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This paper studies the boundary value problems for the fourth-order nonlinear singular difference
equationsΔ4u(i−2) = λα(i)f(i, u(i)), i ∈ [2, T +2], u(0) = u(1) = 0, u(T +3) = u(T +4) = 0. We show
the existence of positive solutions for positone and semipositone type. The nonlinear term may be
singular. Two examples are also given to illustrate the main results. The arguments are based upon
fixed point theorems in a cone.

1. Introduction

In this paper, we consider the following boundary value problems of difference equations:

Δ4u(i − 2) = λa(i)f(i, u(i)), i ∈ [2, T + 2],

u(0) = u(1) = 0, u(T + 3) = u(T + 4) = 0.
(1.1)

Here [2, T + 2] = {2, 3, . . . , T + 2} and u : [0, T + 4] → R. We will let [a, b] denote the discrete
integer set [a, b] = {a, a + 1, . . . , b}, and C([a, b]) denotes the set of continuous function on
[a, b] (discrete topology) with norm ‖ · ‖ = maxk∈[a,b]| · |.

Due to the wide applications in many fields such as computer science, economics,
neural network, ecology, and cybernetics, the theory of nonlinear difference equations
has been widely studied since the 70’s of last century. Recently, many literatures on the
boundary value of difference equations have appeared. We refer the reader to [1–13] and the
references therein, which include work on Agarwal, Elaydi, Eloe, Erber, O’Regan, Henderson,
Merdivenci, Yu, and Ma et al., concerning the existence of positive solutions and the
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corresponding eigenvalue problems. Recently, the existence of positive solutions of fourth-
order discrete boundary value problems has been studied by several authors; for example,
see [14–16] and the references therein.

On the other hand, fourth-order boundary value problems of ordinary value problems
have important application in various branches of pure and applied science. They arise
in the mathematical modeling of viscoelastic and inelastic flows, deformation of beams
and plate deflection theory [17–19]. For example, the deformations of an elastic beam can
be described by the boundary value problems of the fourth-order ordinary differential
equations. There have been extensive studies on fourth-order boundary value problems with
diverse boundary conditions via many methods, for example, [20–26] and the references
therein. We also find that the differential equations on time scales is due to its unification
of the theory of differential and difference equations, see [27–30] and the references therein.

In this paper, the boundary value problem (1.1) can be viewed as the discrete analogue
of the following boundary value problems for ordinary differential equation:

u(4)(t) = λa(t)f(t, u(t)), t ∈ (0, 1),

u(0) = u′(1) = 0, u(1) = u′(1) = 0.
(1.2)

Equation (1.2) describes an elastic beam in an equilibrium state whose both ends are simply
supported. However, very little is known about the existence of solutions of the discrete
boundary value problems (1.1). This motivates us to study (1.1).

In this paper, we discuss separately the cases when f is positone and when f is
semipositone; the nonlinear term f is singularity at u = 0, and we will prove our two
existence results for the problem (1.1) by using Krasnosel’skii fixed point theorem. This paper
is organized as follows. In Section 2, starting with some preliminary lemmas, we state the
Krasnosel’skii fixed point theorem. In Section 3, we give the sufficient conditions which state
the existence of multiple positive solutions to the positone boundary value problem (1.1). In
Section 4, we give the sufficient conditions which state the existence of at least one positive
solution to the semipositone boundary value problem (1.1).

2. Preliminaries

In this section, we state the preliminary information that we need to prove the main results.
From [28, Definition 2.1], we have the following lemma.

Lemma 2.1. u(i) is a solution of (1.1) if only and if

u(i) =
T+2∑

j=2

G
(
i, j
)
a
(
j
)
f
(
j, u
(
j
))
, i ∈ [0, T + 4], (2.1)

where

G
(
i, j
)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(T + 4 − i)2
(
j − 1

)2

2

(
i

(T + 3)2
− (T + 4 + 2i)

(
j − 1

)

3(T + 4)3

)
, 2 ≤ j ≤ i + 1,

i2
(
T + 4 − j

)2

6

(
(T + 3 − i)

(
T + 4 + 2j

)

(T + 4)3
− T + 4 − j

(T + 3)2

)
, i + 1 < j ≤ T + 2.

