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By using the Banach fixed point theorem and step method, we study the existence and uniqueness
of solutions for the Cauchy-type problems of fractional differential equations. Meanwhile, by citing
some counterexamples, it is pointed out that there exist a few defects in the proofs of the known
results.

1. Introduction

Recently, fractional differential equations are applied widely in various fields of science
and engineering. Regarding applications of fractional differential equations, we refer to [1–
15] and references cited therein. However, the investigation of basic theory of fractional
differential equations is still not complete, and there is a great deal of work which needs
to be done. Most of the investigations in this field involve the existence and uniqueness of
solutions to fractional differential equations on the finite interval [a, b]. In 1938, Pitcher and
Sewell [16] first considered the nonlinear fractional differential equation

(
Dα
a+y

)
(x) = f

[
x, y(x)

]
, (1.1)

with the following initial conditions:

(
Dα−k
a+ y

)
(a+) = bk, bk ∈ R, (k = 1, . . . , n, n = −[−α]), (1.2)
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where 0 < α < 1, andDα
a+ is Riemann-Liouville fractional derivative. Barrett [17], in 1954, first

considered the Cauchy-type problem for the linear fractional differential equation

(
Dα
a+y

)
(x) − λy(x) = f(x), (n − 1 ≤ R(α) < n, α/=n − 1), (1.3)

with the same initial conditions (1.2). Afterwards, there is a great deal of work about the basic
theory [18–27]. In [28], Kilbas et al. summarized systematically the main results.

In this paper we consider the cauchy problem (1.1)-(1.2); here Dα
a+ can be Riemann-

Liouville fractional derivative, and Hadamard-type fractional derivative. We establish some
results about the existence and uniqueness of solution of (1.1)-(1.2). By the way, we will point
out that there exist several defects in the proofs of the related theorems of [28].

This paper is organized as follows: in Section 2, we introduce some preliminaries
and notations; main results are proved in Section 3; in Section 4, by citing several
counterexamples, we will point out the defects in [28]; Section 5 is a brief summary of this
paper.

2. Preliminaries and Notations

In this section, we introduce some basic definitions and notations about fractional calculus.
Meanwhile, several known theorems are given, which are useful in this paper.

Definition 2.1 (see [28]). Let Ω = (a, b] (−∞ < a < b < ∞) be a finite interval on the real
axis R. The Riemann-Liouville left-sided fractional integral Iαa+g of the function g with order
α ∈ R (α > 0) is defined by

(
Iαa+g

)
(x) =

1
Γ(α)

∫x

a

g(t)dt

(x − t)1−α
, (x > a), (2.1)

where the real function g is defined on the interval Ω and the right-side integral of the above
equality is assumed to make sense.

Definition 2.2 (see [28]). Let Ω = (a, b] (−∞ < a < b < ∞) be a finite interval on the real axis
R. The Riemann-Liouville left-sided fractional derivative Dα

a+g of the function g with order
α ∈ R (α ≥ 0) is defined by

(
Dα
a+g

)
(x) =

(
d

dx

)n(
In−αa+ g

)
(x)

=
1

Γ(n − α)
(
d

dx

)n∫x

a

g(t)dt

(x − t)α−n+1
, (x > a; n = −[−α]),

(2.2)

where the real function g is defined on the intervalΩ and the right side of the above equality
is assumed to make sense.
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Definition 2.3. Assume that f[x, y] is defined on the set (a, b] × G (G ⊂ R). f[x, y] is said to
satisfy Lipschitzian condition with respect to the second variable, if for all x ∈ (a, b] and for
any y1, y2 ∈ G one has

∣
∣f
[
x, y1

] − f[x, y2
]∣∣ ≤ A∣

∣y1 − y2
∣
∣, (2.3)

where A > 0 does not depend on x ∈ (a, b].

Definition 2.4 (see [28]). Let n − 1 < α ≤ n (n ∈N), then the space Cα
n−α[a, b] is defined by

Cα
n−α[a, b] =

{
y(x) ∈ Cn−α[a, b] :

(
Dα
a+y

)
(x) ∈ Cn−α[a, b]

}
. (2.4)

Here Cn−α[a, b] is a weighted space of continuous functions

Cn−α[a, b] =
{
g : (a, b] −→ R : (x − a)n−αg(x) ∈ C[a, b]}, (2.5)

and Dα
a+ is the Riemann-Liouville fractional derivative.
In the space Cn−α[a, b],we define the norm ‖g‖Cn−α

= ‖(x − a)n−αg(x)‖C.

