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Our aim is to investigate the global behavior of the following fourth-order rational difference
equation: xn+1 = (xnxn−2xn−3 + xn + xn−2 + xn−3 + a)/(xnxn−2 + xnxn−3 + xn−2xn−3 + 1 + a),
n = 0, 1, 2, . . . where a ∈ [0,∞) and the initial values x−3, x−2, x−1, x0 ∈ (0,∞). To verify that
the positive equilibrium point of the equation is globally asymptotically stable, we used the
rule of the successive lengths of positive and negative semicycles of nontrivial solutions of the
aforementioned equation.
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1. Introduction

There has been a great interest in studying global behaviors of rational difference equations.
One can easily see that it is hard to understand thoroughly the global behaviors of solutions
of rational difference equations although they have simple forms. And there has not been
any general method to identify the global behaviors of rational difference equations of order
greater than one and so far [1–3].

Let us consider the following fourth-order difference equation:

xn+1 =
xnxn−2xn−3 + xn + xn−2 + xn−3 + a

xnxn−2 + xnxn−3 + xn−2xn−3 + 1 + a
, n = 0, 1, 2, . . . , (1.1)

where a ∈ [0,∞) and the initial values x−3, x−2, x−1, x0 ∈ (0,∞) in this paper. By determining
the rule for the positive and negative semicycles, we assigned the global behavior of the
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positive equilibrium point. The unique positive equilibrium point x of (1.1) is obtained x = 1
by solving

x =
x3 + 3x + a

3x2 + 1 + a
. (1.2)

Definition 1.1. A solution {xn}∞n=−3 of (1.1) is said to be eventually trivial if xn is eventually
equal to x = 1; otherwise, the solution is said to be nontrivial [4–6].

Definition 1.2. A solution {xn}∞n=−3 of (1.1) is said to be eventually positive if xn is eventually
greater than x = 1.

A solution {xn}∞n=−3 of (1.1) is said to be eventually negative if xn is eventually less than
x = 1 [1, 2, 4–6].

Definition 1.3. A positive semicycle of a solution {xn}∞n=−3 of (1.1) consists of a “string” of terms
{xl, xl+1, . . . , xm}, all greater than or equal to the equilibrium point x, with l ≥ −3 and m < ∞
such that

either l = −3 or l > −3, xl−1 < x,

either m = ∞ or m < ∞, xm+1 < x.
(1.3)

A negative semicycle of a solution {xn}∞n=−3 of (1.1) consists of a “string” of terms
{xl, xl+1, . . . , xm}, all greater than or equal to the equilibrium point x, with l ≥ −3 and m < ∞
such that

either l = −3 or l > −3, xl−1 ≥ x,

either m = ∞ or m < ∞, xm+1 ≥ x.
(1.4)

And also the lengths of a semicycle is (m − l + 1), the number of the terms contained in it. And
we denote that the lengths of a positive semicycle are by (m − l + 1)+ and the lengths of a
negative semicycle are by (m − l + 1)− [1, 2, 4–6].

Definition 1.4. A solution {xn}∞n=−3 of (1.1) is called nonoscillatory about x, or simply
nonoscillatory, if there exists N ≥ −3 such that either

xn ≥ x, ∀n ≥ N (1.5)

or

xn < x, ∀n ≥ N. (1.6)

Otherwise, the solution {xn}∞n=−3 is called oscillatory about x, or simply oscillatory [1, 2].

Lemma 1.5. A positive solution {xn}∞n=−3 of (1.1) is eventually trivial if and only if

(x−3 − 1)(x−2 − 1)(x−1 − 1)(x0 − 1) = 0. (1.7)
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Proof. To prove the lemma, first we assume that (x−3 − 1)(x−2 − 1)(x−1 − 1)(x0 − 1)/= 0 and then
we must show that xn /= 1 for any n ≥ 1.

Assume that for some N ≥ 1, xN = 1 and that xn /= 1 for −3 ≤ n ≤ N − 1. So

xN =
xN−1xN−3xN−4 + xN−1 + xN−3 + xN−4 + a

xN−1xN−3 + xN−1xN−4 + xN−3xN−4 + 1 + a
= 1, (1.8)

and we obtain (xN−4 − 1)(xN−3 − 1)(xN−1 − 1) = 0; hence xN−4 = 1, xN−3 = 1, xN−1 = 1, when
we solve the equation above. It is easy to see that xN−4 = 1, xN−3 = 1, or xN−1 = 1 contradicts
with xn /= 1 for −3 ≤ n ≤ N − 1.

If (1.7) holds, it is clear that the following conclusions hold:

(i) if x−3 = 1, xn = 1 for n ≥ 1,

(ii) if x−2 = 1, xn = 1 for n ≥ 1,

(iii) if x−1 = 1, xn = 1 for n ≥ 2,

(iv) if x0 = 1, xn = 1 for n ≥ 1.

It is obvious that if the initial conditions do not satisfy (1.7), then the positive solution
{xn}∞n=−3 of (1.1) is eventually nontrivial.