(2.2)
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Lemma 2.2. Green’s function G(t, s) defined by (2.2) has the following properties:

C0i
2(T + 4 − i)2

(
j − 1

)2(
T + 4 − j

)2 ≤ G
(
i, j
) ≤ (j − 1

)2(
T + 4 − j

)2
, G

(
i, j
) ≤ i2(T + 4 − i)2,

(2.3)

where C0 = 1/3(T + 4)7.

Proof. For 2 ≤ j ≤ i + 1, we have

G
(
i, j
)
=

(T + 4 − i)2
(
j − 1

)2

2

(
i

(T + 3)2
− (T + 4 + 2i)

(
j − 1

)

3(T + 4)3

)

≤ (T + 4 − i)2
(
j − 1

)2

2
i

(T + 3)2

≤ (T + 4 − j
)2(

j − 1
)2 i

2(T + 3)2

≤ (j − 1
)2(

T + 4 − j
)2
,

G
(
i, j
)
=

(T + 4 − i)2
(
j − 1

)2

2

(
i

(T + 3)2
− (T + 4 + 2i)

(
j − 1

)

3(T + 4)3

)

≤ (T + 4 − i)2
(
j − 1

)2

2
i

(T + 3)2

≤ i2(T + 4 − i)2
(
j − 1

)2

2(T + 3)2

≤ i2(T + 4 − i)2.

(2.4)

On the other hand,

G
(
i, j
)
=

(T + 4 − i)2
(
j − 1

)2

2

(
i

(T + 3)2
− (T + 4 + 2i)

(
j − 1

)

3(T + 4)3

)

≥ (T + 4 − i)2
(
j − 1

)2

2

(
i

(T + 4)2
− (T + 4 + 2i)

(
j − 1

)

3(T + 4)3

)

=
(T + 4 − i)2

(
j − 1

)2

6(T + 4)3
(
(T + 4)

(
(i + 1) − j

)
+ 2i
(
(T + 5) − j

))

≥ 2i(T + 4 − i)2
(
j − 1

)2((T + 5) − j
)

6(T + 4)3
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≥ i(T + 4 − i)2
(
j − 1

)2((T + 4) − j
)

3(T + 4)3

≥ i2(T + 4 − i)2
(
j − 1

)2((T + 4) − j
)2

3(T + 4)5

≥ i2(T + 4 − i)2
(
j − 1

)2((T + 4) − j
)2

3(T + 4)7
.

(2.5)

Then, for 2 ≤ j ≤ i + 1, we have

C0i
2(T + 4 − i)2

(
j − 1

)2(
T + 4 − j

)2 ≤ G
(
i, j
) ≤ (j − 1

)2(
T + 4 − j

)2
, G

(
i, j
) ≤ i2(T + 4 − i)2.

(2.6)

For i + 1 < j ≤ T + 2, we have

G
(
i, j
)
=

i2
(
T + 4 − j

)2

6

(
(T + 3 − i)

(
T + 4 + 2j

)

(T + 4)3
− T + 4 − j

(T + 3)2

)

≤ i2
(
T + 4 − j

)2

6
(T + 3 − i)

(
T + 4 + 2j

)

(T + 4)3

≤ i2(T + 4 − i)2

6
(T + 3 − i)

(
T + 4 + 2j

)

(T + 4)3

≤ i2(T + 4 − i)2
(
T + 4 + 2j

)

6(T + 4)3

≤ 3i2(T + 4 − i)2(T + 4)

6(T + 4)3

≤ i2(T + 4 − i)2,

G
(
i, j
)
=

i2
(
T + 4 − j

)2

6

(
(T + 3 − i)

(
T + 4 + 2j

)

(T + 4)3
− T + 4 − j

(T + 3)2

)

≤ i2
(
T + 4 − j

)2

6
(T + 3 − i)

(
T + 4 + 2j

)

(T + 4)3

≤
(
j − 1

)2(
T + 4 − j

)2

6
(T + 3 − i)

(
T + 4 + 2j

)

(T + 4)3

≤ 3
(
j − 1

)2(
T + 4 − j

)2(T + 4)2

6(T + 4)3

≤ (j − 1
)2(

T + 4 − j
)2
.