Definition 2.5 (see [28]). Let (a, b) (0 < a < b ≤ ∞) be a finite or infinite interval of the half-
axis R

+. The Hadamard type left-sided fractional integral Jα
a+h of the function h with order

α ∈ R (α > 0) is defined by

(Jα
a+h)(x) =

1
Γ(α)

∫x

a

(
ln
x

t

)α−1h(t)dt
t

, (a < x < b), (2.6)

where h : (a, b) → R and the right-side integral of the above equality is assumed to make
sense.

Definition 2.6 (see [28]). Let δ = xD (D = d/dx) be the δ-derivative. The Hadamard left-
sided fractional derivativeDα

a+y of the function y on (a, b)with order α ∈ R (α ≥ 0) is defined
by

(Dα
a+y

)
(x) = δn

(Jn−α
a+ y

)
(x)

=
1

Γ(n − α)
(
x
d

dx

)n∫x

a

(
ln
x

t

)n−α−1y(t)dt
t

, (a < x < b; n = −[−α]),
(2.7)

where y : (a, b) → R, δn = δ · · · δ︸︷︷︸
n

, and the right side of the above equality is assumed to make

sense.

Definition 2.7 (see [28]). Let n − 1 < α ≤ n (n ∈ N), 0 < a < b < +∞, and 0 ≤ γ < 1. The space
Cα
δ;n−α,γ[a, b] is defined by

Cα
δ;n−α,γ[a, b] =

{
y(x) ∈ Cn−α,ln[a, b] :

(Dα
a+y

) ∈ Cγ,ln[a, b]
}
, (2.8)
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where Dα
a+ is a Hadamard left-sided fractional derivative, and Cγ,ln[a, b] is a weighted space

of continuous functions

Cγ,ln[a, b] =
{
g : (a, b] −→ R :

(
ln
x

a

)γ
g(x) ∈ C[a, b]

}
. (2.9)

In the space Cγ,ln[a, b], we define the norm ‖g‖Cγ,ln
= ‖(ln(x/a))γg(x)‖C.

Theorem 2.8 (see [28]). Let α > 0, n = −[−α]. Let f : (a, b] × R → R be a function such that
f[x, y(x)] ∈ Cn−α[a, b] for any y(x) ∈ Cn−α[a, b]. If y(x) ∈ Cn−α[a, b], then y(x) satisfies the
relations:

(
Dα
a+y

)
(x) = f

[
x, y(x)

]
, (α > 0), (2.10)

(
Dα−k
a+ y

)
(a+) = bk, bk ∈ R, (k = 1, . . . , n = −[−α]), (2.11)

if and only if y(x) satisfies the Volterra integral equation

y(x) = y0(x) +
1

Γ(α)

∫x

a

f
[
t, y(t)

]
dt

(x − t)1−α
, (x > a), (2.12)

where

y0(x) =
n∑

j=1

bj

Γ
(
α − j + 1

) (x − a)α−j , (2.13)

where Dα
a+ is a Riemann-Liouville left-sided fractional derivative.

Theorem 2.9 (see [28]). (Banach Fixed Point Theorem) Let (U,d) be a nonempty complete metric
space, let 0 ≤ ω < 1, and let T : U → U be a map such that, for every u, v ∈ U, the relation

d(Tu, Tv) ≤ ωd(u, v), (0 ≤ ω < 1) (2.14)

holds. Then the operator T has a unique fixed point u∗ ∈ U.

Theorem 2.10 (see [28]). Let 0 < a < b <∞, α > 0, n = −[−α], and 0 ≤ γ < 1. Let f : (a, b]×R →
R be a function such that f[x, y(x)] ∈ Cγ,ln[a, b] for any y(x) ∈ Cγ,ln[a, b]. If y(x) ∈ Cn−α,ln[a, b],
then y(x) satisfies

(Dα
a+y

)
(x) = f

[
x, y(x)

]
, (x > a),

(
Dα−k
a+ y

)
(a+) = bk, bk ∈ R, (k = 1, . . . , n; n = −[−α]),

(2.15)
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if and only if y(x) satisfies the Volterra integral equation

y(x) =
n∑

j=1

bj

Γ
(
n − j + 1

)
(
ln
x

a

)α−j
+

1
Γ(α)

∫x

a

(
ln
x

t

)α−1
f
[
t, y(t)

]dt
t
, (x > a), (2.16)

where Dα
a+ is a Hadamard-type left-sided fractional derivative.

