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The proposed ARCH and its extension model have brought a powerful tool for the study of stock
market volatility as well as verify that a “high risk brings high-yield” and the “leverage effect” of
stock market. This paper gives modeling analysis by using the ARCH group models; in the last ten
years Shanghai’s index returns, concluded that there are significant “high-yield associated with
high-risk” phenomenon and the “leverage effect” in the domestic securities market. The previous
studies in fitting return series of ARMA models, mostly with low accuracy have a very subjective
“observation autocorrelation and partial autocorrelation function method,” and even directly use
“random walk” model. That will inevitably have some impact on the accuracy of the model. While
this paper adopts the Pandit-Wu formulaic modeling method, the ARMA model is built on a strong
theoretical foundation.

Copyright q 2009 Hao Liu et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. ARCH Model and Its Extended Forms

Autoregressive conditional Heteroscedasticity Mode1 was raised by Engle in 1982 [1].
The model sets up yield obedience to the conditional expectation of the error term to
be zero. The conditional variance obedience to the numbers of previous period yields
square error function of the conditions of normal distribution. Its nature coincides with
characteristics such as volatility clustering and heteroscedasticity of financial market.
Bollerslev (1986) extended ARCH models, introduced an infinite period of entry error
term in the variance explained, and got the generalized ARCH model (GARCH) [2];
Engle, Lilien, and Robbins explained the expected return in the introduction of ARCH
models residual variance items in 1987 [3] and obtained ARCH-M model. Black (1976) [4]
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discovered that the volatility of the leverage effect first, that is, the unanticipated
price decreases (bad news) and the unexpected price increases (good news) on the
impact of the extent of fluctuations is nonsymmetrical. In response to this phenomenon,
Glosten et al. (1993) [5], Zakoian (1990) [6], and Nelson (1991) [7] revised the tradi-
tional ARCH model proposed two nonsymmetrical models: TARCH and the EGARCH
[8].

ARCH

The research process of ARCH model considers of σ2
t to be the residual variance εt of the

regression equation that meets σ2
t = ω + α1ε

2
t−1. It consists of two parts: a constant and

the former moment of residuals squared. Usually ε2
t−1 is called ARCH item. In general, the

variance can be dependent on any number of lagged error term, that is, σ2
t = α0 +α1ε

2
t−1 + · · ·+

αpε
2
t−p, recorded as ARCH (p) model.

GARCH

The most commonly used GARCH model is GARCH (1,1) model that meets σ2
t = ω+α1ε

2
t−1 +

β1σ
2
t−1. Given conditional variance equation has three components: the constant term, using

the mean equation, the lagged squared residuals to measure the volatility obtained from
the previous information ε2

t−1 (ARCH items), and the last forecast variance σ2
t−1 (GARCH

items).

GARCH-M

Using conditional variance denotes the expected risk model which is known as the ARCH
mean regression model (ARCH-M). The expression Yt = Xtγ + ρσ2

t + εt, σ
2
t = ω + α1ε

2
t−1 + · · · +

αpε
2
t−p where the parameter ρ is measured in terms of variance of σ2

t can be observed in the
risk of fluctuations in the expected degree of influence on Yt.

TARCH

The conditional variance in this model is set as follows: σ2
t = ω + α1ε

2
t−1 + γ1ε

2
t−1I

−
t−1 + β1σ

2
t−1,

where I−t−1 is a dummy variable, when εt−1 < 0, I−t−1 = 1; otherwise, I−t−1 = 0. As long as γ1 /= 0,
there exists an asymmetric effect.

EGARCH

The conditional variance equation in the EGARCH model is set as follows: ln(σ2
t ) = ω +

β ln(σ2
t−1) + α|(εt−1/σt−1) −

√
2/π | + γ(εt−1/σt−1). The left is the logarithm of conditional

variance which means that the lever effect is exponential, rather than secondary; so the
predictive value of conditional variance certain is nonnegative. The existence of leverage
effect is tested through the hypothesis γ < 0. As long as γ /= 0, the effect of shocks exist is
nonsymmetries.
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Figure 1

2. The Empirical Analysis

2.1. Data Acquisition and Finishing

The paper used data from the Shanghai Securities each day at Shanghai Composite Index
closing. (The Shanghai Composite Index, since July 15, 1991, with a sample of all stocks listed
on the Shanghai Stock Exchange stocks, in general, reflects the stock price movements of
the Shanghai Stock Exchange. It has gradually become a “barometer” of China’s economy.)
Data time spans from January 4, 2000 to September 11, 2009, a total of 2341 observations. At
the same time, the definition of day yield on closing price of the first-order difference of the
natural logarithm is expressed as ri = ln pi − ln pi−1. where ri denotes the day’s rate of return,
and pi denotes the day’s closing price.

2.2. The Test Data

2.2.1. Normality Tests

Figure 1 shows the daily rate of return of the Shanghai Index, the Fluctuations Show time-
varying volatility, and sudden and clustering characteristics. Figure 2 indicated its frequency
chart and statistics characteristics. We can see that the partial degrees −0.073892, sample
distribution is left skewed peak degrees are 6.982480, significantly higher than peak 3 of the
normal distribution, and therefore has a clear “pike apex and thick tail” phenomenon, and
JB value is 1548.493, indicating that the distribution of return series shows the nonnormality
[9].