(2.7)
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On the other hand,

G
(
i, j
)
=

i2
(
T + 4 − j

)2

6

(
(T + 3 − i)

(
T + 4 + 2j

)

(T + 4)3
− T + 4 − j

(T + 3)2

)

≥ i2
(
T + 4 − j

)2

6

(
(T + 3 − i)

(
T + 4 + 2j

)

(T + 4)3
− T + 3 − i

(T + 3)2

)

≥ i2
(
T + 4 − j

)2(T + 3 − i)
6

(
(T + 8)

(T + 4)3
− 1

(T + 3)2

)

≥ i2
(
T + 4 − j

)2(T + 3 − i)
6

2T2 + 9T + 8

(T + 4)3(T + 3)2

≥ i2
(
T + 4 − j

)2(T + 3 − i)
3

1

(T + 4)3

≥
i2(T + 4 − i)2

(
j − 1

)2((
T + 4 − j

)2

3(T + 4)7
.

(2.8)

Then, for i + 1 < j ≤ T + 2, we have also

C0i
2(T + 4 − i)2

(
j − 1

)2(
T + 4 − j

)2 ≤ G
(
i, j
)
,

G
(
i, j
) ≤ (j − 1

)2(
T + 4 − j

)2
, G

(
i, j
) ≤ i2(T + 4 − i)2.

(2.9)

We note that u(t) is a solution of (1.1) if and only if

u(i) = λ
T+2∑

j=2

G
(
i, j
)
a
(
j
)
f
(
j, u
(
j
))
, i ∈ [0, T + 4]. (2.10)

For our constructions, we will consider the Banach space E = C([0, T + 4]) equipped
with the standard norm ‖u‖ = max0≤i≤T+4|u(i)|, u ∈ E. We define a cone P by

P =
{
u ∈ E | u(i) ≥ C0i

2(T + 4 − i)2‖u‖, i ∈ [0, T + 4]
}
. (2.11)

The following theorems will play a major role in our next analysis.

Theorem 2.3 (see [1]). Let X be a Banach space, and let P ⊂ X be a cone in X. Let Ω1,Ω2 be open
subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let S : P → P be a completely continuous operator such
that either

(1) ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω2, or

(2) ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω2.

Then, S has a fixed point in P ∩Ω2 \Ω1.
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3. Singular Positone Problems

Theorem 3.1. Assume that the following conditions are satisfied:

(H1) f ∈ C([2, T + 2] × (0,+∞), [0,+∞));

(H2) f(i, u) ≤ K(i)(g(u)+h(u)) on [2, T+2]×(0,∞)with g > 0 continuous and nonincreasing
on (0,∞), h ≥ 0 continuous on [0,∞), and h/g nondecreasing on (0,∞), ∃K0 with
g(xy) ≤ K0g(x)g(y) for all x > 0, y > 0;

(H3) there exists [α, β] ⊂ [2, T + 2] such that limu→+∞ inf(f(i, u)/u) = +∞ for i ∈ [α, β];

(H4) there exists [α1, β1] ⊂ [2, T + 2] such that limu→ 0+ inf(f(i, u)/u) = +∞ for i ∈ [α1, β1].

Then, for each r > 0, there exists a positive number λ∗ such that the positone problem (1.1) has at least
two positive solutions u1 and u2 with ‖u1‖ < r ≤ ‖u2‖ for 0 < λ < λ∗.