Remark 2.11. It should be worthy noting that the conditions in Theorems 2.8 and 2.10 are a
little different from the ones in [28, pages 163, 213]. In [28], G is an open set in R and f is
assumed to be a function such that f[x, y] ∈ Cn−α[a, b](Cγ,ln[a, b]) for any y ∈ G. In fact, we
think that such assumption is not complete for the proof of the related conclusion.

3. Main Results

In this section, we will establish several useful lemmas. It should be pointed out that, in [28],
some analogous lemmas play important roles in the proofs of the related results. However,
we have found out that there exist a few defects in these lemmas of [28], whichmeans that the
proofs of the related results in [28] are not complete. Several counterexamples will be given
in Section 4. In a sense, our lemmas are to mend these cracks. Furthermore, several theorems
about the existence and uniqueness of solution for the cauchy-type problem (2.10)-(2.11)will
be given; then, in the sense of Hadamard fractional derivative, we have the similar result.

Lemma 3.1. Let γ ∈ [0,∞), a < c < b, g ∈ Cγ[a, c], and g ∈ C[c, b]. Then g ∈ Cγ[a, b] and

∥∥g
∥∥
Cγ [a,b]

≤ max
{∥∥g

∥∥
Cγ [a,c]

, (b − a)γ∥∥g∥∥C[c,b]
}
. (3.1)

Proof. Since g ∈ Cγ[a, c] and g ∈ C[c, b], then g ∈ C(a, b] and g ∈ Cγ[a, b]. Nowwe prove the
estimate. Because g ∈ Cγ[a, b], there exists x0 ∈ [a, b] such that

∥∥g
∥∥
Cγ [a,b]

=
∣∣(x0 − a)γg(x0)

∣∣. (3.2)

If x0 ∈ [a, c], then

∥∥g
∥∥
Cγ [a,b]

≤ ∥∥g
∥∥
Cγ [a,c]

. (3.3)

If x0 ∈ [c, b], then

∥∥g
∥∥
Cγ [a,b]

≤ (b − a)γ∥∥g∥∥C[c,b]. (3.4)

Hence we have

∥∥g
∥∥
Cγ [a,b]

≤ max
{∥∥g

∥∥
Cγ [a,c]

, (b − a)γ∥∥g∥∥C[c,b]
}
. (3.5)

This completes the proof of Lemma 3.1.
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Lemma 3.2 (see [28]). If γ ∈ R(0 ≤ γ < 1), then the fractional integration operator Iαa+ with order
α ∈ R (α > 0) is a mapping from Cγ[a, b] to Cγ[a, b], and

∥
∥Iαa+g

∥
∥
Cγ

≤ (b − a)α Γ
(
1 − γ)

Γ
(
1 + α − γ)

∥
∥g

∥
∥
Cγ
, (3.6)

here Iαa+ is a Riemann-Liouville fractional integral operator and g ∈ Cγ[a, b].

Furthermore, we have the following conclusion.

Lemma 3.3. The fractional integration operator Iαa+ with order α ∈ R(α > 0) is a mapping from
C[a, b] to C[a, b], and

∥∥Iαa+g
∥∥
C ≤ (b − a)α

αΓ(α)

∥∥g
∥∥
C, (3.7)

where Iαa+ is a Riemann-Liouville fractional integral operator and g ∈ C[a, b].

