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We mainly investigate the global behavior to the family of higher-order nonautonomous recursive
equations given by yn = (p + ryn−s)/(q + φn(yn−1, yn−2, . . . , yn−m) + yn−s), n ∈ N0, with p ≥ 0, r, q >
0, s,m ∈ N and positive initial values, and present some sufficient conditions for the parameters
andmaps φn : (R+)m → R

+, n ∈ N0, under which every positive solution to the equation converges
to zero or a unique positive equilibrium. Our main result in the paper extends some related results
from the work of Gibbons et al. (2000), Iričanin (2007), and Stević (vol. 33, no. 12, pages 1767–1774,
2002; vol. 6, no. 3, pages 405–414, 2002; vol. 9, no. 4, pages 583–593, 2005). Besides, several examples
and open problems are presented in the end.

1. Introduction

There has been a great interest in studying classes of nonlinear difference equations and
systems, particularly those which model real situations in engineering and science, for
example, [1–15]. On the other hand, non-autonomous difference equations also have a
ubiquitous presence in applications from automatic controlling, ecology, economics, biology,
population dynamics and so forth. Thus the main task when dealing them is to know the
asymptotical behaviour of their solutions. For some recent advances in this area see [1, 16–
24] and the references cited therein.

Gibbons et al. [25] discussed the behavior of nonnegative solutions to the rational
recursive equation

xn+1 =
α + βxn−1
γ + xn

, n ∈ N0, (1.1)
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with α, β, γ ≥ 0, and also proposed an open problem, which had been solved by Stević in
[4], concerning the particular case α = 0, γ = β in (1.1) (see also [26, 27] for the case of some
related higher-order difference equations, as well as [28–30]).

In [3], Stević studied the behavior of nonnegative solutions of the following second-
order difference equation

xn+1 =
α + βxn−1
1 + g(xn)

, n ∈ N0, (1.2)

where g:R+⋃{0} → R is a nonnegative increasing mapping. Obviously (1.2) is a
generalization of (1.1).

Later, Stević [6] extended (1.1) and (1.2) to the following more general equation

xn+1 =
α + βxn−k

f(xn, . . . , xn−k+1)
, n ∈ N0, (1.3)

where k ∈ N, α, β ≥ 0 and f :Rk
+ → R+ is a continuous function nondecreasing in each variable

such that f(0, 0, . . . , 0) > 0; and investigated the oscillatory behavior, the boundedness
character and the global stability of nonnegative solutions to the equation.

Recently, Iričanin [2] studied the asymptotic behavior of the following class of
autonomous difference equations:

xn =
αxn−k

1 + xn−k + f(xn−1, . . . , xn−m)
, n ∈ N0, (1.4)

where α > 0, k,m ∈ N and f is a continuous mapping satisfying the condition

βmin{u1, . . . , um} ≤ f(u1, u2, . . . , um) ≤ βmax{u1, . . . , um}, (1.5)

for certain β ∈ (0, 1). In [2] he adopted the approach of frame sequences (a discrete analog of
the method of frame curves used in the theory of differential equations), which has been used
in the literature for many times, for example, [26–28, 30–38]; and showed that all positive
solutions converge to zero if 0 < α ≤ 1 and converge to the unique positive equilibrium if
α > 1.

Motivated by the above works, especially [2, 5], our aim in this paper is to study the
global attractivity in the following family of non-autonomous difference equations:

yn =
p + ryn−s

q + φn

(
yn−1, . . . , yn−m

)
+ yn−s

, n ∈ N0, (1.6)

where p ≥ 0, r, q > 0, s,m ∈ N, and φn : (R+)m → R
+, n ∈ N0 are mappings satisfying the

following condition

βmin{x1, . . . , xm} ≤ φn(x1, x2, . . . , xm) ≤ βmax{x1, . . . , xm}, (1.7)

for some fixed β ∈ (0,+∞).
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Through careful analysis, we find that the results in [2] also persist if the function f in
(1.4) is replaced by variable functions such as φn satisfying condition (1.7). If p = 0, then (1.6)
can be transformed into the following form

xn =

(
r/q
)
xn−s

1 +Gn(xn−1, . . . , xn−m) + xn−s
, n ∈ N0, (1.8)

where Gn(x1, . . . , xm) = φn(qx1, qx2, . . . , qxm)/q, by setting yn = qxn. Then according to the
results in [2], we have that if r ≤ q, then limn→∞yn = 0; and if r > q, then limn→∞yn =
q limn→∞xn = q((r/q − 1)/(1 + β)) = (r − q)/(1 + β), for some β ∈ (0, 1). Thus it suffices to
consider the case when p > 0 in the following.

Note that if p > 0, then by relation (1.7), y = (
√

(q − r)2 + 4p(1 + β) + r − q)/2(1 + β) is
the unique positive equilibrium of (1.6). And in Section 3, we will prove the following main
theorem.

Theorem 1.1. Consider (1.6), where s,m ∈ N, p, r, q > 0 with rq ≥ p, and φn : (R+)m → R
+ are

functions satisfying the condition

βmin{x1, . . . , xm} ≤ φn(x1, x2, . . . , xm) ≤ βmax{x1, . . . , xm}, (1.9)

for some fixed β ∈ (0,+∞). If q ≥ r, β ∈ (0,+∞) or q < r, β ∈ (0, β0], where β0 = 4p/(q − r)2 + 1,
then the unique positive equilibrium y of (1.6) is a global attractor.

2. Auxiliary Results

Before proving the main result of this paper, in this section we first confirm two preliminary
lemmas.

