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A hepatitis B virus infection model with time delay is discussed. By analyzing the corresponding
characteristic equations, the local stability of each of the feasible equilibria of the model is studied.
By using comparison arguments, it is proved that if the basic reproduction ratio is less than unity,
the infection-free equilibrium is globally asymptotically stable. If the basic reproduction ratio is
greater than unity, by means of an iteration technique, sufficient conditions are derived for the
global asymptotic stability of the virus-infected equilibrium. Numerical simulations are carried
out to illustrate the theoretical results.

1. Introduction

Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus. It
is a major global health problem and the most serious type of viral hepatitis. It can cause
chronic liver disease and puts people at high risk of death from cirrhosis of the liver and
liver cancer. Worldwide, estimated two billion people have been infected with the hepatitis
B virus (HBV), and more than 350 million have chronic (long-term) liver infections. In the
past decade, therapy for HBV has been revolutionized by the advent of drugs that directly
block replication of the HBV genome. All these drugs (to date) are nucleoside or nucleotide
analogues that selectively target the viral reverse transcriptase. The first successful drug,
lamivudine, emerged from screening for inhibitors of the HBV reverse transcriptase and was
introduced into clinical practice for the management of HBV infection.

Recently, mathematical models have been used frequently to study the transmission
dynamics of HBV (see, e.g., [1–15]). In [1], Anderson and May used a simple mathematical
model to illustrate the effects of carriers on the transmission of HBV. In an effort to
model HBV infection dynamics and its treatment with the reverse transcriptase inhibitor
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lamivudine, Nowak and Bangham [7] and Bonhoeffer et al. [2] proposed the following basic
HBV infection model:

ẋ(t) = λ − dx(t) − βx(t)v(t),
ẏ(t) = βx(t)v(t) − ay(t),
v̇(t) = ky(t) − uv(t),

(1.1)

where x, y, and v are numbers of uninfected cells, infected cells, and free-virus cells,
respectively. Uninfected cells are assumed to be produced at a constant rate λ, die at rate
dx, and become infected at rate βxv in which β is the mass action rate constant describing
the infection process. Infected cells are killed by immune cells at rate ay and produce free
virus at rate ky, here k is the so-called burst constant. Free-virus cells are cleared at rate uv. It
is assumed that parameters a, d, k, u, λ, and β are positive constants. In [4], by constructing
novel Lyapunov functions, it was proven that if the basic reproduction ratio is less than unity,
the infection-free equilibrium is globally asymptotically stable, and if the basic reproduction
ratio is greater than unity, then the infected equilibrium is globally asymptotically stable. In
[9], Thornley et al. used a hepatitis B mathematical model developed by Medley et al. [5]
to develop a strategy for eliminating HBV in New Zealand. In [13], Zhao et al. proposed an
age-structured model to predict the dynamics of HBV transmission and evaluate the long-
term effectiveness of the vaccination programme in China. In [11], Xu and Ma investigated a
hepatitis B virus model with spatial diffusion and saturation response of the infection rate. In
[14], Zou et al. also proposed amathematical model to understand the transmission dynamics
and prevalence of HBV in mainland China. In [12], Yu et al. considered an HBV infection
model with a nonlinear infection rate. It was shown that the model has a degenerate singular
infection equilibrium, and bifurcation of cusp type with codimension two (i.e., Bogdanov-
Takens bifurcation) occurs under appropriate conditions. As a result, the rich dynamical
behaviors indicate that the model can display an Allee effect and fluctuation effect, which
are important for making strategies for controlling the invasion of virus. In [8], Pang et al.
developed a mathematical model to explore the impact of vaccination and other controlling
measures of HBV infection. It was shown that the vaccination is a very effective measure to
control the infection, and some useful comments were given on controlling the transmission
of HBV.

Usually, the rate of infection in most HBV virus models is assumed to be bilinear
in the virus v and the uninfected cells x. Under this assumption, the basic infection
reproductive number is proportional to the number of total cells of the liver, which implies
that an individual with a smaller liver may be more resistant to the virus infection than an
individual with a larger one. Clearly, this is not true. A typical chronically infected HBV
patient has a total serum daily production rate of about 2 × 1011 to 3 × 1012 virions, and an
average human liver consists of billions of liver cells. These large numbers suggest that it
is reasonable to assume that the infection rate is given by the standard incidence function
[3]. Based on the idea above, in [6], Min et al. proposed the following basic HBV virus model:

ẋ(t) = λ − dx(t) − βx(t)v(t)
x(t) + y(t)

,

ẏ(t) =
βx(t)v(t)
x(t) + y(t)

− ay(t),

v̇(t) = ky(t) − uv(t).

(1.2)
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For system (1.2), it was shown in [6] that if the basic infection reproductive number is less
than unity, then every positive solution converges to the infection-free steady state. At the
same time, it was also assumed that cells upon infection instantly begin producing virus. In
[10], Wang et al. introduced an improved HBV model with standard incidence function and
cytokine-mediated “cure” based on empirical evidences. By using the geometrical approach
of Li and Muldowney [16] to global stability problems in R

n, the global stability of the
virus-infected equilibrium was established. However, in reality, there is a time delay between
viral infection of a cell and the time the cell begins releasing virus. In [17], Nelson et al.
considered a model that allows for less than perfect drug effects and includes a delay in the
initiation of virus production. Compared with the outcomes of models without time delay,
modelling on virus infection by suitable delay terms looks to be biologically reasonable [18–
20].

