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This paper studies the behavior of positive solutions to the following particular case of a difference

equation by Stević xn+1 = A + x
p
n/x

pk+1

n−k , n ∈ N0, where A,p ∈ (0,+∞), k ∈ N, and presents
theoretically computable explicit lower and upper bounds for the positive solutions to this
equation. Besides, a concrete example is given to show the computing approaches which are
effective for small parameters. Some analogous results are also established for the corresponding
Stević max-type difference equation.

1. Introduction

The study regarding the behavior of positive solutions to the difference equation

xn = A +
x
p

n−k
x
q
n−m

, n ∈ N0, (1.1)

where A, p, q ∈ (0,+∞) and k,m ∈ N, k /=m, was put forward by Stević at many conferences
(see, e.g., [1–3]). For numerous papers in this area and some closely related results, see [1–39]
and the references cited therein.

In [4, 24], the authors proved some conditions for the global asymptotic stability of the
positive equilibrium to the difference equation given by

yn+1 = A +
yn

yn−k
, n ∈ N0, (1.2)

with A > 0, k ∈ N.
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Motivated by these papers, the authors of [8] studied the quantitative bounds for the
recursive equation (1.2)where y−k, . . . , y−1, y0, A > 0, and k ∈ N\{1}, and quantitative bounds
of the form Ri ≤ yi ≤ Si, i ≥ k + 1 were provided. Exponential convergence was shown to
persist for all solutions. The authors also took A = k = 2 as an example, and eventually
obtained the concrete bounds as follows:

2 +
n−2∏

i=n−3

(
1 −
(
12
17

)[(i+2)/10]
)

≤ yn ≤ 2 +
n−2∏

i=n−3

(
1 +
(
2
3

)2[(i−3)/10]+1)
, n > 6. (1.3)

In [20], Stević investigated positive solutions of the following difference equation:

xn+1 = A +
x
p
n

xr
n−1

, n ∈ N0, (1.4)

where A, p, r ∈ (0,+∞), and gave a complete picture concerning the boundedness character
of the positive solutions to (1.4) as well as of positive solutions of the following counterpart
in the class of max-type difference equations:

yn+1 = max

{
A,

y
p
n

yr
n−1

}
, n ∈ N0, (1.5)

where A, p, r are positive real numbers.
Motivated by the above work and works in [6, 9, 10, 12, 17, 21, 22], our aim in this

paper is to discuss the quantitative bounds of the solutions to the following higher-order
difference equation:

xn+1 = A +
x
p
n

x
pk+1

n−k
, n ∈ N0, (1.6)

where A, p ∈ (0,+∞), k ∈ N, and the initial values are positive. Following the methods and
ideas from [8], we obtain theoretically computable explicit bounds of the form

A +
n−2∏

j=n−k−1
a

(
2
[
j + k − 1
4k + 2

])pn−j−1

≤ xn ≤ A +
n−2∏

j=n−k−1
b

(
2
[
j − k − 2
4k + 2

]
+ 1
)pn−j−1

(1.7)

which are independent of the positive initial values x−k, x−k+1, . . . , x0.
Our results extend those ones in [8], in which the case p = 1 was considered, and also

in some way improve those in [20], in which the case k = 1 was considered.
On the other hand, inspired by the study in [19] we also investigate the quantitative

bounds for the positive solutions to the following max-type recursive equation:

yn+1 = max

⎧
⎨

⎩A,
y
p
n

y
pk+1

n−k

⎫
⎬

⎭, n ∈ N0, (1.8)

where A, p ∈ (0,+∞), k ∈ N, and some similar results are established.
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We want to point out that the boundedness characters of (1.1) and (1.8) for the case
k = 1 and m ∈ N, including our particular case, have been recently solved by Stević and
presented at several conferences (see also [25]).

2. Auxiliary Results

In this section, we will present several preliminary lemmas needed to prove the main results
in Section 3.

The following lemma can be easily proved.

Lemma 2.1. Equation (1.6) has a unique positive equilibrium point x > A.

Now, let us define a first-order difference equation given by

u(n + 1) =
A

(
A + u(n)r

)p +
1

(
A + u(n)r

)pk+1 , n ∈ N0, (2.1)

where A, p > 0 are identical to those of (1.6), r =
∑k

i=1 p
i, and the initial value u(0) > 0.

If p = 1, then (2.1) reduces to the sequence {x(i)} defined in [8].

Lemma 2.2. Equation (2.1) has a unique positive equilibrium if p > 1 and A ≥ [rp(pk − 1)]1/p or
0 < p ≤ 1.