2.2.2. Smooth Test

Do the ADF test to return series {ri}, assuming that yields fluctuate up-down on 0; so to
calculate the ADF statistic on the assumption that the regression equation does not contain
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Table 1

t-Statistic Prob.∗

Augmented Dickey-Fuller test statistic −47.69910 0.0001
Test critical values 1% level −2.565951

5% level −1.940959
10% level −1.616608
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Mean
Median
Maximum
Minimum
Std. dev.
Skewness
Kurtosis

0.000322
0.000777
0.094008
−0.092562

0.017395
−0.073892

6.982480

Jarque-Bera

Probability
1548.493

0

Figure 2

the constant term and time trend items, calculated by the ADF statistic which is less than 1%
significance level under the critical value, it rejected the hypothesis of existing the unit root,
indicating that the sequence is stationary series [10]; see Table 1.

2.3. ARMA Model Fitting of Return Series

Based on the fact that {ri} is a stationary series, we use Pandit-Wu model to fit the ARMA
(2n, 2n − 1) model: Pandit-Wu modeling approach is based on Box-Jenkins method; proven
and further development in 1977 proposed a new method of system modeling; this approach
is not a function identification counted as sample (partial) autocorrelation function. It is based
on the following understanding: any sequence can always use an ARMA (n, n − 1) model to
represent, while the AR (n), MA (m), and ARMA (m,n) are a special case. The modeling
idea can be summarized as follows: increasing the order of the model gradually, fitting the
higher-order ARMA (n, n− 1) model, and a further increasing the order of the model and the
remaining sum of squares that no longer significantly decrease.

Main steps are as follows:

(1) on the model of zero-mean,

(2) from n = 1, start and gradually increase the model order, fitting ARMA (2n, 2n −
1) model, until the F test showed that the model order to increase the number of
remaining squares is no longer significantly reduced.

(3) model of the adaptive test,

(4) find the optimal model [11].
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Table 2

F-statistic 0.042488 Probability 0.958402
Obs∗ R-squared 0.085434 Probability 0.958182
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Figure 3

Through the fitting, ARMA (8,7) model and ARMA (6,5) model have no significant
differences:

F =
(0.689486 − 0.689920)/4

0.689920/(2430 − 8 − (8 + 7))
= −0.3785 < F0.01(4,∞) = 3.32. (2.1)

So choose ARMA (6,5) model.
Again ARMA, (6,5) p = 2, the residual autocorrelation test, see Table 2.
Clearly, there is no significant residual autocorrelation, another model of the coefficient

is significant. So this model is appropriate.
The use of (6,5) model regression to {ri} is

rt = 0.000309 − 0.264845rt−1 + 0.047856rt−2 + 0.243321rt−3 − 0.758743rt−4

− 0.379365rt−5 − 0.028096rt−6 + εt + 0.274071εt−1 − 0.061145εt−2 − 0.229173εt−3

+ 0.810033εt−4 + 0.410553εt−5.

(2.2)

2.4. The ARCH Group Model-Building of Return Series

Analysis residuals graphs of the regression result Figure 3.
Note the phenomenon of fluctuations in these clusters: fluctuations in some of the

longer period of time is very small and in some other longer period of time is very large,
indicating the error term may have a condition of heteroscedasticity. Therefore, its ARCH
LM test of conditional heteroscedasticity has been got in the lag order of p = 3 Table 3.
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Table 3

F-statistic 35.22275 Probability 0.000000
Obs∗ R-squared 101.2521 Probability 0.000000

Table 4

Variance equation

C 3.79E–06 7.15E–07 5.291596 0.0000

RESID (−1)2 0.110112 0.009052 12.16377 0.0000

GARCH (−1) 0.884263 0.008639 102.3603 0.0000

R-squared 0.014862 Mean dependent var 0.000314

Adjusted R-squared 0.008915 S.D. dependent var 0.017347

S.E. of regression 0.017269 Akaike info criterion −5.526109

Sum squared resid 0.691589 Schwarz criterion −5.489121

Log likelihood 6463.969 F-statistic 2.498929

Durbin-Watson stat 2.015616 Prob(F-statistic) 0.001566

P -value is 0, so reject the original hypothesis, indicating the residual sequence existing
ARCH effect.

2.4.1. GARCH (1,1) Model

As can be seen in Table 4, the variance equation in the ARCH and GARCH is significant, while
AIC value and the SC values are smaller, indicating that GARCH (1,1) model can better fit
the data. Then make the ARCH LM test to this equation heteroscedasticity. That can get the
results of the lagging order of the residual sequence when p = 3 see Table 5.

At this time the accompanied probability is 0.82, accepting the null hypothesis that
there is no ARCH effect in the series that shows the use of GARCH (1,1) model eliminating
the conditional heteroscedasticity of residual sequence.