Motivated by the work of Min et al. [6] and Nelson et al. [17], in this paper, we study
the following hepatitis B virus infection model with a time delay:

ẋ(t) = λ − dx(t) − βx(t)v(t)
x(t) + y(t)

,

ẏ(t) =
βe−mτx(t − τ)v(t − τ)
x(t − τ) + y(t − τ) − ay(t),

v̇(t) = ky(t) − uv(t).

(1.3)

The initial conditions for system (1.3) take the form

x(θ) = φ1(θ), φ1(θ) ≥ 0, φ1(0) > 0,

y(θ) = φ2(θ), φ2(θ) ≥ 0, φ2(0) > 0,

v(θ) = φ3(θ), φ3(θ) ≥ 0, θ ∈ [−τ, 0], φ3(0) > 0,

(1.4)

where (φ1(θ), φ2(θ), φ3(θ)) ∈ C([−τ, 0],R3
+0), the Banach space of continuous functions

mapping the interval [−τ, 0] into R
3
+0, here R

3
+0 = {(x1, x2, x3) : xi ≥ 0, i = 1, 2, 3}.

It is easy to show that all solutions of system (1.3) with initial condition (1.4) are
defined on [0,+∞) and remain positive for all t ≥ 0.

The organization of this paper is as follows. In the next section, we introduce some
notations and state several lemmas which will be essential to our proofs. In Section 3, by
analyzing the corresponding characteristic equations, the local stability of each of the feasible
equilibria of system (1.3) is discussed. In Section 4, by using an iteration technique, we study
the global stability of the infection-free equilibrium of system (1.3). By comparison arguments
we discuss the global stability of the virus-infected equilibrium of system (1.3). Numerical
simulations are carried out in Section 5 to illustrate the main theoretical results.

2. Preliminaries

In this section, based on the work developed by Xu andMa [21], we introduce some notations
and state several results which will be useful in the next section.
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Let R
n
+ be the cone of nonnegative vectors in R

n. If x, y ∈ R
n, we write x ≤ y(x < y) if

xi ≤ yi(xi < yi) for 1 ≤ i ≤ n. Let {e1, e2, . . . , en} denote the standard basis in R
n. Suppose that

r ≥ 0, and let C = C([−r, 0],Rn) be the Banach space of continuous functions mapping the
interval [−r, 0] into R

n with supremum norm. If φ, ψ ∈ C, we write φ ≤ ψ(φ < ψ) when the
indicated inequality holds at each point of [−r, 0]. Let C+ = {φ ∈ C : φ ≥ 0}, and let ∧ denote
the inclusion R

n → C([−r, 0],Rn) by x → x̂, x̂(θ) = x, θ ∈ [−r, 0]. Denote the space of
functions of bounded variation on [−r, 0] by BV[−r, 0]. If t0 ∈ R, A ≥ 0, and x ∈ C([−t0 − r, t0 +
A],Rn), then for any t ∈ [t0, t0 +A], we let xt ∈ C be defined by xt(θ) = x(t + θ), −r ≤ θ ≤ 0.

We now consider

ẋ(t) = f(t, xt). (2.1)

We assume throughout this section that f : R × C → R
n is continuous; f(t, φ) is

continuously differentiable in φ; f(t + T, φ) = f(t, φ) for all (t, φ) ∈ R × C+, and some T > 0.
Then by [22], there exists a unique solution of (2.1) through (t0, φ) for t0 ∈ R, φ ∈ C+. This
solution will be denoted by x(t, t0, φ) if we consider the solution in R

n or by xt(t0, φ) if we
work in the space C. Again by [22], x(t, t0, φ)(xt(t0, φ)) is continuously differentiable in φ. In
the following, the notation xt0 = φ will be used as the condition of the initial data of (2.1), by
which wemean that we consider the solution x(t) of (2.1)which satisfies x(t0+θ) = φ(θ), θ ∈
[−r, 0].

To proceed further, we need the following results. Let r = (r1, r2, . . . , rn) ∈ R
n
+, |r| =

maxi{ri}, and define

Cr =
n
∏

i=1

C([−ri, 0],R). (2.2)

We write φ = (φ1, φ2, . . . , φn) for a generic point of Cr . Let C+
r = {φ ∈ Cr : φ ≥ 0}.

Due to the ecological applications, we choose C+
r as the state space of (2.1) in the following

discussions.
Fix φ0 ∈ C+

r arbitrarily. Then we set L(t, ·) = Dφ0f(t, φ0), where Dφ0f(t, φ0) denotes the
Frechet derivation of f with respect to φ0. It is convenient to have the standard representation
of L = (L1, L2, . . . , Ln) as

Li
(

t, φ
)

=
n
∑

j=1

∫0

−rj
φj(θ)dθηij(θ, t), 1 ≤ i ≤ n, (2.3)

in which ηij : R × R → R satisfies

ηij(θ, t) = ηij(0, t), θ ≥ 0,

ηij(θ, t) = 0, θ ≤ −rj ,
ηij(·, t) ∈ BV

[−rj , 0
]

,

(2.4)

where ηij(·, t) is continuous from the left in (−rj , 0).
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We make the following assumptions for (2.1).