Proof. Suppose that x > 0 is an equilibrium point of (2.1), then we have

x =
A

(A + xr)p
+

1

(A + xr)p
k+1

. (2.2)

Let F(x) = x(A + xr)p
k+1 −A(A + xr)p(p

k−1) − 1, then it suffices to show that F(x) has only one
positive fixed point. The derivative of F(x) is

F ′(x) = (A + xr)p
k+1−p−1[(A + xr)p+1 + rxrpk+1(A + xr)p − rAp

(
pk − 1

)
xr−1
]

= (A + xr)p
k+1−p−1{(A + xr)p+1 + rxr−1

[
xpk+1(A + xr)p −Ap

(
pk − 1

)]}
.

(2.3)

(i) If p ≤ 1, then obviously F ′(x) > 0 for x ≥ 0.

(ii) If p > 1 and x ≥ 1, then F ′(x) > 0 follows from (A + 1)p > A.

(iii) If p > 1 and 0 < x < 1, we have

(A + xr)p+1 + rxr−1
[
xpk+1(A + xr)p −Ap

(
pk − 1

)]

> (A + xr)p+1 − rpxr−1A
(
pk − 1

)
> A
(
Ap − rp

(
pk − 1

))
≥ 0.

(2.4)

Hence F ′(x) > 0.
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Through above analysis, if p > 1 and A > [rp(pk − 1)]1/p or 0 < p ≤ 1, then F(x) is
monotonically increasing on (0,+∞). Hence the uniqueness of positive equilibrium of (2.1)
follows from F(0) = −Apk+1−p+1 − 1 < 0, and limx→+∞F(x) = +∞.

Lemma 2.3. If p > 1 and A ≥ [rp(pk − p)]1/p or 0 < p ≤ 1, then the unique equilibrium point of
(1.6) has the form A + λr , where λ > 0 is the unique positive equilibrium of (2.1).

Proof. Defining ρ(x) = x(A + xr)p − (A + xr), x > 0, simply we have that ρ(x) has a unique
positive zero denoted by λ, that is, λ(A + λr)p = (A + λr).

If p = 1, then λ = 1, and thus

λ =
A

(A + λr)p
+

1

(A + λr)p
k+1

, A + λr = A +
(A + λr)p

(A + λr)p
k+1

. (2.5)

If p > 0 and p /= 1, then

A + λr = λ1/(1−p), λ(A + λr)p = A + λr = A +
(A + λr)p

(A + λr)p
k+1

. (2.6)

Hence

λ =
A

(A + λr)p
+

1

(A + λr)p
k+1

. (2.7)

From above analysis, we conclude that λ and A + λr are the unique equilibriums of (2.1) and
(1.6), respectively.

3. Quantitative Bounds of Solutions to (1.6)

In this section, through analyzing the boundedness of (1.6) we mainly present two explicit
bounds for the positive solutions to (1.6).

Let the positive sequence {xi}∞i=−k be a solution to (1.6), then for n ≥ −k we define

θn =
xn+1

x
p
n

. (3.1)

It follows from (3.1) and (1.6) that

θn =
A

x
p
n

+
1

x
pk+1

n−k
, n ∈ N0. (3.2)
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Combining (3.1) and (1.6), we can simply obtain that

xn = A +
x
p

n−1

x
pk+1

n−k−1
= A +

x
p

n−1

x
p2

n−2

x
p2

n−2

x
p3

n−3
· · · x

pk

n−k

x
pk+1

n−k−1
= A + θ

p

n−2θ
p2

n−3 · · · θ
pk

n−k−1, n ∈ N. (3.3)

By (3.2) and (3.3), the identity

θn =
A

(
A + θ

p

n−2θ
p2

n−3 · · · θ
pk

n−k−1
)p +

1
(
A + θ

p

n−k−2θ
p2

n−k−3 · · · θ
pk

n−2k−1
)pk+1 (3.4)

holds for all n ≥ k + 1.
Note that xi > A for i ≥ 1, and hence it follows from (3.2) that

0 < θi < A1−p +
1

Apk+1
, i ≥ k + 1. (3.5)

Let us define two sequences {Si}∞i=k+1 and {Bi}∞i=k+1 recursively in the following way:

Bi =
A

(
A + S

p

i−2S
p2

i−3 · · ·S
pk

i−k−1
)p +

1
(
A + S

p

i−k−2S
p2

i−k−3 · · ·S
pk

i−2k−1
)pk+1 ,

Si =
A

(
A + B

p

i−2B
p2

i−3 · · ·B
pk

i−k−1
)p +

1
(
A + B

p

i−k−2B
p2

i−k−3 · · ·B
pk

i−2k−1
)pk+1

(3.6)

for all i ≥ 3k + 3, and the initial values satisfy

Si = 0, Bi = A1−p +
1

Apk+1
, k + 1 ≤ i ≤ 3k + 2. (3.7)

Apparently Si ≤ θi ≤ Bi for i ≥ k + 1, and the problem of bounding (1.6) reduces to
consideration of the recursive dependent sequences {Si}, {Bi}.