Proof. Firstly we prove that if g ∈ C[a, b], then (Iαa+g)(x) ∈ C[a, b]. For any x ∈ [a, b] and
Δx > 0, x + Δx ≤ b, we have

∣∣(Iαa+g
)
(x + Δx) − (

Iαa+g
)
(x)

∣∣ =

∣∣∣∣∣
1

Γ(α)

∫x+Δx

a

g(t)dt

(x + Δx − t)1−α
− 1
Γ(α)

∫x

a

g(t)dt

(x − t)1−α

∣∣∣∣∣

≤ 1
Γ(α)

{∣∣∣∣∣

∫x

a

g(t)

[
1

(x + Δx − t)1−α
− 1

(x − t)1−α
]

dt

∣∣∣∣∣

+

∣∣∣∣∣

∫x+Δx

x

g(t)

(x + Δx − t)1−α
dt

∣∣∣∣∣

}

≤
∥∥g

∥∥
C[a,b]

αΓ(α)
{[
(x + Δx − a)α − (x − a)α] + (Δx)α + (Δx)α

}
.

(3.8)

It is easy to see that as Δx → 0+, we have

∣∣(Iαa+g
)
(x + Δx) − (

Iαa+g
)
(x)

∣∣ −→ 0. (3.9)

Similarly, we can prove that as Δx → 0−,we have

∣∣(Iαa+g
)
(x + Δx) − (

Iαa+g
)
(x)

∣∣ −→ 0. (3.10)

Thus Iαa+g ∈ C[a, b].
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Now we prove the estimate. In fact

∥
∥Iαa+g

∥
∥
C[a,b] = max

x∈[a,b]

∣
∣
∣
∣
∣

1
Γ(α)

∫x

a

g(t)dt

(x − t)1−α

∣
∣
∣
∣
∣

≤
∥
∥g

∥
∥
C[a,b]

Γ(α)

∫x

a

(x − t)α−1dt

≤ (b − a)α
αΓ(α)

∥
∥g

∥
∥
C.

(3.11)

This completes the proof of Lemma 3.3.

Lemma 3.4. Let γ ∈ [0,∞), 0 < a < c < b < ∞, g ∈ Cγ,ln[a, c] and g ∈ C[c, b]. Then g ∈
Cγ,ln[a, b] and

∥∥g
∥∥
Cγ,ln[a,b]

≤ max
{∥∥g

∥∥
Cγ,ln[a,c]

,

(
ln
b

a

)γ∥∥g
∥∥
C[c,b]

}
. (3.12)

Proof. The proof is similar to the proof of Lemma 3.1. Since g ∈ Cγ,ln[a, c] and g ∈ C[c, b], we
have g ∈ C(a, b], that is, g ∈ Cγ,ln[a, b].

Next we give the estimate. Because g ∈ Cγ,ln[a, b], there exists at least x∗ ∈ [a, b] such
that

∥∥g
∥∥
Cγ,ln[a,b]

=
∣∣∣∣

(
ln
x∗

a

)γ

g(x∗)
∣∣∣∣. (3.13)

If x∗ ∈ [a, c], then

∥∥g
∥∥
Cγ,ln[a,b]

≤ ∥∥g
∥∥
Cγ,ln[a,c]

. (3.14)

If x∗ ∈ [c, b], then

∥∥g
∥∥
Cγ,ln[a,b]

≤
(
ln
b

a

)γ∥∥g
∥∥
C[c,b]. (3.15)

Hence we have

∥∥g
∥∥
Cγ,ln[a,b]

≤ max
{∥∥g

∥∥
Cγ,ln[a,c]

,

(
ln
b

a

)γ∥∥g
∥∥
C[c,b]

}
. (3.16)

This completes the proof of Lemma 3.4.

Next, on the basis of above lemmas, we establish the results about the existence and
uniqueness of solution for the cauchy-type problem (2.10)-(2.11) in the sense of Riemann-
Liouville fractional derivative and Hadamard fractional derivative.
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Theorem 3.5. Let α > 0 and n = −[−α]. Let f : (a, b]×R → R be a function such that f[x, y(x)] ∈
Cn−α[a, b] for any y(x) ∈ Cn−α[a, b] and the Lipschitzian condition holds with respect to the second
variable y. Then there exists a unique solution y(x) ∈ Cα

n−α[a, b] for the cauchy-type problem (2.10)-
(2.11).