(h0) If φ, ψ ∈ C+, φ ≤ ψ and φi(0) = ψi(0) for some i, then fi(t, φ) ≤ fi(t, ψ).
(h1) For all φ ∈ C+

r with φi(0) = 0, Li(t, φ) ≥ 0 for t ∈ R.

(h2) The matrix A(t) defined by

A(t) = col(L(t, ê1), L(t, ê2), . . . , L(t, ên)) =
(

ηij(0, t)
)

(2.5)

is irreducible for each t ∈ R.

(h3) For each j, for which rj > 0, there exists i such that for all t ∈ R and for positive
constant ε sufficiently small, ηij(−rj + ε, t) > 0.

(h4) If φ = 0, then x(t, t0, φ) ≡ 0 for all t ≥ t0.

The following result was established by Wang et al. [23].

Lemma 2.1. Let (h1)–(h4) hold. Then hypothesis (h0) is valid and

(i) if φ and ψ are distinct elements of C+
r with φ ≤ ψ and [t0, t0 + σ) with n|r| < σ ≤ ∞ is the

intersection of the maximal intervals of existence of x(t, t0, φ) and x(t, t0, ψ), then

0 ≤ x(t, t0, φ
) ≤ x(t, t0, ψ

)

for t0 ≤ t < t0 + σ,
0 ≤ x(t, t0, φ

)

< x
(

t, t0, ψ
)

for t0 + n|r| ≤ t < t0 + σ;
(2.6)

(ii) if φ ∈ C+
r , φ /= 0, t0 ∈ R, and x(t, t0, φ) is defined on [t0, t0 + σ) with σ > n|r|, then

0 < x
(

t, t0, φ
)

for t0 + n|r| ≤ t < t0 + σ. (2.7)

This lemma shows that if (h1)–(h4) hold, then the positivity of solutions of (2.1)
follows.

The following definition and results are useful in proving our main result.

Definition 2.2. Let A = (aij)n×n be an n × n matrix, and let P1, . . . , Pn be distinct points of the
complex plane. For each nonzero element aij of A, connect Pi to Pj with a directed line PiPj .
The resulting figure in the complex plane is a directed graph for A. One says that a directed
graph is strongly connected if, for each pair of nodes Pi, Pj with i /= j, there is a directed path

−−−−→
PiPk1 ,

−−−−−→
Pk1Pk2 , . . . ,

−−−−−−→
Pkr−1Pj (2.8)

connecting Pi and Pj . Here, the path consists of r directed lines.

Lemma 2.3 (see [24]). A square matrix is irreducible if and only if its directed graph is strongly
connected.
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Lemma 2.4 (see [25]). If (2.1) is cooperative and irreducible in D, where D is an open subset of
C, and the solutions with positive initial data are bounded, then the trajectory of (2.1) tends to some
single equilibrium.

We now consider the following delay differential system:

u̇1(t) =
a1βe−mτu2(t − τ)
a1 + u1(t − τ) − au1(t),

u̇2(t) = ku1(t) − uu2(t)
(2.9)

with initial conditions

ui(s) = φi(s) ≥ 0, s ∈ [−τ, 0), φi(0) > 0, φi ∈ C([−τ, 0),R+) (i = 1, 2). (2.10)

System (2.9) always has a trivial equilibrium A0(0, 0). If kβe−mτ > au, then system
(2.9) has a unique positive equilibrium A∗(u∗1, u

∗
2), where

u∗1 =
a1
(

kβe−mτ − au)

au
, u∗2 =

a1k
(

kβe−mτ − au)

au2
. (2.11)

The characteristic equation of system (2.9) at the equilibrium A0 takes the form

λ2 + g1λ + g0 + h0e−λτ = 0, (2.12)

where

g0 = au, g1 = a + u, h0 = −kβe−mτ . (2.13)

Noting that

g1 > 0, g0 + h0 = au − kβe−mτ , (2.14)

if kβe−mτ < au, then the equilibrium A0 is locally stable when τ = 0; if kβe−mτ > au, then A0

is unstable when τ = 0.
It is easy to show that g2

1−2g0 = a2+u2 > 0. If kβe−mτ < au, then g2
0−h20 > 0. By Theorem

3.4.1 in the work of Kuang [26], we see that the equilibriumA0 is locally asymptotically stable
for all τ > 0. If kβe−mτ > au, then A0 is unstable for all τ > 0.

The characteristic equation of system (2.9) at the positive equilibriumA∗ is of the form

λ2 + p1λ + p0 +
(

q1λ + q0
)

e−λτ = 0, (2.15)

where

p0 = au, p1 = a + u, q0 =
ua1βe

−mτu∗2
(

a1 + u∗1
)2

− ka1βe
−mτ

a1 + u∗1
, q1 =

a1βe
−mτu∗2

(

a1 + u∗1
)2
. (2.16)
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note that

p1 + q1 > 0, p0 + q0 =
ua1βe

−mτu∗2
(

a1 + u∗1
)2

> 0. (2.17)

Hence, if kβe−mτ > au, the positive equilibrium A∗ is locally stable when τ = 0; if kβe−mτ <
au,A∗ is unstable when τ = 0.

It is easy to show that

p21 − q21 − 2p0 = u2 +
a2a1

(

a1 + 2u∗1
)

(

a1 + u∗1
)2

> 0,

p20 − q20 =
aa1u

2βe−mτu∗2
(

2a1 + u∗1
)

(

a1 + u∗1
)3

> 0.