Proof. Now, we define the integral operator T : P → E by

Tu(i) = λ
T+2∑

j=2

G
(
i, j
)
a
(
j
)
f
(
j, u
(
j
))
, (3.1)

where P = {u ∈ X | u(i) ≥ C0i
2(T + 4 − i)2‖u‖, i ∈ [0, T + 4]}.

It is easy to check that T(P) ⊂ P . In fact, for each u ∈ P , we have by Lemma 2.2 that

Tu(i) ≤ λ
T+2∑

j=2

(
j − 1

)2(
T + 4 − j

)2
a
(
j
)
f
(
j, u
(
j
))
. (3.2)

This implies ‖Tu‖ ≤ λ
T+2∑
j=2

(j − 1)2(T + 4 − j)2a(j)f(j, u(j)). On the other hand, we have

Tu(i) ≥ C0i
2(T + 4 − i)2λ

T+2∑

j=2

(
j − 1

)2(
T + 4 − j

)2
a
(
j
)
f
(
j, u
(
j
))
. (3.3)

Thus, we have Tu(i) ≥ C0i
2(T + 4 − i)2‖Tu‖. In addition, standard argument shows that T is

completely continuous.
For any given r > 0, we fix it, and take Ωr = {u ∈ E | ‖u‖ < r}. Choose

λ∗ =
r

K2
0g(C0)

∑T+2
j=2
(
j − 1

)2(
T + 4 − j

)2
a
(
j
)
K
(
j
)
g
(
j2
(
T + 4 − j

)2)(
g(r) + h(r)

) . (3.4)
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For u ∈ P ∩ ∂Ωr , from (H2) and (3.4), we have

Tu(t) = λ
T+2∑

j=2

G
(
i, j
)
a
(
j
)
f
(
j, u
(
j
))

≤ λ
T+2∑

j=2

(
j − 1

)2(
T + 4 − j

)2
a
(
j
)
K
(
j
)(
g(u) + h(u)

)

≤ λ
T+2∑

j=2

(
j − 1

)2(
T + 4 − j

)2
a
(
j
)
K
(
j
)
g(u)

(
1 +

h(u)
g(u)

)

≤ λ
T+2∑

j=2

(
j − 1

)2(
T + 4 − j

)2
a
(
j
)
K
(
j
)
g
(
C0j

2(T + 4 − j
)2
r
)(

1 +
h(r)
g(r)

)

≤ λK2
0g(C0)

T+2∑

j=2

(
j − 1

)2(
T + 4 − j

)2
a
(
j
)
K
(
j
)
g
(
j2
(
T + 4 − j

)2)(
g(r) + h(r)

)

< r.

(3.5)

Thus,

‖Tu‖ < ‖u‖, for u ∈ P ∩ ∂Ωr . (3.6)

Further, choose a constant M∗ > 0 satisfying that

λM∗C0σmax
0≤t≤1

⎧
⎨

⎩

β∑

j=α

G
(
i, j
)
a
(
j
)
⎫
⎬

⎭ > 1, (3.7)

where σ = minα≤i≤β{i2(T + 4 − i)2}.
By (H3), there is a constant L > 0 such that

f(i, u) ≥ M∗u, ∀u ≥ L, i ∈ [α, β]. (3.8)

Let R = r + L/C0σ and ΩR = {u ∈ E | ‖u‖ < R}. For u ∈ P ∩ ∂ΩR, we have that

u(i) ≥ C0i
2(T + 4 − i)2‖u‖ ≥ C0Ri

2(T + 4 − i)2 ≥ C0Rσ ≥ L, i ∈ [α, β]. (3.9)

It follows that

f(i, u(i)) ≥ M∗u(i) ≥ M∗C0Rσ, i ∈ [α, β]. (3.10)
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Then, for u ∈ P ∩ ∂ΩR, we have

‖Tu‖ = λmax
0≤t≤1

⎧
⎨

⎩

T+2∑

j=2

G
(
i, j
)
a
(
j
)
f
(
j, u
(
j
))
⎫
⎬

⎭

≥ λmax
0≤t≤1

⎧
⎨

⎩

β∑

j=α

G
(
i, j
)
a
(
j
)
f
(
j, u
(
j
))
⎫
⎬

⎭

≥ λmax
0≤t≤1

⎧
⎨

⎩

β∑

j=α

G
(
i, j
)
a
(
j
)
M∗C0Rσ

⎫
⎬

⎭

≥ λM∗C0Rσmax
0≤t≤1

⎧
⎨

⎩

β∑

j=α

G
(
i, j
)
a
(
j
)
⎫
⎬

⎭

≥ R.