Lemma 3.1. The sequences {Si} and {Bi} are nondecreasing and nonincreasing, respectively.

Proof. It follows from (3.7) that for k + 1 ≤ i ≤ 3k + 1 we have Si+1 = Si = 0 and

Bi+1 = Bi =
1

Ap−1 +
1

Apk+1
. (3.8)
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Hence assume that Si+1 ≥ Si and Bi+1 ≤ Bi for k + 1 ≤ i < M (M ≥ 3k + 2). By induction, we
have that

BM+1 =
A

(
A + S

p

M−1S
p2

M−2 · · ·S
pk

M−k
)p +

1
(
A + S

p

M−k−1S
p2

M−k−2 · · ·S
pk

M−2k
)pk+1

≤ A
(
A + S

p

M−2S
p2

M−3 · · ·S
pk

M−k−1
)p +

1
(
A + S

p

M−k−2S
p2

M−k−3 · · ·S
pk

M−2k−1
)pk+1

= BM.

(3.9)

Through similar calculations, we have SM+1 ≥ SM, and by induction the lemma is proved.

Theorem 3.2. For (2.1) with u(0) = 0, let S∗
n = u(2[(n + k − 1)/(4k + 2)]) and B∗

n = u(2[(n + k −
2)/(4k + 2)] + 1) for n ≥ k + 2. Then the inequality

S∗
n ≤ θn ≤ B∗

n (3.10)

holds for all n ≥ k + 2.

Proof. From (3.7) and the definitions of S∗
n, B

∗
n, we have that Si = S∗

i and Bi = B∗
i for k + 2 ≤

i ≤ 3k + 2. Thus, assume that Si ≤ S∗
i and Bi ≤ B∗

i for k + 2 ≤ i < M (M ≥ 3k + 3). Then

SM =
A

(
A + B

p

M−2B
p2

M−3 · · ·B
pk

M−k−1
)p +

1
(
A + B

p

M−k−2B
p2

M−k−3 · · ·B
pk

M−2k−1
)pk+1

≥ A
(
A + B

p+···+pk
M−k−1

)p +
1

(
A + B

p+···+pk
M−2k−1

)pk+1 ≥ A
(
A + Br

M−2k−1
)p +

1
(
A + Br

M−2k−1
)pk+1

≥ A
(
A +
(
B∗
M−2k−1

)r)p +
1

(
A +
(
B∗
M−2k−1

)r)pk+1

=
A

(
A + (u(2[(M − 3k − 3)/(4k + 2)] + 1))r

)p

+
1

(
A + (u(2[(M − 3k − 3)/(4k + 2)] + 1))r

)pk+1

= u

(
2
[
M + k − 1
4k + 2

])
= S∗

M.

(3.11)

Similar calculations lead to BM ≤ B∗
M, and inductively the theorem can be proved.

Theorem 3.3. If the solution u(i) to (2.1) with u(0) = 0 converges to the unique equilibrium λ under
the conditions in Lemma 2.2 and there exist two sequences {a(i)} and {b(i)} which are lower and
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upper bounds for (2.1) such that a(i) ≤ u(i) ≤ b(i), i ≥ k + 2, and limi→+∞a(i) = limi→+∞b(i) = λ,
then the solutions to (1.6) have explicit bounds of the following form:

A +
n−2∏

j=n−k−1
a

(
2
[
j + k − 1
4k + 2

])pn−j−1

≤ xn ≤ A +
n−2∏

j=n−k−1
b

(
2
[
j − k − 2
4k + 2

]
+ 1
)pn−j−1

(3.12)

for all n ≥ 3k + 3.

Proof. The proof follows directly from Lemma 2.2 and Theorem 3.2, and thus is omitted.

Note that Theorem 3.3 and Lemma 2.3 imply the following corollary.