(2.18)

If kβe−mτ > au, then by Theorem 3.4.1 in the work of Kuang [26], we see that the positive
equilibriumA∗ is locally asymptotically stable for all τ > 0. If kβe−mτ < au, thenA∗ is unstable
for all τ > 0.

Lemma 2.5. For system (2.9), one has the following.

(i) If kβe−mτ > au, then the positive equilibrium A∗(u∗1, u
∗
2) is globally stable.

(ii) If kβe−mτ < au, then the equilibrium A0(0, 0) is globally stable.

Proof. We represent the right-hand side of (2.9) by f(t, xt) = (f1(t, xt), f2(t, xt)) and set

L(t, ·) = Dφf
(

t, φ
)

. (2.19)

By a direct calculation we have

L1(t, h) = −a1βe
−mτφ2(−τ)

(

a1 + φ1(−τ)
)2
h1(−τ) +

a1βe
−mτ

a1 + φ1(−τ)h2(−τ) − ah1(0),

L2(t, h) = kh1(0) − uh2(0).
(2.20)

We now claim that hypotheses (h1)–(h4) hold for system (2.9). It is easily seen that (h1) and
(h4) hold for system (2.9). We need only to verify that (h2) and (h3) hold.

The matrix A(t) takes the form

⎛

⎜

⎜

⎝

−a − a1βe
−mτφ2(−τ)

(

a1 + φ1(−τ)
)2

a1βe
−mτ

a1 + φ1(−τ)
k −u

⎞

⎟

⎟

⎠

. (2.21)

Clearly, the matrix A(t) is irreducible for each t ∈ R.



8 Discrete Dynamics in Nature and Society

From the definition of A(t) and ηij , it is readily seen that η12(θ, t) = η12(0, t) =
a1βe

−mτ/(a1 + φ1 (−τ)), η21(θ, t) = η21(0, t) = k for θ ≥ 0, ηij(θ, t) = 0, i /= j for θ ≤ −τ , and
ηij(·, t) ∈ BV[−τ, 0], where ηij is a positive Borel measure on [−τ, 0]. Therefore, ηij(·, t) > 0.
Thus, for each j, there is i /= j such that ηij(−rj + ε, t) = ηij(−τ + ε, t) > 0 for all t ∈ R and for
ε > 0 sufficiently small, i = 1, 2. Hence, (h3) holds.

Thus, the conditions of Lemma 2.1 are satisfied. Therefore, the positivity of solutions
of system (2.9) follows. It is easy to see that system (2.9) is cooperative. By Lemma 2.3, we
see that any solution starting from D = C+

τ converges to some single equilibrium. However,
system (2.9) has only two equilibria: A0 and A∗. Note that if kβe−mτ > au, then the positive
equilibrium A∗ is locally stable and the equilibrium A0 is unstable. Hence, any solution
starting from D converges to A∗(u∗1, u

∗
2) if kβe

−mτ > au. Using a similar argument one can
show the global stability of the equilibrium A0 when kβe−mτ < au. This completes the
proof.

3. Local Stability

In this section, we discuss the local stability of each of the equilibria of system (1.3) by
analyzing the corresponding characteristic equations.

System (1.3) always has an infection-free equilibrium E0(λ/d, 0, 0).
Let

R0 =
βke−mτ

au
. (3.1)

R0 is called the basic reproduction ratio of system (1.3). It is easy to show that if R0 > 1,
system (1.3) has a virus-infected equilibrium E∗(x∗, y∗, v∗), where

x∗ =
λe−mτ

de−mτ + a(R0 − 1)
, y∗ =

λe−mτ(R0 − 1)
de−mτ + a(R0 − 1)

, v∗ =
λke−mτ(R0 − 1)

u[de−mτ + a(R0 − 1)]
. (3.2)

The characteristic equation of system (1.3) at the infection-free equilibrium E0 is of the
form

(s + d)
(

s2 + p1s + p0 + q0e−sτ
)

= 0, (3.3)

where

p0 = au, p1 = a + u, q0 = −kβe−mτ . (3.4)

Obviously, (3.3) always has a negative real root s = −d. All other roots of (3.3) are determined
by the following equation:

s2 + p1s + p0 + q0e−sτ = 0. (3.5)
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It is easy to show that p1 > 0, p0+q0 = au−kβe−mτ . IfR0 < 1, then the infection-free equilibrium
E0 of system (1.3) is locally asymptotically stable when τ = 0.

If iω(ω > 0) is a solution of (3.5), by calculating, we have

ω4 +
(

p21 − 2p0
)

ω2 + p20 − q20 = 0. (3.6)

Note that

p21 − 2p0 = a2 + u2 > 0, p20 − q20 =
(

au − kβe−mτ)(au + kβe−mτ
)

. (3.7)

If R0 < 1, then p20 − q20 > 0. Therefore, (3.6) has no positive roots. Accordingly, if R0 < 1, the
infection-free equilibrium E0 of system (1.3) is locally asymptotically stable; if R0 > 1, (3.6)
has at least a positive real root. Accordingly, E0 is unstable.