(3.11)

Therefore, by the first part of the Fixed Point Theorem 2.3, T has a fixed point y with
r ≤ ‖u2‖ ≤ R.

Finally, choose a constant M∗ > 0 satisfying that

λM∗C0 max
0≤t≤1

⎧
⎨

⎩

β1∑

j=α1

G
(
i, j
)
a
(
j
)
j2
(
T + 4 − j

)2
⎫
⎬

⎭ > 1. (3.12)

By (H4), there is a constant δ > 0 and δ < r such that

f(i, u) ≥ M∗u, ∀u ≤ δ, i ∈ [α1, β1
]
. (3.13)

Let r∗ = δ/2 and Ωr∗ = {u ∈ E | ‖u‖ < r∗}. For u ∈ P ∩ ∂Ωr∗ , we have

u(i) ≥ C0i
2(T + 4 − i)2‖u‖ ≥ C0r∗i2(T + 4 − i)2. (3.14)

It follows that

f(i, u(i)) ≥ M∗u(i) ≥ M∗C0r∗i2(T + 4 − i)2, i ∈ [α1, β1
]
. (3.15)
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Then, for u ∈ P ∩ ∂Ωr∗ , we have

‖Tu‖ = λmax
0≤t≤1

⎧
⎨

⎩

T+2∑

j=2

G
(
i, j
)
a
(
j
)
f
(
j, u
(
j
))
⎫
⎬

⎭

≥ λmax
0≤t≤1

⎧
⎨

⎩

β1∑

j=α1

G
(
i, j
)
a
(
j
)
f
(
j, u
(
j
))
⎫
⎬

⎭

≥ λmax
0≤t≤1

⎧
⎨

⎩

β1∑

j=α1

G
(
i, j
)
a
(
j
)
M∗C0r∗j2

(
T + 4 − j

)2
⎫
⎬

⎭

≥ λM∗C0r∗max
0≤t≤1

⎧
⎨

⎩

β1∑

j=α1

G
(
i, j
)
a
(
j
)
j2
(
T + 4 − j

)2
⎫
⎬

⎭

≥ r∗.

(3.16)

Therefore, by the first part of the Fixed Point Theorem 2.3, T has a fixed point u1 with
r∗ ≤ ‖u1‖ ≤ r. It follows from (3.6) that ‖u1‖/= r.

Then, for each r > 0, there exists a positive number λ∗ such that the positone problem
(1.1) has at least two positive solutions ui (i = 1, 2) with r∗ ≤ ‖u1‖ < r ≤ ‖u2‖ ≤ R for
0 < λ < λ∗.

From the proof of Theorem 3.1, we have the following result.

Theorem 3.2. Assume that (H1)–(H3) are satisfied. Then, for each r > 0, there exists a positive
number λ∗ such that the positone problem (1.1) has at least one positive solution u2 with r ≤ ‖u2‖ for
0 < λ < λ∗.

Theorem 3.3. Assume that (H1), (H2), and (H4) are satisfied. Then, for each r > 0, there exists a
positive number λ∗ such that the positone problem (1.1) has at least one positive solution u1 with
‖u1‖ < r for 0 < λ < λ∗.

Example 3.4. Consider the boundary value problem

Δ4u(i − 2) = λa(i)
(
u−α + uβ

(
sin2u + 1

))
, i ∈ [2, T + 2],

u(0) = u(1) = 0, u(T + 3) = u(T + 4) = 0,
(3.17)

where 0 < α < 1 < β are constants. Then, for each r > 0, there exists a positive number λ∗ such
that the problem (3.17) has at least two positive solutions for 0 < λ < λ∗.