Corollary 3.4. If the solution u(i) to (2.1)with u(0) = 0 converges to the unique equilibrium λ under
the conditions in Lemma 2.2, then the unique equilibrium A + λr of (1.6) is a global attractor.

By Theorem 3.3, it suffices to determine the explicit bounds for (2.1). In the following,
a simple case would be taken. For example,

if the parameters A, p, k are fixed, then by (2.1)we get

un+2 =
A

(
A +
(
A/
(
A + u(n)r

)p + 1/
(
A + u(n)r

)pk+1)r)p

+
1

(
A +
(
A/
(
A + u(n)r

)p + 1/
(
A + u(n)r

)pk+1)r)pk+1
, n ∈ N0.

(3.13)

Denote u(i) = δ(i) + λ for i ≥ 0 (λ the unique equilibrium of (2.1)), then we have that,
being for n ≥ 0,

δ(n + 2) =
A

(
A +
(
A/
(
A + (δ(n) + λ)r

)p + 1/
(
A + (δ(n) + λ)r

)pk+1)r)p

+
1

(
A +
(
A/
(
A + (δ(n) + λ)r

)p + 1/
(
A + (δ(n) + λ)r

)pk+1)r)pk+1
− λ = γ(δ(n)),

(3.14)

where the function γ is defined by

γ(x) =
A

(
A +
(
A/
(
A + (x + λ)r

)p + 1/
(
A + (x + λ)r

)pk+1)r)p

+
1

(
A +
(
A/
(
A + (x + λ)r

)p + 1/
(
A + (x + λ)r

)pk+1)r)pk+1
− λ

(3.15)

for x > −λ.
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Example 3.5 ((A = 3, p = 1, k = 2)). Then γ(x) reduces to the following form:

γ(x) =
4

3 +
(
4/(3 + (x + 1)2)

)2 − 1, x > −1. (3.16)

Obviously, γ is monotonically increasing for x > −1 and γ(0) = 0. By simplifying γ , we have

γ(x) =
x
(
x3 + 4x2 + 12x + 16

)

3x4 + 12x3 + 36x2 + 48x + 64
. (3.17)

Having the function ϕ defined via ϕ(x) = γ(x)/x, we get the derivative of ϕ as follows:

ϕ′(x) = −3x
6 + 24x5 + 120x4 + 384x3 + 624x2 + 640x
(
3x4 + 12x3 + 36x2 + 48x + 64

)2 < 0 (3.18)

for all x > 0. Thus ϕ(x) < ϕ(0) = 1/4 for x > 0 and

γ(tn)
tn+2

=
γ(tn)
tn

1
t2

<
1
4t2

. (3.19)

Therefore γ(tn) < tn+2 whenever t ≥ 1/2. In addition, for −1 ≤ x < 0, γ(x) < 0 and both
ξ(x) = x3 +4x2 +12x+16 and η(x) = 3x4 +12x3 +36x2 +48x+64 are monotonically increasing.
Hence we have

∣∣∣∣
γ(−tn)
−tn+2

∣∣∣∣ <
∣∣∣∣
ξ(0)
η(−1)

∣∣∣∣
1
t2

=
16
43

1
t2
, (3.20)

and γ(−tn) > −tn+2 whenever t2 ≥ 16/43.
Now set π+(n) = (1/2)n, for n ≥ 0, and π−(n) = (16/43)n/2. Note that δ(0) = −1 =

−π−(0) and δ(1) = 1/3 < π+(1). Thus suppose that −1 ≤ −π−(2i) ≤ δ(2i) ≤ 0 and 0 ≤
δ(2i + 1) ≤ π+(2i + 1), for 0 ≤ i ≤ N (N ≥ 0). Then by induction we have

δ(2N + 2) = γ(δ(2N)) ≥ γ(−π−(2N)) = γ

(
−
(
16
43

)N
)

≥ −π−(2N + 2),

δ(2N + 3) = γ(δ(2N + 1)) ≤ γ(π+(2N + 1)) = γ

((
1
2

)2N+1
)

≥ π+(2N + 3).

(3.21)

Therefore since the fact that δ(i) ≤ 0 for i even and δ(i) ≥ 0 for i odd, we obtain that, for i ≥ 0,

−
(
16
43

)i/2

≤ δ(i) ≤
(
1
2

)i

, 1 −
(
16
43

)i/2

≤ u(i) ≤ 1 +
(
1
2

)i

. (3.22)
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Employing Theorem 3.3, we get the bounds

3 +
n−2∏

i=n−3

(
1 −
(
16
43

)[(i+1)/10]
)

≤ xn ≤ 3 +
n−2∏

i=n−3

(
1 +
(
1
2

)2[(i−4)/10]+1)
, n ≥ 9. (3.23)

4. Quantitative Bounds for Solutions to (1.8)

In this section, the upper and lower bounds of solutions to (1.8) are given, and first we present
a lemma concerning the equilibrium points of (1.8).