The characteristic equation of system (1.3) at the virus-infected equilibrium
E∗(x∗, y∗, v∗) takes the form

s3 + g2s2 + g1s + g0 +
(

h2s
2 + h1s + h0

)

e−sτ = 0, (3.8)

where

g0 = au

[

d +
βv∗y∗

(

x∗ + y∗)2

]

, g1 = au + (a + u)

[

d +
βv∗y∗

(

x∗ + y∗)2

]

,

g2 = a + d + u +
βv∗y∗

(

x∗ + y∗)2
,

h0 = du
βe−mτv∗x∗
(

x∗ + y∗)2
− dkβe

−mτx∗

x∗ + y∗ , h1 = (d + u)
βe−mτv∗x∗
(

x∗ + y∗)2
− kβe

−mτx∗

x∗ + y∗ ,

h2 =
βe−mτv∗x∗
(

x∗ + y∗)2
.

(3.9)

When τ = 0, (3.8) becomes

s3 +
(

g2 + h2
)

s2 +
(

g1 + h1
)

s + g0 + h0 = 0. (3.10)
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Clearly, g2 + h2 > 0. By a direct calculation we have

g0 + h0 = au
βv∗y∗

(

x∗ + y∗)2
+ du

βe−mτv∗x∗
(

x∗ + y∗)2
> 0,

(

g2 + h2
)(

g1 + h1
) − (g0 + h0

)

=

[

d(a + u) +
(

e−mτx∗ + y∗) uβv∗
(

x∗ + y∗)2

]

×
[

a + d + u +
(

e−mτx∗ + y∗) βv∗
(

x∗ + y∗)2

]

+
λβe−mτv∗
(

x∗ + y∗)2

[

a + d +
(

e−mτx∗ + y∗) βv∗
(

x∗ + y∗)2

]

> 0.

(3.11)

By the Hurwitz criteria, all roots of (3.10) have only negative real parts.
If iω(ω > 0) is a solution of (3.8), separating real and imaginary parts, it follows that

ω3 − g1ω =
(

h2ω
2 − h0

)

sinωτ + h1ω cosωτ,

g2ω
2 − g0 = −

(

h2ω
2 − h0

)

cosωτ + h1ω sinωτ.
(3.12)

Squaring and adding the two equations of (3.12), we derive that

ω6 + C1ω
4 + C2ω

2 + C3 = 0, (3.13)

where

C1 = u2 +

(

d +
βv∗y∗

(

x∗ + y∗)2

)2

+
ax∗

x∗ + y∗

(

a +
βe−mτx∗v∗
(

x∗ + y∗)2

)

> 0,

C2 = a2
(

d2 + u2
)y∗(x∗ + 2y∗)

(

x∗ + y∗)2
+

a2βv∗y∗
(

x∗ + y∗)2

(

2d +
βv∗y∗

(

x∗ + y∗)2

)

+ u2
(

d +
βv∗y∗

(

x∗ + y∗)2

)2

> 0,

C3 =
au2βv∗(de−mτx∗ + ay∗)

(

x∗ + y∗)3

(

d
(

2x∗ + y∗) +
βv∗y∗

x∗ + y∗

)

> 0.

(3.14)

Hence, (3.13) has no positive roots. Accordingly, by the general theory of characteristic
equations of delay differential equations in the work of Kuang [26] (Theorem 4.1), if R0 > 1,
the virus-infected equilibrium E∗ of system (1.3) exists and is locally asymptotically stable.

Based on the discussions above, we have the following result.
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Theorem 3.1. For system (1.3), one has the following.

(i) If R0 < 1, the infection-free equilibrium E0(λ/d, 0, 0) is locally asymptotically stable. If
R0 > 1, then E0(λ/d, 0, 0) is unstable.

(ii) If R0 > 1, the virus-infected equilibrium E∗(x∗, y∗, v∗) is locally asymptotically stable.

4. Global Stability

In this section, we discuss the global stability of the infection-free equilibrium and the
virus-infected equilibrium of system (1.3), respectively. The technique of proofs is to use a
comparison argument and an iteration scheme (see, e.g., [27]).

Theorem 4.1. Let R0 > 1. If

(H1) adu2 > kβ(kβe−mτ − au),

then the virus-infected equilibrium E∗(x∗, y∗, v∗) of system (1.3) is globally asymptotically stable.

Proof. Let (x(t), y(t), v(t)) be any positive solution of system (1.3)with initial condition (1.4).
Let

U1 = lim sup
t→+∞

x(t), V1 = lim inf
t→+∞

x(t),

U2 = lim sup
t→+∞

y(t), V2 = lim inf
t→+∞

y(t),

U3 = lim sup
t→+∞

v(t), V3 = lim inf
t→+∞

v(t).

(4.1)

Now we claim thatU1 = V1 = x∗, U2 = V2 = y∗, and U3 = V3 = v∗.
It follows from the first equation of system (1.3) that

ẋ(t) ≤ λ − dx(t). (4.2)

By comparison we derive that

U1 = lim sup
t→+∞

x(t) ≤ λ

d
:=Mx

1 . (4.3)

Hence, for ε > 0 sufficiently small there exists a T1 > 0 such that if t > T1, x(t) ≤ Mx
1 + ε. We

therefore derive from the second and the third equations of system (1.3) that, for t > T1 + τ ,

ẏ(t) ≤ βe−mτ
(

Mx
1 + ε

)

v(t − τ)
Mx

1 + ε + y(t − τ)
− ay(t),

v̇(t) = ky(t) − uv(t).
(4.4)
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Consider the following auxiliary equations:

u̇1(t) =
βe−mτ

(

Mx
1 + ε

)

u2(t − τ)
Mx

1 + ε + u1(t − τ)
− au1(t),

u̇2(t) = ku1(t) − uu2(t).
(4.5)

Since R0 > 1, by Lemma 2.5 it follows from (4.5) that

lim
t→+∞

u1(t) =

(

kβe−mτ − au)(Mx
1 + ε

)

au
,

lim
t→+∞

u2(t) =
k
(

kβe−mτ − au)(Mx
1 + ε

)

au2
.