In fact, it is clear that

f(i, u) = u−α + uβ
(
sin2u + 1

)
,

lim
u→ 0+

f(i, u)
u

= +∞, lim
u→+∞

f(i, u)
u

= +∞.

(3.18)
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Letting K(i) = 1, g(u) = u−α, and h(u) = 2uβ, we have

f(i, u) ≤ K(i)
(
g(u) + h(u)

)
, K0 = 1 (3.19)

with g > 0 continuous and nonincreasing on (0,∞), h ≥ 0 continuous on [0,∞), and h/g =
2uα+β nondecreasing on (0,∞);K0 = 1 with g(xy) = g(x)g(y) ≤ K0g(x)g(y) for ∀x > 0, y > 0.

Then, by Theorem 3.1, for each given r > 0, we choose

λ∗ =
Cα

0r
1+α

(
1 + rα+β

)∑T+2
j=2 j−2α

(
j − 1

)2(
T + 4 − j

)2(1−α)
a
(
j
) , (3.20)

such that the problem (3.17) has at least two positive solutions for 0 < λ < λ∗.

4. Singular Semipositone Problems

Before we prove our next main result, we first state a result.

Lemma 4.1. The boundary value problem

Δ4w(i − 2) = λa(i)e(i), i ∈ [2, T + 2],

w(0) = w(1) = 0, w(T + 3) = w(T + 4) = 0
(4.1)

has a solution w with w(t) ≤ c0i
2(T + 4 − i)2, where c0 =

∑T+2
j=2 a(j)e(j).

In fact, from Lemma 2.1, (4.1) has solution

w(t) =
T+2∑

j=2

G
(
i, j
)
a
(
j
)
e
(
j
)
. (4.2)

According to Lemma 2.2, we have

w(t) ≤ i2(T + 4 − i)2
T+2∑

j=2

a
(
j
)
e
(
j
)
= c0i

2(T + 4 − i)2. (4.3)

Theorem 4.2. Assume that the following conditions are satisfied:

(B1) f : [2, T + 2] × (0,∞) → R is continuous and there exists a function e ∈ C([2, T +
2], (0,+∞)) with f(i, u) + e(i) ≥ 0 for (i, u) ∈ [2, T + 2] × (0,∞);

(B2) f∗(i, u) = f(i, u) + e(i) ≤ K(i)(g(u) +h(u)) on [2, T + 2]× (0,∞) with g > 0 continuous
and nonincreasing on (0,∞), h ≥ 0 continuous on [0,∞), and h/g nondecreasing on
(0,∞);

(B3) ∃K0 with g(xy) ≤ K0g(x)g(y) for all x > 0, y > 0;

(B4) there exists [α, β] ⊂ [2, T + 2] such that limu→+∞ inf(f(i, u)/u) = +∞ for i ∈ [α, β].
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Then, for each r > 0, there exists a positive number λ∗ such that the semipositone problem (1.1) has at
least one positive solution for 0 < λ < λ∗.

Proof. To show that (1.1) has a nonnegative solution, we will look at the boundary value
problem

Δ4y(i − 2) = λa(i)f∗(i, y(i) − ϕ(i)
)
, i ∈ [2, T + 2],

y(0) = y(1) = 0, y(T + 3) = y(T + 4) = 0,
(4.4)

where ϕ(i) = λw(i) and w is as in Lemma 4.1.
We will show, using Theorem 2.3, that there exists a solution y to (4.4)with y(i) > ϕ(i)

for i ∈ [2, T + 2]. If this is true, then u(i) = y(i) − ϕ(i) (0 ≤ i ≤ T + 4) is a nonnegative solution
(positive on [2, T + 2]) of (1.1), since

Δ4u(i − 2) = Δ4(y(i − 2) − ϕ(i − 2)
)

= λa(i)f∗(i, y(i) − ϕ(i)
) − λa(i)e(i)

= λa(i)
[
f
(
i, y(i) − ϕ(i)

)
+ e(i)

] − λa(i)e(i)

= λa(i)f
(
i, y(i) − ϕ(i)

)

= λa(i)f(i, u(i)), i ∈ [0, T + 4].

