (2.7).

Theorem 2.5. Let p + r ≤ 1, then the unique equilibrium x to (1.7) is globally asymptotically stable.

Proof. By Lemma 2.3, there must exist positive constants P and Q such that P ≤ xn ≤ Q. Let
f(u, v) = A + up/vr, u, v ∈ [P,Q], it is easy to verify that (H1) holds. In addition, if

x = A +
xp

yr
,

y = A +
yp

xr
,

(2.9)

then

x −A

y −A
=

xp+r

yp+r . (2.10)

Assume that x /=y, then x > y or x < y.
In case x > y, we have (x − A)/(y − A) > x/y ≥ xp+r/yp+r , which contradicts with

(2.10).
In case x < y, we have (x −A)/(y −A) < x/y ≤ xp+r/yp+r , again a contradiction.
Thus x = y = x. By Lemma 2.4, the required result follows.

Theorem 2.6. Let 0 < p ≤ r < 1 and Ar−p+1 ≥ p/r. Then every positive solution to (1.7) converges
to the unique equilibrium x.
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Proof. By Lemma 2.3, every positive solution {xn} to (1.7) is bounded, which implies that
there are finite lim inf xn = I and lim supxn = S. Assume that I /=S (I < S). Taking the lim inf
and lim sup in (1.7), it follows that

A +
Ip

Sr
≤ I < S ≤ A +

Sp

Ir
. (2.11)

From this and r ∈ (0, 1), it follows that

ASr + Ip ≤ ISr < SIr ≤ AIr + Sp, (2.12)

yielding

ASr − Sp < AIr − Ip. (2.13)

Define function f(x) = Axr − xp, x ∈ (A,∞). Since

f ′(x) = Arxr−1 − pxp−1 = xp−1(Arxr−p − p
)
> xp−1

(
rAr−p+1 − p

)
≥ 0, (2.14)

we deduce that f is increasing, and thus (2.13) cannot hold. Therefore we have I = S, which
implies the result.

Theorem 2.7. Let 0 < p < 1, r ≥ 1, and Ar−p+1 ≥ r + p − 1. Then every positive solution to (1.7)
converges to the unique equilibrium x.

Proof. From (2.11) we have

AIr−1Sr + Ip+r−1 ≤ IrSr ≤ AIrSr−1 + Sp+r−1. (2.15)

Consequently, we obtain (AIr−1Sr−1)(S − I) ≤ (Sr+p−1 − Ir+p−1). Suppose that I /=S, we get

AIr−1Sr−1 ≤ Sr+p−1 − Ir+p−1

S − I
=
(
r + p − 1

)
γp+r−2, (2.16)

where γ ∈ (I, S), leading to

ArSr−1 ≤ AIr−1Sr−1 ≤ (
r + p − 1

)
γp+r−2 <

(
r + p − 1

)
Ap−1Sr−1. (2.17)

This implies that Ar−p+1 < r + p − 1, which is a contradiction. Hence, I = S = x.
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3. Oscillation Character

In this section we investigate the oscillation character of the positive solutions to (1.7).

Theorem 3.1. Let {xn}∞n=−k be a positive solution to (1.7). Then either {xn}∞n=−k consists of a single
semicycle or {xn}∞n=−k oscillates about the equilibrium x with semicycles having at most k − 1 terms.

Proof. Suppose that {xn}∞n=−k has at least two semicycles. Then there exists N ≥ −k such that
either xN < x ≤ xN+1 or xN+1 < x ≤ xN . Assume that xN < x ≤ xN+1. (The argument for
the case xN+1 < x ≤ xN is similar and is omitted). Now suppose that the positive semicycle
beginning with the term xN+1 has k − 1 terms. Then xN < x ≤ xN+k−1 and so

xN+k = A +
x
p

N

xr
N+k−1

< A +
xp

xr = A + xp−r = x. (3.1)

This completes the proof.

Theorem 3.2. Suppose that k is even and let {xn}∞n=−k be a solution to (1.7), which has k − 1
consecutive semicycles of length one, then every semicycle after this point is of length one.

Proof. There exists N ≥ −k such that either

xN, xN+2, . . . , xN+k−2 < x ≤ xN+1, xN+3, . . . , xN+k−1 (3.2)

or

xN+1, xN+3, . . . , xN+k−1 < x ≤ xN, xN+2, . . . , xN+k−2. (3.3)

We prove the former case. The proof for the latter is similar and is omitted. Now, we have

xN+k = A +
x
p

N

xr
N+k−1

< A +
xp

xr = A + xp−r = x,

xN+k+1 = A +
x
p

N+1

xr
N+k

> A +
xp

xr = A + xp−r = x.

(3.4)

The result then follows by induction.

Lemma 3.3. Let 0 < p < r + 1. Then (1.7) has no nontrivial periodic solutions of (not necessarily
prime) period k − 1.

Proof. Suppose that {xn}∞n=−k is a positive solution to (1.7) satisfying xn−1 = xn−k for all n ≥ 1,
then xn = A + x

p

n−k/x
r
n−1 = A + x

p−r
n−1 implies that xn−1 = xn = x for all n > −k. The proof is

complete.

Theorem 3.4. Assume that p ≤ r. Let {xn}∞n=−k be a positive solution to (1.7), which consists of a
single semicycle, then {xn}∞n=−k converges to the equilibrium x.
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Proof. Suppose xn ≥ x (the case for xn ≤ x is similar and is omitted) for all n ≥ −k, then

xn+1 = A +
x
p

n−(k−1)
xr
n

≥ x = A + xp−r , (3.5)

implying that

xn−(k−1) ≥ x(p−r)/pxr/p
n ≥ x

(p−r)/p
n x

r/p
n = xn, (3.6)

and so

xn−(k−1) ≥ xn ≥ x for n = 1, 2, . . . . (3.7)

From here it is clear that for i = 0, . . . , k − 2 there exists αi such that

lim
n→∞

xn(k−1)+i = αi. (3.8)

But then α0, α1, . . . , αk−2 is a periodic solution of (not necessarily prime) period k − 1. By
Lemma 3.3 the result holds.
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[11] V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with
Applications, vol. 256 ofMathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1993.

[12] M. Saleh and M. Aloqeili, “On the rational difference equation yn+1 = A + yn/yn−k ,” Applied
Mathematics and Computation, vol. 177, no. 1, pp. 189–193, 2006.
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