Proof. First we prove the existence of a unique solution y(x) ∈ Cn−α[a, b]. According to
Theorem 2.8, it is sufficient to prove the existence of a unique solution y(x) ∈ Cn−α[a, b]
to the nonlinear Volterra integral equation (2.12). Equation (2.12)makes sense in any interval
(a, x1] ⊂ (a, b] (a < x1 < b). Choose x1 such that

A(x1 − a)α Γ(α − n + 1)
Γ(2α − n + 1)

< 1, (3.17)

where A > 0 is the Lipschitzian coefficient. Next we prove the existence of a unique solution
y(x) ∈ Cn−α[a, x1] to (2.12) on the interval (a, x1]. For this, we use the Banach fixed point
theorem for the space Cn−α[a, x1], which is a complete metric space with the distance given
by

d
(
y1, y2

)
=
∥∥y1 − y2

∥∥
Cn−α[a,x1]

= max
x∈[a,x1]

∣∣(x − a)n−α[y1(x) − y2(x)
]∣∣. (3.18)

We rewrite the integral (2.12) in the form

y(x) =
(
Ty

)
(x), (3.19)

where

(
Ty

)
(x) = y0(x) +

1
Γ(α)

∫x

a

f
[
t, y(t)

]
dt

(x − t)1−α
. (3.20)

To apply Theorem 2.9, we have to prove the following: (1) if y(x) ∈ Cn−α[a, x1], then
(Ty)(x) ∈ Cn−α[a, x1]; (2) for any y1, y2 ∈ Cn−α[a, x1] the following estimate holds:

∥∥Ty1 − Ty2
∥∥
Cn−α[a,x1]

≤ ω∥∥y1 − y2
∥∥
Cn−α[a,x1]

, ω = A(x1 − a)α Γ(α − n + 1)
Γ(2α − n + 1)

. (3.21)

It follows from (2.13) that y0(x) ∈ Cn−α[a, x1]. Since f[x, y(x)] ∈ Cn−α[a, x1] for any
y(x) ∈ Cn−α[a, x1], then, by Lemma 3.2 [28] (with γ = n − α, b = x1, and g(x) = f[x, y(x)]),
the integral in the right-hand side of (3.19) also belongs to Cn−α[a, x1], and hence (Ty)(x) ∈
Cn−α[a, x1]. Now we prove the estimate in (3.21). By (3.20), using the Lipschitzian condition
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and applying the relation (3.6) (with γ = n − α, b = x1, and g(x) = f[x, y1(x)] − f[x, y2(x)]),
we have

∥
∥Ty1 − Ty2

∥
∥
Cn−α[a,x1]

≤ ∥
∥Iαa+

[∣∣f
[
t, y1(t)

] − f[t, y2(t)
]∣∣]

∥
∥
Cn−α[a,x1]

≤ A∥
∥Iαa+

[∣∣y1(t) − y2(t)
∣
∣]
∥
∥
Cn−α[a,x1]

≤ A(x1 − a)α Γ(α − n + 1)
Γ(2α − n + 1)

∥
∥y1 − y2

∥
∥
Cn−α[a,x1]

,

(3.22)

which yields the estimate (3.21). In accordance with (3.17), 0 < ω < 1, and hence, by
Theorem 2.9, there exists a unique solution y∗(x) ∈ Cn−α[a, x1] to (2.12) on the interval [a, x1].

By Theorem 2.9, this solution y∗(x) is a limit of a convergent sequence (Tmy∗
0)(x):

lim
m→∞

∥∥Tmy∗
0 − y∗∥∥

Cn−α[a,x1]
= 0, (3.23)

where y∗
0(x) is any function in Cn−α[a, x1]. If there is at least one bk /= 0 in the initial condition

(2.11), then we can take y∗
0(x) = y0(x) with y0(x) defined by (2.13). The last relation can be

rewritten into the form

lim
m→∞

∥∥ym − y∗∥∥
Cn−α[a,x1]

= 0, (3.24)

where

ym(x) =
(
Tmy∗

0
)
(x) = y0(x) +

1
Γ(α)

∫x

a

f
[
t,
(
Tm−1y∗

0

)
(t)

]
dt

(x − t)1−α
, (m ∈N). (3.25)

Next we consider the interval [x1, b]. Rewrite (2.12) in the form

y(x) = y01(x) +
1

Γ(α)

∫x

x1

f
[
t, y(t)

]
dt

(x − t)1−α
, (3.26)

where y01(x) is defined by

y01(x) =
n∑

j=1

bj

Γ
(
α − j + 1

) (x − a)α−j + 1
Γ(α)