(4.6)

By comparison, we obtain that

U2 = lim sup
t→+∞

y(t) ≤
(

kβe−mτ − au)(Mx
1 + ε

)

au
,

U3 = lim sup
t→+∞

v(t) ≤ k
(

kβe−mτ − au)(Mx
1 + ε

)

au2
.

(4.7)

Since these inequalities are true for arbitrary ε > 0, it follows thatU2 ≤My

1 , U3 ≤Mv
1 , where

M
y

1 =

(

kβe−mτ − au)Mx
1

au
, Mv

1 =
k
(

kβe−mτ − au)Mx
1

au2
. (4.8)

Hence, for ε > 0 sufficiently small, there is a T2 ≥ T1+τ such that if t > T2, y(t) ≤My

1 +ε, v(t) ≤
Mv

1 + ε.
For ε > 0 sufficiently small, we derive from the first equation of system (1.3) that, for

t > T2,

ẋ(t) ≥ λ − dx(t) − β(Mv
1 + ε

)

. (4.9)

A comparison argument shows that

V1 = lim inf
t→+∞

x(t) ≥ λ − β(Mv
1 + ε

)

d
. (4.10)

Since this is true for arbitrary ε > 0 sufficiently small, we conclude that V1 ≥Nx
1 , where

Nx
1 =

λ − βMv
1

d
. (4.11)

Hence, for ε > 0 sufficiently small, there is a T3 ≥ T2 such that if t > T3, x(t) ≥Nx
1 − ε.



Discrete Dynamics in Nature and Society 13

For ε > 0 sufficiently small, we derive from the second and the third equations of
system (1.3) that, for t > T3 + τ ,

ẏ(t) ≥ βe−mτ
(

Nx
1 − ε)v(t − τ)

Nx
1 − ε + y(t − τ) − ay(t),

v̇(t) = ky(t) − uv(t).
(4.12)

Consider the following auxiliary equations:

u̇1(t) =
βe−mτ

(

Nx
1 − ε)u2(t − τ)

Nx
1 − ε + u1(t − τ) − au1(t),

u̇2(t) = ku1(t) − uu2(t).
(4.13)

Since (H1) holds, by Lemma 2.5, it follows from (4.13) that

lim
t→+∞

u1(t) =

(

kβe−mτ − au)(Nx
1 − ε)

au
,

lim
t→+∞

u2(t) =
k
(

kβe−mτ − au)(Nx
1 − ε)

au2
.

(4.14)

By comparison we derive that

V2 = lim inf
t→+∞

y(t) ≥
(

kβe−mτ − au)(Nx
1 − ε)

au
,

V3 = lim inf
t→+∞

v(t) ≥ k
(

kβe−mτ − au)(Nx
1 − ε)

au2
.

(4.15)

Since these two inequalities hold for arbitrary ε > 0 sufficiently small, we conclude that V2 ≥
N

y

1 , V3 ≥Nv
1 , where

N
y

1 =

(

kβe−mτ − au)Nx
1

au
,

Nv
1 =

k
(

kβe−mτ − au)Nx
1

au2
.

(4.16)

Therefore, for ε > 0 sufficiently small, there is a T4 ≥ T3 + τ such that if t > T4, y(t) ≥ N
y

1 −
ε, v(t) ≥Nv

1 − ε.
For ε > 0 sufficiently small, it follows from the first equation of system (1.3) that, for

t > T4,

ẋ(t) ≤ λ − dx(t) − β
(

Nv
1 − ε)x(t)

Mx
1 + ε +M

y

1 + ε
. (4.17)
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A comparison argument yields

U1 = lim sup
t→+∞

x(t) ≤
λ
(

Mx
1 + ε +M

y

1 + ε
)

d
(

Mx
1 + ε +M

y

1 + ε
)

+ β
(

Nv
1 − ε)

. (4.18)

Since this is true for arbitrary ε > 0, it follows thatU1 ≤Mx
2 , where

Mx
2 =

λ
(

Mx
1 +M

y

1

)

d
(

Mx
1 +M

y

1

)

+ βNv
1

. (4.19)

Hence, for ε > 0 sufficiently small there is a T5 ≥ T4 such that if t > T5, x(t) ≤ Mx
2 + ε. It

therefore follows from the second and the third equations of system (1.3) that, for t > T5 + τ ,

ẏ(t) ≤ βe−mτ
(

Mx
2 + ε

)

v(t − τ)
Mx

2 + ε + y(t − τ)
− ay(t),

v̇(t) = ky(t) − uv(t).
(4.20)

By Lemma 2.5 and a comparison argument we derive from (4.20) that

U2 = lim sup
t→+∞

y(t) ≤
(

kβe−mτ − au)(Mx
2 + ε

)

au
,

U3 = lim sup
t→+∞

v(t) ≤ k
(

kβe−mτ − au)(Mx
2 + ε

)

au2
.