Lemma 1.6. If {xn}∞n=−3 is a nontrivial positive solution of (1.1), then the following conclusions are
satisfied:

(i) (xn+1 − 1)(xn − 1)(xn−2 − 1)(xn−3 − 1) > 0,

(ii) (xn+1 − xn)(xn − 1) < 0,

(iii) (xn+1 − xn−2)(xn−2 − 1) < 0,

(iv) (xn+1 − xn−3)(xn−3 − 1) < 0.

Proof. (i) The proof of the inequality (i) is obtained by subtracting 1 from (1.1)

xn+1 − 1 =
xnxn−2xn−3 + xn + xn−2 + xn−3 + a

xnxn−2 + xnxn−3 + xn−2xn−3 + 1 + a
− 1

=
(xn − 1)(xn−2 − 1)(xn−3 − 1)

xnxn−2 + xnxn−3 + xn−2xn−3 + 1 + a
.

(1.9)

The dominator of this fraction is positive so (xn+1 − 1)(xn − 1)(xn−2 − 1)(xn−3 − 1) > 0 also.
(ii) If we subtract xn from (1.1), we obtain

xn+1 − xn =
xnxn−2xn−3 + xn + xn−2 + xn−3 + a

xnxn−2 + xnxn−3 + xn−2xn−3 + 1 + a
− xn

= − (xn − 1)[xn−2(xn + 1) + xn−3(xn + 1) + a]
xnxn−2 + xnxn−3 + xn−2xn−3 + 1 + a

.

(1.10)
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The expression [xn−2(xn + 1) +xn−3(xn + 1) +a]/(xnxn−2 +xnxn−3 +xn−2xn−3 + 1+a) is positive,
and so we get

(xn+1 − xn)(xn − 1) < 0. (1.11)

The proofs for inequalities (iii) and (iv) are similar to the one for (ii).

2. Main Results and Their Proofs

The trajectory of (1.1) and global asymptotic stability of the positive solution are considered
in this part of the paper.

Theorem 2.1. Let {xn}∞n=−3 be a strictly oscillatory solution of (1.1). Then the positive and negative
semicycles of (1.1) are . . . , 3+, 3−, 3+, 3−, 3+, 3−, 3+, 3−, . . . or . . . , 2+, 1−, 2+, 1−, 2+, 1−, 2+, 1−, . . . or
. . . , 2−, 1+, 2−, 1+, 2−, 1+, 2−, 1+, . . . or . . . , 1+, 1−, 1+, 1−, 1+, 1−, 1+, 1−, . . . .

Proof. Assume that {xn}∞n=−3 is a strictly oscillatory solution of (1.1), then the initial values
must satisfy one of the following four cases:

(i) xp−3 > 1, xp−2 < 1, xp−1 > 1, xp > 1,

(ii) xp−3 > 1, xp−2 < 1, xp−1 > 1, xp < 1,

(iii) xp−3 > 1, xp−2 < 1, xp−1 < 1, xp > 1,

(iv) xp−3 > 1, xp−2 < 1, xp−1 < 1, xp < 1.

If (i) occurs, it follows from Lemma 1.6(i) that

xp−3 > 1, xp−2 < 1, xp−1 > 1, xp > 1, xp+1 < 1, xp+2 > 1, xp+3 > 1,

xp+4 < 1, xp+5 > 1, xp+6 > 1, xp+7 < 1, xp+8 > 1, xp+9 > 1,

xp+10 < 1, xp+11 > 1, xp+12 > 1, xp+13 < 1, xp+14 > 1, xp+15 > 1,

xp+16 < 1, xp+17 > 1, xp+18 > 1, xp+19 < 1, xp+20 > 1, xp+21 > 1, . . . .

(2.1)

It means that the rule for the lengths of positive and negative semicycles of the solution of
(1.1) occurs successively as . . . , 2+, 1−, 2+, 1−, 2+, 1−, 2+, 1−, . . . .

If (ii) happens, the positive and negative semicycles are

xp−3 > 1, xp−2 < 1, xp−1 > 1, xp < 1, xp+1 > 1, xp+2 < 1, xp+3 > 1, xp+4 < 1,

xp+5 > 1, xp+6 < 1, xp+7 > 1, xp+8 < 1, xp+9 > 1, xp+10 < 1, xp+11 > 1,

xp+12 < 1, xp+13 > 1, xp+14 < 1, xp+15 > 1, xp+16 < 1, xp+17 > 1,

xp+18 < 1, xp+19 > 1, xp+20 < 1, xp+21 > 1, xp+22 < 1, xp+23 > 1, . . . .
(2.2)

The regulation for the lengths of positive and negative semicycles which occur successively
is . . . , 1+, 1−, 1+, 1−, 1+, 1−, 1+, 1−, . . . .

The other cases can be shown similarly.
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Theorem 2.2. The positive equilibrium point of (1.1) is globally asymptotically stable.

Proof. Let us show that the positive equilibrium point x = 1 of (1.1) is locally asymptotically
stable and also globally attractive, then it is globally asymptotically stable. The linearized
equation of (1.1) about the positive equilibrium x = 1 is

yn+1 = q0yn + q1yn−1 + q2yn−2 + q3yn−3, (2.3)

where qi = (∂F/∂ui)(x, x, x, x) and F(u0, u1, u2, u3) = (u0u2u3 +u0 +u2 +u3 +a)/(u0u2 +u0u3 +
u2u3 + 1 + a).