∫x1

a

f
[
t, y(t)

]
dt

(x − t)1−α
. (3.27)

We obtain y01(x) ∈ C[x1, b]. Next we prove the existence of a unique solution y(x) ∈ C[x1, b]
to (2.12) on the interval [x1, b]. For this, we also use Banach fixed point theorem for the space
C[x1, x2], where x2 satisfies

A(x2 − x1)α
αΓ(α)

< 1. (3.28)



10 Discrete Dynamics in Nature and Society

C[x1, x2] is a complete metric space with the distance given by

d
(
y1 − y2

)
=
∥
∥y1 − y2

∥
∥
C[x1,x2]

= max
x∈[x1,x2]

∣
∣y1(x) − y2(x)

∣
∣. (3.29)

We rewrite the integral equation (3.26) into the form

y(x) =
(
Ty

)
(x), (3.30)

where

(
Ty

)
(x) = y01(x) +

1
Γ(α)

∫x

x1

f
[
t, y(t)

]
dt

(x − t)1−α
. (3.31)

To apply Theorem 2.9, we have to prove the following: (1) if y(x) ∈ C[x1, x2], then
(Ty)(x) ∈ C[x1, x2]; (2) for any y1, y2 ∈ C[x1, x2], the following estimate holds:

∥∥Ty1 − Ty2
∥∥
C[x1,x2]

≤ ω∥∥y1 − y2
∥∥
C[x1,x2]

, ω =
A(x2 − x1)α

αΓ(α)
. (3.32)

Since f[x, y(x)] ∈ Cn−α[a, b] for any y(x) ∈ Cn−α[a, b], then, by Lemma 3.3, the
integral in the right-hand side of (3.31) also belongs to C[x1, x2], and hence (Ty)(x) ∈
C[x1, x2]. Now we prove the estimate in (3.32) as follows:

∥∥Ty1 − Ty2
∥∥
C[x1,x2]

≤ ∥∥Iαa+
[∣∣f

[
t, y1(t)

] − f[t, y2(t)
]∣∣]∥∥

C[x1,x2]

≤ A(x2 − x1)α
αΓ(α)

∥∥y1 − y2
∥∥
C[x1,x2]

,
(3.33)

which yields the estimate (3.32). In accordance with (3.28), then 0 < ω < 1, and hence by
Theorem 2.9, there exists a unique solution y∗

1(x) ∈ C[x1, x2] to (2.12) on the interval [x1, x2].
By Theorem 2.9, this solution in C[x1, x2] is a limit of a convergent sequence (Tmy∗

01)(x):

lim
m→∞

∥∥Tmy∗
01 − y∗

1

∥∥
C[x1,x2]

= 0, (3.34)

where y∗
01(x) is any function in C[x1, x2]. If y0(x)/= 0 on [x1, x2], then we can take y∗

01(x) =
y0(x)with y0(x) defined by (2.13). The last relation can be rewritten in the form

lim
m→∞

∥∥ym − y∗
1

∥∥
C[x1,x2]

= 0, (3.35)

where

ym(x) =
(
Tmy∗

01

)
(x) = y01(x) +

1
Γ(α)

∫x

x1

f
[
t,
(
Tm−1y∗

01

)]
dt

(x − t)1−α
, (m ∈N). (3.36)
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Next we consider the interval [x2, x3], where x3 = x2 + h2 such that x3 ≤ b and
(A(x3 − x2)α/αΓ(α)) < 1. Using the same arguments as the above, we derive that there exists a
unique solution y∗

2(x) ∈ C[x2, x3] to (2.12) on the interval [x2, x3]. If x3 /= b, then take the next
interval [x3, x4], where x4 = x3 + h3 and h3 > 0 such that x4 ≤ b and (A(x4 − x3)α/αΓ(α)) < 1.
If x4 < b, repeating the above process, then we find that there exists a unique solution y(x)
to (2.12), y(x) = y∗

k
(x), and y∗

k
(x) ∈ C[xk, xk+1](k = 1, . . . , L), where x0 < x1 < · · · < xL+1 = b

and (A(xk+1 − xk)α/αΓ(α)) < 1, and we take y0(x) = y0k(x), and y∗
0(x) = y∗

0k(x)(k = 1, . . . , L)
on each interval [xk, xk+1]. By (A(xk+1 −xk)α/αΓ(α)) < 1,we know that by finite steps we can
arrive at xL+1 = b.