(4.21)

Since these inequalities are true for arbitrary ε > 0, it follows thatU2 ≤My

2 , U3 ≤Mv
2 , where

M
y

2 =

(

kβe−mτ − au)Mx
2

au
,

Mv
1 =

k
(

kβe−mτ − au)Mx
2

au2
.

(4.22)

Hence, for ε > 0 sufficiently small, there exists a T6 ≥ T5 + τ such that if t > T6, y(t) ≤
M

y

2 + ε, v(t) ≤Mv
2 + ε.

Again, for ε > 0 sufficiently small, we derive from the first equation of system (1.3)
that, for t > T6,

ẋ(t) ≥ λ − dx(t) − βx(t)
(

Mv
2 + ε

)

Nx
1 − ε +Ny

1 − ε
. (4.23)
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A comparison argument shows that

V1 = lim inf
t→+∞

x(t) ≥
λ
(

Nx
1 − ε +Ny

1 − ε
)

d
(

Nx
1 − ε +Ny

1 − ε
)

+ β
(

Mv
2 + ε

)

. (4.24)

Since this is true for arbitrary ε > 0, we derive that V1 ≥Nx
2 , where

Nx
2 =

λ
(

Nx
1 +Ny

1

)

d
(

Nx
1 +Ny

1

)

+ βMv
2

. (4.25)

Hence, for ε > 0 sufficiently small, there is a T7 ≥ T6 such that if t > T7, x(t) ≥Nx
2 − ε.

For ε > 0 sufficiently small, it follows from the second and the third equations of
system (1.3) that, for t > T7 + τ ,

ẏ(t) ≥ βe−mτ
(

Nx
2 − ε)v(t − τ)

Nx
2 − ε + y(t − τ) − ay(t),

v̇(t) = ky(t) − uv(t).
(4.26)

Since (H1) holds, by Lemma 2.5 and a comparison argument, it follows from (4.26) that

V2 = lim inf
t→+∞

y(t) ≥
(

kβe−mτ − au)(Nx
2 − ε)

au
,

V3 = lim inf
t→+∞

v(t) ≥ k
(

kβe−mτ − au)(Nx
2 − ε)

au2
.

(4.27)

Since these two inequalities hold for arbitrary ε > 0 sufficiently small, we conclude that V2 ≥
N

y

2 , V3 ≥Nv
2 , where

N
y

2 =

(

kβe−mτ − au)Nx
2

au
,

Nv
2 =

k
(

kβe−mτ − au)Nx
2

au2
.

(4.28)

Therefore, for ε > 0 sufficiently small, there exists a T8 ≥ T7 + τ such that if t > T8, y(t) ≥
N

y

2 − ε,v(t) ≥Nv
2 − ε.
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Continuing this process, we derive six sequencesMx
n, M

y
n , Mv

n, N
x
n , N

y
n , andNv

n (n =
1, 2, . . .) such that, for n ≥ 2,

Mx
n =

λ
(

Mx
n−1 +M

y

n−1
)

d
(

Mx
n−1 +M

y

n−1
)

+ βNv
n−1

,

M
y
n =

(

kβe−mτ − au)Mx
n

au
,

Mv
n =

k
(

kβe−mτ − au)Mx
n

au2
,

Nx
n =

λ
(

Nx
n−1 +N

y

n−1
)

d
(

Nx
n−1 +N

y

n−1
)

+ βMv
n

,

N
y
n =

(

kβe−mτ − au)Nx
n

au
,

Nv
n =

k
(

kβe−mτ − au)Nx
n

au2
.

(4.29)

It is readily seen that

Nx
n ≤ V1 ≤ U1 ≤Mx

n, N
y
n ≤ V2 ≤ U2 ≤My

n, Nv
n ≤ V3 ≤ U3 ≤Mv

n. (4.30)

It is easy to show that the sequencesMx
n,M

y
n , andMv

n are nonincreasing and the sequences
Nx

n , N
y
n , and Nv

n are nondecreasing. Hence, the limit of each sequence in Mx
n, M

y
n , Mv

n, N
x
n ,

N
y
n , andNv

n exists. Denote

x = lim
n→+∞

Mx
n, x = lim

n→+∞
Nx

n,

y = lim
n→+∞

M
y
n, y = lim

n→+∞
N

y
n ,

v = lim
n→+∞

Mv
n, v = lim

n→+∞
Nv

n.

(4.31)

We therefore obtain from (4.29) and (4.31) that

dkβe−mτ

au
x +

kβ
(

kβe−mτ − au)

au2
x = 0, (4.32)

dkβe−mτ

au
x +

kβ
(

kβe−mτ − au)

au2
x = 0. (4.33)
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By having (4.32) minus (4.33),

(

x − x)
[

dkβe−mτ

au
− kβ

(

kβe−mτ − au)

au2

]

= 0. (4.34)

Noting that (H1) holds and R0 > 1, it follows that

dkβe−mτ

au
>
kβ
(

kβe−mτ − au)

au2
, (4.35)

which, together with (4.34), yields x = x. We therefore derive from (4.31) that y = y, v = v.
Noting that if (H1) holds, by Theorem 3.1, the virus-infected equilibrium E∗ is locally stable,
we conclude that E∗ is globally stable. The proof is complete.

Theorem 4.2. If R0 < 1 holds, the infection-free equilibrium E0(λ/d, 0, 0) of system (1.3) is globally
asymptotically stable.