In addition, the variance equation in the ARCH and GARCH coefficient entries equal
to 0.994375 is less than 1, to meet the parameters of constraints; as the coefficient is very close
to 1, indicating that the impact on conditional variance is persistent. It means that all future
projections have an important role.

2.4.2. GARCH-M Model

In Table 6, the return rate equation including the terms of the standard deviation σt is in
order to integrate the risk measurement in the process of revenue generation, which is the
basis of many capital pricing theories—the meaning of “Mean-variance assumptions”. In
this assumption, the coefficient ρ of conditional standard deviation should be positive. The
result is exactly the case, the conditional standard deviation which has larger expected value
associated with high rates of return. Estimated coefficient of the equation is less than 1,
to meet stable condition. The conditional standard deviation coefficient in the equation is
0.083511, indicating that market is expected to increase the risk of a percentage point; that
will lead to a corresponding increase in yield of 0.083511 percent.
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Table 5

F-statistic 0.311432 Probability 0.817141
Obs∗ R-squared 0.935528 Probability 0.816847

Table 6

Coefficient Std. Error z-Statistic Prob.

@SQRT(GARCH) 0.083511 0.052562 1.588815 0.1121

C −0.000625 0.000701 −0.891278 0.3728

AR(1) −0.199086 0.351060 −0.567099 0.5706

AR(2) 0.124659 0.050907 2.448740 0.0143

AR(3) 0.174735 0.062016 2.817584 0.0048

AR(4) −0.785433 0.052558 −14.94409 0.0000

AR(5) −0.199962 0.293003 −0.682457 0.4949

AR(6) −0.046151 0.023580 −1.957159 0.0503

MA(1) 0.216611 0.349176 0.620347 0.5350

MA(2) −0.146851 0.043255 −3.394974 0.0007

MA(3) −0.159767 0.056709 −2.817310 0.0048

MA(4) 0.815284 0.052174 15.62612 0.0000

MA(5) 0.231638 0.299560 0.773261 0.4394

Variance equation

C 3.97E–06 7.56E–07 5.251923 0.0000

RESID (−1)2 0.114202 0.009615 11.87704 0.0000

GARCH (−1) 0.879996 0.009193 95.72147 0.0000

2.4.3. TARCH and EARCH Model

In the TARCH model (see Table 7), the coefficient of leverage effect γ1 = 0.055381, indicating
the stock price, has “leverage” effect: the same amount of bad news generate greater volatility
than good news. When appears the “good news”, εt−1 > 0, then I−t−1 = 0, so the impact will
only bring about a stock price index of 0.076231 times, while a “bad news”, εt−1 < 0, I−t−1 =
1, then the “bad news” will bring 0.055381 + 0.076231 = 0.131612 times impact. The bad
news generates greater volatility than the same amount of good news. The results also can
be confirmed in EARCH models. In the EARCH model (see Table 8), the estimated value
of α is 0.218522; the estimated value of nonsymmetric key γ is −0.040285. When εt−1 > 0,
the information on the logarithm of conditional variance will bring 0.218522 + (−0.040285) =
0.178237 times impact; when εt−1 < 0, it will bring 0.218522 + (−0.040285) × (−1) = 0.258807
times impact to logarithm of conditional variance.

3. Conclusion

3.1. Model of Comparative Analysis

From the test results, rates of return series do have a heteroscedastic phenomenon. In the
GARCH (1,1) model, the ARCH item and GARCH item of variance equation are significant,
while the AIC value and the SC value are smaller, indicating it can fit data better. GARCH-M
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Table 7: TARCH.

Variance equation

C 3.74E–06 7.01E–07 5.332952 0.0000

RESID (−1)2 0.076231 0.010432 7.307341 0.0000

RESID (−1)2 ∗(RESID (−1) < 0) 0.055381 0.012945 4.278287 0.0000

GARCH (−1) 0.889139 0.008770 101.3873 0.0000

Table 8: EARCH.

Variance equation

C(13) −0.348419 0.039287 −8.868469 0.0000

C(14) 0.218522 0.017791 12.28297 0.0000

C(15) −0.040285 0.008560 −4.706245 0.0000

C(16) 0.977814 0.003808 256.8123 0.0000

model and TARCH, EARCH models measure market from the “high-risk brings high-yield”
and “leverage effect” of the stock market. All of them have achieved good results, indicating
that the use of ARCH group models to market research is appropriate [12].

3.2. Empirical Results

This paper uses time series analysis method on the Shanghai index; last decade, the daily rate
of return was analyzed and found showing the left side and the distribution form of pike
apex and the thick trail, not subject to normal, and there is a self-related phenomena, can be
used (6,5) model fitting. When fitting ARCH group model, we found that its variance has a
strong volatility clustering and continuity. Rates of return and the risk of changes in the same
direction; high-risk for high returns; high-yield associated with high-risk, which indicate
investors concern on marketing a higher degree. The fast transmission of information, with
the risk of change, will have an impact on yields, reflecting investor a certain preference
for the risk; the domestic securities market exists significant leverage effect and “bad news”
roles were clearly stronger than “good news” effect showing that our investors are often more
sensitive to the decline of stocks as a result of avoiding risk.
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