Then there exists a unique solution y(x) ∈ C[x1, b] to (2.12) on the interval [x1, b].
By Lemma 3.1, we obtain that there exists a unique solution y(x) ∈ Cn−α[a, b] to the Volterra
integral equation (2.12) on the whole interval [a, b], and hence y(x) ∈ Cn−α[a, b] is the unique
solution to the cauchy-type problem (2.10)-(2.11).

To complete the proof of Theorem 3.5, we must show that such a unique solution
y(x) ∈ Cn−α[a, b] belongs to the the space Cα

n−α[a, b]; it is sufficient to prove that (Dα
a+y)(x) ∈

Cn−α[a, b]. By the above proof, the solution y(x) ∈ Cn−α[a, b] is a limit of the sequence ym(x),
where ym(x) = (Tmy∗

0) ∈ Cn−α[a, b]:

lim
m→∞

∥∥ym − y∥∥Cn−α[a,b]
= 0, (3.37)

with the choice of certain y∗
0(x) on each [a, x1], . . . , [xL, b].

If y0(x)/= 0, then we can take y∗
0(x) = y0(x).

By (2.10) and the Lipschitzian-condition, we have

∥∥Dα
a+ym −Dα

a+y
∥∥
Cn−α

=
∥∥f[x, ym] − f[x, y]

∥∥
Cn−α

≤ A∥∥ym − y∥∥Cn−α
. (3.38)

Thus

lim
m→∞

∥∥Dα
a+ym −Dα

a+y
∥∥
Cn−α

= 0. (3.39)

By (Dα
a+ym)(x) = f[x, ym−1(x)] and f[x, y(x)] ∈ Cn−α[a, b] for any y(x) ∈ Cn−α[a, b],

we have f[x, ym−1(x)] ∈ Cn−α[a, b], that is, (Dα
a+ym)(x) ∈ Cn−α[a, b]. Hence (Dα

a+y)(x) ∈
Cn−α[a, b].

This completes the proof of Theorem 3.5.

Corollary 3.6. Let α > 0 and n = −[−α]. Let f : (a, b] × R → R be a function such that
f(x, y) ∈ Cn−α[a, b] for any y ∈ R; the Lipschitzian condition holds with respect to y and
limx→a(x − a)n−αf(x, y(x)), and limx→a(x − a)n−αf(x, y(x)) exist for any y(x) ∈ Cn−α[a, b].
Then there exists a unique solution y(x) ∈ Cα

n−α[a, b] for the cauchy-type problem (2.10)-(2.11).

Remark 3.7. It should be pointed out that the conditions in Theorem 3.5 are different from the
ones in [28, Theorem 3.11, page 165]. In [28], G is an open set in R and f is assumed to be
a function such that f[x, y] ∈ Cn−α[a, b] for any y ∈ G. In fact, such assumptions are not
complete for the proof of the related conclusion. A counterexample will be given in Section 4.
There exists the similar problem in [28, Theorem 3.29, page 213]. By applying Lemma 3.4,
modifying the conditions in [28, Theorem 3.29, page 213] and using the similar arguments to
the proof of Theorem 3.5, we arrive at the following result.
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Theorem 3.8. Let α > 0, n = −[−α], and 0 ≤ γ < 1 such that γ ≥ n−α. Let f : (a, b]×R → R(a > 0)
be a function such that f[x, y(x)] ∈ Cγ,ln[a, b] for any y(x) ∈ Cγ,ln[a, b] and the Lipschitzian
condition holds with respect to y. Then there exists a unique solution y(x) for the Cauchy-type problem

(Dα
a+y

)
(x) = f

[
x, y(x)

]
, α > 0; x > a,

(
Dα−k
a+ y

)
(a+) = bk, bk ∈ R (k = 1, . . . , n, n = −[−α]).

(3.40)

in the space Cα
δ;n−α,γ[a, b], where Dα

a+ is a Hadamard fractional derivative.

4. Counterexamples

In this section, by citing some counterexamples we would like to point out that, in [28,
Lemmas 3.4, 3.9, and 3.10, pages 165, 202, and 213] are not complete.