Proof. Let (x(t), y(t), v(t)) be any positive solution of system (1.3)with initial condition (1.4).
It follows from the first equation of system (1.3) that

ẋ(t) ≤ λ − dx(t). (4.36)

A standard comparison argument shows that

lim sup
t→+∞

x(t) ≤ λ

d
. (4.37)

Hence, for ε > 0 sufficiently small, there is a T1 > 0 such that if t > T1, x(t) ≤ λ/d + ε. We
derive from the second and the third equations of system (1.3) that for t > T1 + τ ,

ẏ(t) ≤ βe−mτ(λ/d + ε)v(t − τ)
λ/d + ε + y(t − τ) − ay(t),

v̇(t) = ky(t) − uv(t).
(4.38)

Consider the following auxiliary equation:

u̇1(t) =
βe−mτ(λ/d + ε)u2(t − τ)
λ/d + ε + u1(t − τ) − au1(t),

u̇2(t) = ku1(t) − uu2(t).
(4.39)

If R0 < 1, then by Lemma 2.5 it follows from (4.37) and (4.39) that

lim
t→+∞

u1(t) = 0, lim
t→+∞

u2(t) = 0. (4.40)
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Table 1: Rapid deline in plasma virus: mean HBV DNA levels (log copies/ml) in response to the therapy,
and the virus level returning rapidly after the treatment was stopped.

Week 0 1 2 4 6 8 12 18
Patient Nos. 272 272 272 267 267 267 267 267
Virus load 9.8 7.8 6.6 5.6 5.1 4.8 4.4 4.3
Week 24 30 36 42 48 52 60 72
Patient Nos. 263 263 259 260 249 248 228 241
Virus load 4.2 4.0 4.15 4.2 4.5 7.0 8.0 8.20

By comparison, we obtain that

lim
t→+∞

y(t) = 0, lim
t→+∞

v(t) = 0. (4.41)

Therefore, for ε > 0 sufficiently small, there is a T2 > T1+τ such that if t > T2, y(t) < ε, v(t) < ε.
It follows from the first equation of system (1.3) that for t > T2,

ẋ(t) ≥ λ − dx(t) − βε. (4.42)

By comparison, we derive that

lim inf
t→+∞

x(t) ≥ λ − βε
d

. (4.43)

Letting ε → 0, it follows that

lim inf
t→+∞

x(t) ≥ λ

d
. (4.44)

This together with (4.37) yields

lim
t→+∞

x(t) =
λ

d
. (4.45)

This completes the proof.

5. Numerical Example

In this section, we give one example to illustrate the main result in Section 4.
In [28], one group of HBeAg-Positive chronic hepatitis B patients received 100mg of

lamivudine once daily. The study comprised 48 weeks of treatment and a 24-week treatment-
free followup. While the onset of therapy and viral levels decline rapidly, the virus returns as
soon as the drug is withdrawn (see Table 1).
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Figure 1: The numerical solution of system (5.1). (a) Uninfected cells x; (b) infected cells y; (c) virus
declines in response to drug treatment and virus resurges as soon as the drug is withdrawn in which the
clinical data are marked by dots.

In the following, we will use the set of clinical data to formulate a hepatitis B virus
infection therapy model. Assume that, during the lamivudine drug treatment, the dynamic
model of the patient with the mean load HBV DNA is of the form

ẋ(t) = λ − dx(t) − (1 − n1)
βx(t)v(t)
x(t) + y(t)

,

ẏ(t) = (1 − n1)
βe−mτx(t − τ)v(t − τ)
x(t − τ) + y(t − τ) − ay(t),

v̇(t) = (1 − n2)ky(t) − uv(t).

(5.1)

Clearly, if n1 = n2 = 0, then system (5.1) becomes system (1.3), which means that the patients
are assumed to return to the stable state before the drug therapy.

Example 5.1. In system (5.1), based on the work of [6] and clinical data, we let λ = 2×1011, d =
3.7877 × 10−3, a = 3.38d, u = 0.67, β = 1.4557 × 10−6, k = 5.1885 × 103, τ = 2, m = 0.2, n1 = 0,
and n2 = 0.99982.
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Figure 2: The numerical solution for viral decay of system (1.3) when τ = 0, 1 and 2 days.

Before the therapy, that is, n1 = n2 = 0, by a direct calculation, we have the basic
reproduction ratio R0 ≈ 1.33, and system (1.3) has a virus-infected equilibrium E∗. Clearly,
(H1) holds. By Theorem 4.1, we see that the virus-infected equilibrium E∗ of system (1.3)
is globally asymptotically stable. Numerical simulation illustrates the previous result (see
Figure 1).

Biologically, as can be seen from Figure 1(c), based on system (5.1), during the 48
weeks of treatment, the viral levels decline rapidly. As soon as the drug is withdrawn,
by Theorem 4.1, virus level returns rapidly and tends to the virus-infected equilibrium.
Figure 1(c) indicates that the simulation of model (5.1) agrees well with the clinical data
reported. Furthermore, compared with the work of Min et al. [6], it is easy to show that the
simulation results are similar. However, for system (1.3), numerical simulation shows that
the slopes of the curves generated with different delays differ, and notice the slopes of the
decay with and without a delay are parallel. When the time delay increases, it is easy to see
that the viral load reduces; numerical simulation illustrates that the change in the slope is
affected by the delay (see Figure 2).
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