Lemma 4.1. If A > 1, then (1.8) has a unique positive equilibrium y = A; and if 0 < A ≤ 1, then
(1.8) has a unique positive equilibrium y = 1.

The proof is simple and thus omitted.
Suppose that {yi}pi=−k is a positive solution to (1.8), and by the transformation

βn =
yn+1

y
p
n

, n ≥ −k, (4.1)

we have that

βn = max

⎧
⎨

⎩
A

y
p
n

,
1

y
pk+1

n−k

⎫
⎬

⎭, n ∈ N0. (4.2)

It follows from (4.1) and (1.8) that

yn = max

⎧
⎨

⎩A,
y
p

n−1

y
pk+1

n−k−1

⎫
⎬

⎭ = max
{
A, β

p

n−2β
p2

n−3 · · · β
pk

n−k−1
}
, n ∈ N. (4.3)

Employing (4.2) and (4.3), we obtain that, for n ≥ −k,

βn = max

⎧
⎪⎪⎨

⎪⎪⎩

A

max
{
A, β

p

n−2β
p2

n−3 · · · β
pk

n−k−1
}p ,

1

max
{
A, β

p

n−k−2β
p2

n−k−3 · · · β
pk

n−2k−1
}pk+1

⎫
⎪⎪⎬

⎪⎪⎭
. (4.4)

For two nonnegative sequences {Li} and {Hi}, let Li ≤ βi ≤ Hi for k + 1 ≤ i < T (T ≥ 3k + 2).
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Then according to (4.4) and the sequences

LT = max

⎧
⎪⎪⎨

⎪⎪⎩

A

max
{
A,H

p

T−2H
p2

T−3 · · ·H
pk

T−k−1
}p ,

1

max
{
A,H

p

T−k−2H
p2

T−k−3 · · ·H
pk

T−2k−1
}pk+1

⎫
⎪⎪⎬

⎪⎪⎭
,

HT = max

⎧
⎪⎪⎨

⎪⎪⎩

A

max
{
A,L

p

T−2H
p2

T−3 · · ·L
pk

T−k−1
}p ,

1

max
{
A,L

p

T−k−2L
p2

T−k−3 · · ·L
pk

T−2k−1
}pk+1

⎫
⎪⎪⎬

⎪⎪⎭
,

(4.5)

we have that LT ≤ βT ≤ HT .
Note that yi ≥ A for i ≥ 1, and thus from (4.2) we get

0 < βi ≤ max
{

1
Ap−1 ,

1
Apk+1

}
=

⎧
⎪⎪⎨

⎪⎪⎩

1
Apk+1

, A < 1,

1
Ap−1 , A ≥ 1

(4.6)

for k + 1 ≤ i ≤ 3k + 2.

Lemma 4.2. Let Li = 0 and Hi = max{1/Ap−1, 1/Apk+1} for k + 1 ≤ i ≤ 3k + 2, then the sequences
{Li} and {Hi} are nondecreasing and nonincreasing, respectively.

Proof. Assume that Li ≤ Li+1 andHi+1 ≤ Hi for k + 1 ≤ i < T (T ≥ 3k + 2). Then we have that

HT+1 = max

⎧
⎪⎪⎨

⎪⎪⎩

A

max
{
A,L

p

T−1L
p2

T−2 · · ·L
pk

T−k
}p ,

1

max
{
A,L

p

T−k−1L
p2

T−k−2 · · ·L
pk

T−2k
}pk+1

⎫
⎪⎪⎬

⎪⎪⎭

≤ max

⎧
⎪⎪⎨

⎪⎪⎩

A

max
{
A,L

p

T−2L
p2

T−3 · · ·L
pk

T−k−1
}p ,

1

max
{
A,L

p

T−k−2L
p2

T−k−3 · · ·L
pk

T−2k−1
}pk+1

⎫
⎪⎪⎬

⎪⎪⎭

= HT.