(4.5)

Next, let T : K → E be defined by

(
Ty
)
(i) = λ

T+2∑

j=2

G
(
i, j
)
a
(
j
)
f∗(j, y

(
j
) − ϕ

(
j
))
, 0 ≤ i ≤ T + 4. (4.6)

In addition, standard argument shows that T(P) ⊂ P and T is completely continuous.
For any given r > 0, fix it. We choose

λ∗ = min

{
C0r

2c0
,

r

K2
0a0
(
g(r) + h(r)

)
}
, (4.7)

where a0 = g(C0/2)
∑T+2

j=2 (j − 1)2(T + 4 − j)2a(j)K(j)g(j2(T + 4 − j)2).
Now, let

Ωr =
{
y ∈ E | ‖y‖ < r

}
. (4.8)

We show that

‖Ty‖ ≤ ‖y‖ for y ∈ P ∩ ∂Ωr . (4.9)
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To see this, let y ∈ P ∩ ∂Ωr . Then, ‖y‖ = r and y(t) ≥ C0i
2(T + 4 − i)2r for i ∈ [0, T + 4]. Now,

for i ∈ [0, T + 4], the Lemma 4.1 implies

y(i) − ϕ(i) ≥ C0ri
2(T + 4 − i)2 − λc0i

2(T + 4 − i)2

≥ (C0r − λc0)i2(T + 4 − i)2

≥ C0r

2
i2(T + 4 − i)2 > 0,

(4.10)

so for i ∈ [0, T + 4], we have

(
Ty
)
(i) = λ

T+2∑

j=2

G
(
i, j
)
a
(
j
)
f∗(j, y

(
j
) − ϕ

(
j
))

≤ λ
T+2∑

j=2

(
j − 1

)2(
T + 4 − j

)2
a
(
j
)
K
(
j
)[
g
(
y
(
j
) − ϕ

(
j
))

+ h
(
y
(
j
) − ϕ

(
j
))]

= λ
T+2∑

j=2

(
j − 1

)2(
T + 4 − j

)2
a
(
j
)
K
(
j
)
g
(
y
(
j
) − ϕ

(
j
))
{
1 +

h
(
y
(
j
) − ϕ

(
j
))

g
(
y
(
j
) − ϕ

(
j
))
}

≤ λ
T+2∑

j=2

(
j − 1

)2(
T + 4 − j

)2
a
(
j
)
K
(
j
)
g

(
C0r

2
j2
(
T + 4 − j

)2
){

1 +
h(r)
g(r)

}
ds

≤ λK2
0g

(
C0

2

)(
g(r) + h(r)

)T+2∑

j=2

(
j − 1

)2(
T + 4 − j

)2
a
(
j
)
K
(
j
)
g
(
j2
(
T + 4 − j

)2)

= λK2
0a0
(
g(r) + h(r)

)

< r.

(4.11)

This yields ‖Ty‖ ≤ r = ‖y‖, so (4.9) is satisfied.
Further, choose a constant M∗ > 0 satisfying that

λM∗C0

2
σmax

0≤t≤1

⎧
⎨

⎩

β∑

j=α

G
(
i, j
)
a
(
j
)
⎫
⎬

⎭ > 1, (4.12)

where σ = minα≤i≤β{i2(T + 4 − i)2}.
By (B4), there is a constant L > 0 such that

f∗(i, x) ≥ M∗x, ∀x ≥ L, i ∈ [α, β]. (4.13)

Let R = r +max{2λc0C1/C2, 2C1L/C2σ} and ΩR = {y ∈ E | ‖y‖ < R}.
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Next, we show that

‖Ty‖ ≥ ‖y‖, for y ∈ P ∩ ∂ΩR. (4.14)