Example 4.1. Let one consider the function

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

μ

(x − a)γ x ∈ (a, c],

μ

(x − c)γ x ∈ (c, b],
(4.1)

where μ/= 0 is a constant number and γ ∈ (0,∞).

From the above definition of g(x), we know that g(x) ∈ Cγ[a, c] and g(x) ∈ Cγ[c, b],
but we cannot get the conclusion g(x) ∈ Cγ[a, b] and ‖g‖Cγ [a,b] ≤ max{‖g‖Cγ [a,c], ‖g‖Cγ [c,b]}.
Hence the conclusion of [28, Lemma 3.4, page 165] does not hold. We cannot apply it to
prove [28, Theorem 3.11, page 165]. Furthermore, there also exists a problem about f in [28,
Theorem 3.11, page 165]. For example, choosing f(x, y) = y sin(1/(x − a)), we know that
f(x, y) ∈ Cγ[a, b] for any y, f(x,y) satisfies Lipschitz condition with respect to the second
variable y. However, choosing y(x) = 1/(x − a)γ , we can not arrive at (x − a)γf(x, y(x)) =
sin(1/(x − a)) ∈ C[a, b]. Hence the condition of f in [28, Theorem 3.11, page 165] is not
proper.

The next example illustrates that there also exists a problem in [28, Lemma 3.9, page
202].

Example 4.2. Consider the function

φ(x) = lnx, x ∈ [a, b], 1 < a < b. (4.2)

It is evident that φ(x) belongs to the spaceC1[a, b] = {ψ(x) : ψ(1)(x) ∈ C[a, b], ‖ψ‖C1[a,b]

= ‖ψ‖C[a,b] + ‖ψ(1)‖C[a,b]}.
Setting c ∈ (a, b), that is, a < c < b, then

φ(x) ∈ C1[a, b], φ(x) ∈ C1[a, c], φ(x) ∈ C1[c, b]. (4.3)



Discrete Dynamics in Nature and Society 13

We could not conclude that

∥
∥φ

∥
∥
C1[a,b] ≤ max

{∥
∥φ

∥
∥
C1[a,c],

∥
∥φ

∥
∥
C1[c,b]

}
, (4.4)

because

∥∥φ
∥∥
C1[a,b] = ln b +

1
a
,

∥∥φ
∥∥
C1[a,c] = ln c +

1
a
,

∥∥φ
∥∥
C1[c,b] = ln b +

1
c
. (4.5)

However, we have

∥
∥φ

∥
∥
C1[a,b] ≤

∥
∥φ

∥
∥
C1[a,c] +

∥
∥φ

∥
∥
C1[c,b]. (4.6)

The following example is for [28, Lemma 3.10, page 213].

Example 4.3. Let one consider the function

h(x) =

⎧
⎪⎪⎨

⎪⎪⎩

μ

(lnx/a)γ
x ∈ (a, c],

μ

(lnx/c)γ
x ∈ (c, b],

(4.7)

where μ/= 0 is a constant number and γ ∈ (0,∞).

The same problem exists in [28, Lemma 3.10, page 213]. From the definition of h(x), we
have h(x) ∈ Cγ,ln[a, c] and h(x) ∈ Cγ,ln[c, b]. However, the conclusion that h(x) ∈ Cγ,ln[a, b]
and ‖h‖Cγ [a,b] ≤ max{‖h‖Cγ [a,c], ‖h‖Cγ [c,b]} is still not correct. This defect means that [28,
Lemma 3.10] could not be applied to prove [28, Theorem 3.29].

In a sense, our lemmas and main results have remedied these defects.

5. Conclusion

In this paper, we first get several useful lemmas, especially Lemmas 3.1 and 3.4, which
have improved the corresponding lemmas in [28]. By modifying the conditions on f
and improving the method used in [28], we have established the results of existence
and uniqueness of solution for the cauchy-type problems involving the Riemann-Liouville
fractional derivative and the Hadamard fractional derivative in the weight space of
continuous functions. Meanwhile, we have given some counterexamples to prove that [28,
Lemmas 3.4, 3.9, and 3.10, pages 165, 203, and 213] are not complete, which means that there
exist some defects in the proofs of the related results in [28].
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