(4.7)

Analogous argument gives that LT ≤ LT+1, and the lemma can be proved inductively.
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Now we will take in the other first-order recursive equation

v(n + 1) = max

⎧
⎨

⎩
A

max
{
A, (v(n))r

}p ,
1

max
{
A, (v(n))r

}pk+1

⎫
⎬

⎭, n ∈ N0, (4.8)

where A, p equal those of (1.8), r = p + p2 + · · · + pk, and the initial value v(0) = 0.
Through Lemma 4.2, simpler bounds for {βi} are given below.

Theorem 4.3. The inequality

L∗
n ≤ βn ≤ H∗

n (4.9)

holds for n ≥ k + 2, where L∗
n = v(2[(n+k − 1)/(4k + 2)]) andH∗

n = v(2[(n+k − 2)/(4k + 2)] + 1).

Proof. Let Li = 0 and Hi = max{1/Ap−1, 1/Apk+1} for k + 2 ≤ i ≤ 3k + 2, and by the definitions
of {L∗

n} and {H∗
n}we have that L∗

i = Li and H∗
i = Hi for k + 2 ≤ i ≤ 3k + 2.

Assume that L∗
i ≤ Li and H∗

i ≥ Hi for k + 2 ≤ i < T (T ≥ 3k + 3), then

HT = max

⎧
⎪⎪⎨

⎪⎪⎩

A

max
{
A,L

p

T−2L
p2

T−3 · · ·L
pk

T−k−1
}p ,

1

max
{
A,L

p

T−k−2L
p2

T−k−3 · · ·L
pk

T−2k−1
}pk+1

⎫
⎪⎪⎬

⎪⎪⎭

≤ max

⎧
⎪⎪⎨

⎪⎪⎩

A

max
{
A,L

p+···+pk
T−k−1

}p ,
1

max
{
A,L

p+···+pk
T−2k−1

}pk+1

⎫
⎪⎪⎬

⎪⎪⎭

≤ max

⎧
⎨

⎩
A

max
{
A,Lr

T−2k−1
}p ,

1

max
{
A,Lr

T−2k−1
}pk+1

⎫
⎬

⎭

≤ max

⎧
⎨

⎩
A

max
{
A,
(
L∗
T−2k−1

)r}p ,
1

max
{
A,
(
L∗
T−2k−1

)r}pk+1

⎫
⎬

⎭

= max

{
A

max
{
A, (v(2[(T − k − 2)/(4k + 2)]))r

}p ,

1

max
{
A, (v(2[(T − k − 2)/(4k + 2)]))r

}pk+1

⎫
⎬

⎭

= v

(
2
[
T − k − 2
4k + 2

]
+ 1
)

= H∗
T .

(4.10)

Similar computations lead to the inequality L∗
T ≤ LT , and the theorem follows by induction.
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Theorem 4.3 and (4.8) imply the following result.

Theorem 4.4. Suppose that there exist two positive sequences {c(j)} and {d(j)} which are bounds
for a positive solution to (4.8) with v(0) = 0 such that

c
(
j
) ≤ v

(
j
) ≤ d

(
j
)
, j ≥ k + 2. (4.11)

Then the solutions to (1.8) have explicit upper and lower bounds of the following form:

max

{
A,

n−2∏

i=n−k−1
c

(
2
[
i + k − 1
4k + 2

])pn−i−1
}

≤ yn ≤ max

{
A,

n−2∏

i=n−k−1
d

(
2
[
i − k − 2
4k + 2

]
+ 1
)pn−i−1

}

(4.12)

for all n ≥ 3k + 3.

5. Conclusion

In this paper, we investigate a particular case of a higher-order difference equation by Stević
which is a natural extension of that one in [8], and mainly present improved results which
give computable approaches for quantitative bounds of solutions to (1.6). However, the
methods are only effective for small parameters, because complex polynomials will arise in
the process of computing for large parameters A, p, k.

On the basis of Corollary 3.4 and Theorem 4.4, we suggest to study the behaviors,
particularly the convergence and stability, of positive solutions to the following two recursive
equations:

u(n + 1) =
A

(
A + u(n)r

)p +
1

(
A + u(n)r

)pk+1 , n ∈ N0,

v(n + 1) = max

⎧
⎨

⎩
A

max
{
A, (v(n))r

}p ,
1

max
{
A, (v(n))r

}pk+1

⎫
⎬

⎭, n ∈ N0,

(5.1)

where A, p ∈ (0,+∞), k ∈ N, and r = Σk
i=1p

i.
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[18] S. Stević, “On the difference equation xn+1 = α + xn−1/xn,” Computers & Mathematics with Applications,
vol. 56, no. 5, pp. 1159–1171, 2008.
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