And we obtain

yn+1 = q0yn + q1yn−1 + q2yn−2 + q3yn−3 = 0 · yn + 0 · yn−1 + 0 · yn−2 + 0 · yn−3 = 0, (2.4)

thereby x = 1 is locally asymptotically stable.
Now we must show that limn→∞xn = x = 1. The proof is as follows.

(1) If initial values of (1.1) satisfy (1.7), then xn = 1 according to Lemma 1.5, so
limn→∞xn = x = 1.

(2) If the initial values of (1.1) do not satisfy (1.7), then for any solution of (1.1), xn /= 1
for n ≥ −3.

(i) If the solution is nonoscillatory about the positive equilibrium point of (1.1),
then {xn} is monotonic and bounded because of Lemma 1.6. So, the limit

lim
n→∞

xn = L (2.5)

exists and is finite. If we take limits on both sides of (1.1), then we obtain
L = (L3 + 3L + a)/(3L2 + 1 + a) and thereby L = 1. So limn→∞xn = L = 1.

(ii) If the solution is strictly oscillatory, then trajectory structure of non-
trivial solutions of (1.1) is . . . , 3+, 3−, 3+, 3−, 3+, 3−, 3+, 3−, . . . or
. . . , 2+, 1−, 2+, 1−, 2+, 1−, 2+, 1−, . . . or . . . , 2−, 1+, 2−, 1+, 2−, 1+, 2−, 1+, . . . or
. . . , 1+, 1−, 1+, 1−, 1+, 1−, 1+, 1−, . . . .

First, we investigate the case where the rule of the trajectory structure is
. . . , 3+, 3−, 3+, 3−, 3+, 3−, 3+, 3−, . . . in a period.We denote positive semicycles by {xp, xp+1, xp+2}+
and negative semicycles by {xp+3, xp+4, xp+5}−. The rule for the positive and negative
semicycles can be “periodically” expressed as follows:

{
xp+6n, xp+6n+1, xp+6n+2

}+
,

{
xp+6n+3, xp+6n+4, xp+6n+5

}−
, n = 0, 1, . . . . (2.6)

By using Lemma 1.6 we obtain

(i) xp+6n+2 < xp+6n+1 < xp+6n; xp+6n+3 < xp+6n+4 < xp+6n+5,

(ii) xp+6n+6 < xp+6n+2; xp+6n+9 > xp+6n+5.
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This relations give rise to

xp+6n+6 < xp+6n+2 < xp+6n+1 < xp+6n, xp+6n+3 < xp+6n+4 < xp+6n+5 < xp+6n+9. (2.7)

It is easy to see that {xp+6n}∞n=0 is decreasing with its lower bound 1 because of the inequality
xp+6n+6 < xp+6n+2 < xp+6n+1 < xp+6n. Hence the limit exists and is finite. The limit is then

lim
n→∞

xp+6n = lim
n→∞

xp+6n+1 = lim
n→∞

xp+6n+2 = L. (2.8)

Similarly {xp+6n+3}∞n=0 is increasing and its upper bound 1 because of the inequality xp+6n+3 <
xp+6n+4 < xp+6n+5 < xp+6n+9. So, the limit limn→∞xp+6n+3 = M exists and is finite. Andwe derive
limn→∞xp+6n+4 = limn→∞xp+6n+5 = M.

Now, we must show that L = M = 1. To do this, let us take

xp+6n+6 =
xp+6n+5xp+6n+3xp+6n+2 + xp+6n+5 + xp+6n+3 + xp+6n+2 + a

xp+6n+5xp+6n+3 + xp+6n+5xp+6n+2 + xp+6n+3xp+6n+2 + 1 + a
, (2.9)

and taking the limit on both sides of the above equality, we obtain

L =
M ·M · L +M +M + L + a

M ·M +M · L +M · L + 1 + a
. (2.10)

By solving this equation we have

(L − 1)[2M(L + 1) + a] = 0, (2.11)

and then L = 1. Similarly to obtain M by using 1 ≤ xp+6n+2 < xp+6n+1 we are taking

xp+6n+5 =
xp+6n+4xp+6n+2xp+6n+1 + xp+6n+4 + xp+6n+2 + xp+6n+1 + a

xp+6n+4xp+6n+2 + xp+6n+4xp+6n+1 + xp+6n+2xp+6n+1 + 1 + a
. (2.12)

And taking the limit on both sides of the above equality we get

M =
M · L · L +M + L + L + a

M · L +M · L + L · L + 1 + a
. (2.13)

By solving this equation we have (M − 1)[2L(M + 1) + a] = 0 and M = 1. Hence, we derive
L = M = 1, so

lim
n→∞

xn = 1. (2.14)

It can be shown that limn→∞xn = 1 for the other rules of the trajectory structures with the
same manner. Therefore, the positive equilibrium point is globally asymptotically stable.
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[2] M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open
Problems and Conjectures, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2002.
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