To see this, let y ∈ P ∩ ∂ΩR. We have

y(t) − ϕ(t) ≥ C0i
2(T + 4 − i)2‖y‖ − λc0i

2(T + 4 − i)2

≥ C0

2
Ri2(T + 4 − i)2

≥ C0

2
Rσ ≥ L, i ∈ [α, β].

(4.15)

It follows that, for y ∈ P ∩ ∂ΩR, we have

f∗(i, y(i) − ϕ(i)
) ≥ M∗(y(i) − ϕ(i)

) ≥ M∗C0

2
Rσ, i ∈ [α, β]. (4.16)

Then, we have

‖Ty‖ = λ max
0≤i≤T+4

⎧
⎨

⎩

T+2∑

j=2

G
(
i, j
)
a
(
j
)
f∗(j, y

(
j
) − ϕ

(
j
))
⎫
⎬

⎭

≥ λ max
0≤i≤T+4

⎧
⎨

⎩

β∑

j=α

G
(
i, j
)
a
(
j
)
f∗(j, y

(
j
) − ϕ

(
j
))
⎫
⎬

⎭

≥ λ max
0≤i≤T+4

⎧
⎨

⎩

β∑

j=α

G
(
i, j
)
a
(
j
)
M∗C0

2
Rσ

⎫
⎬

⎭

≥ λM∗C0

2
Rσ max

0≤i≤T+4

⎧
⎨

⎩

β∑

j=α

G
(
i, j
)
a
(
j
)
⎫
⎬

⎭

≥ R.

(4.17)

This yields ‖Ty‖ ≥ ‖y‖, so (4.14) holds.
Therefore, by the first part of the Fixed Point Theorem 2.3, T has a fixed point y with

r ≤ ‖y‖ ≤ R, since

y(i) − ϕ(i) ≥ C0i
2(T + 4 − i)2r − λc0i

2(T + 4 − i)2

≥ (C0r − λc0)i2(T + 4 − i)2 > 0, i ∈ [0, T + 4].
(4.18)

Namely, u = y − ϕ is a positive solution of the semipositone problem (1.1).
Then, for each r > 0, there exists a positive number λ∗ such that the semipositone

problem (1.1) has at least one positive solution for 0 < λ < λ∗.
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Example 4.3. Consider the boundary value problem

Δ4y(i − 2) = λa(i)
(
u−α + uβ − sin

(
iu + i1/2

))
= 0, i ∈ [2, T + 2],

y(0) = y(1) = 0, y(T + 3) = y(T + 4) = 0,
(4.19)

where 0 < α < 1 < β are constants. Then, for each r > 0, there exists a positive number λ∗ such
that the problem (4.19) has at least one positive solution for 0 < λ < λ∗.

To see this, we will apply Theorem 4.2 (here λ∗ > 0 will be chosen later). From

f(t, u) = u−α + uβ − sin
(
iu + i1/2

)
, (4.20)

we let

g(u) = u−α, h(u) = uβ + 2, K(i) = 1, e(t) = 1, K0 = 1. (4.21)

It is clear that 0 ≤ f(i, u) + e(i) ≤ K(i)(g(u) + h(u)), g(xy) ≤ K0g(x)g(y), and
limu→+∞ inf(f(i, u)/u) = +∞, i ∈ [α, β] ⊂ [2, T + 2] hold.

Then, the (B1)–(B4) of Theorem 4.2 hold. Now, we have

c0 =
T+2∑

j=2

a
(
j
)
, a0 = 2αC−α

0

T+2∑

j=2

j−2α
(
j − 1

)2(
T + 4 − j

)2 (1 − α))a
(
j
)
. (4.22)

For each r > 0, we can choose

λ∗ = min

⎧
⎨

⎩
C2r

2c0C1
,

r1+α

K0a0

(
1 + (r + 1)α+β

)

⎫
⎬

⎭. (4.23)

Thus, all the conditions of Theorem 4.2 are satisfied, so the existence of positive solution is
guaranteed for 0 < λ < λ∗.
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