Let Φ : R
+⋃{0} × R

+ → R be the mapping Φ(x,w) = (p + rw)/(q + βx + w), where
p, q, r, β > 0 and rq ≥ p, so as Φ is decreasing in the first variable and increasing in the second
one. Then (1.6) can be simplified to the following form:

yn = Φ

(
φn

(
yn−1, . . . , yn−m

)

β
, yn−s

)

, n ∈ N0. (2.1)

Lemma 2.1. Consider the following higher-order rational difference equation:

wn = Φ(x,wn−s), n ∈ N0, (2.2)

where p, r, q, β ∈ R
+, s ∈ N, the parameter x ≥ 0 and initial values wk, k ∈ {−1, . . . ,−s} are

arbitrary nonnegative numbers. Then every positive solution (wn)
∞
n=−s to (2.2) converges to the unique

positive equilibrium point

S(x) =
1
2

(√
(
q − r + βx

)2 + 4p − (q − r + βx
)
)

. (2.3)
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Proof. First we show that (2.2) has a unique positive equilibrium. Assume that w > 0 is an
equilibrium point of (2.2), then w = (p + rw)/(q + βx + w) which implies only one positive
root

w = S(x) =
1
2

(√
(
q − r + βx

)2 + 4p − (q − r + βx
)
)

. (2.4)

If s ≥ 2, then (2.2) can be separated into s analogous first-order difference equations of the
form

w
(k)
n =

p + rw
(k)
n−1

q + βx +w
(k)
n−1

, n ∈ N0, (2.5)

with different initial values w(k)
−1 = w−(k+1), where k ∈ {0, 1, . . . , s − 1}. Note that the equation

is Riccati, so it can be solved and the convergence of its solutions can be proved (see, e.g., [39]
or a recent comment in [40]).

Let the symbol [ ] symbolize the greatest integer function and define a sequence P(n) ≡
n(mods), n ∈ N0. Obviously, for each positive solution (wn)

∞
n=−s to (2.2) we have

wn = w
(s−P(n)−1)
[n/s] , n ≥ −s. (2.6)

From the above analysis, it suffices to prove the case when s = 1. Suppose that s = 1
for (2.2), then for all n ∈ N0, we have

wn+1 −wn =
(w0 −w−1)

(
r
(
q + βx

) − p
)n+1

(
q + βx +wn

)(∏n−1
i=0
(
q + βx +wi

))2(
q + βx +w−1

)
, (2.7)

w2k+2 −w2k =

(
r
(
q + βx

) − p
)
(w2k+1 −w2k−1)

(
q + βx +w2k+1

)(
q + βx +w2k−1

) , k ∈ N0, (2.8)

w2k+3 −w2k+1 =

(
r
(
q + βx

) − p
)
(w2k+2 −w2k)

(
q + βx +w2k+2

)(
q + βx +w2k

) , k ∈ N0. (2.9)

Case 1. If r(q + βx) ≥ p, then by (2.7) (wn)
∞
n=−1 is either nonincreasing or nondecreasing. On

the other hand, we have that

min
{
p, r
}

max
{
q + βx, 1

} ≤ wn ≤ max
{
p, r
}

min
{
q + βx, 1

} (2.10)

for all n ≥ 0. Therefore, the limit of (wn)
∞
n=−1 exists, and through simple calculations, we get

limn→∞wn = S(x).

Case 2. If r(q + βx) < p, then by (2.8) and (2.9) and inductively we have that
(w2k) is nonincreasing and (w2k−1) nondecreasing, or (w2k) is nondecreasing and (w2k−1)
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nonincreasing. Again by (2.10), the limits of (w2k) and (w2k−1) exist, denoted by limk→∞w2k =
α and limk→∞w2k−1 = γ . From (2.2)we have

α =
p + rγ

q + βx + γ
, γ =

p + rα

q + βx + α
, (2.11)

which imply that α = γ = w. Hence limn→∞wn = S(x).

The proof of Lemma 2.1 is complete.

Lemma 2.2. Suppose that the parameters, in (2.3), satisfy p, r, q, β > 0 with t = q − r. Define two
sequences (Mk)

∞
k=1 and (mk)

∞
k=1 as follows:

mk = S

(

Mk +
ε

k

)

, k = 1, 2, . . . ,

Mk = S

(

mk−1 − ε

k − 1

)

, k = 2, 3, . . . ,

(2.12)

where the initial value M1 = S(0), and ε ∈ (0, λ),

λ =
1

2
(
1 + β

)

(√
(
t + βM1

)2 + 4p
(
1 + β

) − (t + βM1
)
)

. (2.13)

If q ≥ r, β ∈ (0,+∞) or q < r, β ∈ (0, β0], where β0 = 4p/(q − r)2 + 1, then

lim
k→∞

Mk = lim
k→∞

mk. (2.14)

Proof. By simple calculations, we have

M2 −M1 = S(m1 − ε) − S(0)

=
1
2

(√
(
t + β(m1 − ε)

)2 + 4p −
√
t2 + 4p − β(m1 − ε)

)

=
1
2

⎛

⎜
⎝

β2(m1 − ε)2 + 2βt(m1 − ε)
√(

t + β(m1 − ε)
)2 + 4p +

√
t2 + 4p

− β(m1 − ε)

⎞

⎟
⎠

= −β(m1 − ε)

⎛

⎜
⎝

S(m1 − ε) + S(0)
√(

t + β(m1 − ε)
)2 + 4p +

√
t2 + 4p

⎞

⎟
⎠.

(2.15)

Obviously, S(m1 − ε) + S(0) > 0.
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Claim 1. m1 − ε > 0.

Proof of Claim 1. Define a function f(x) = 2(S(M1 + x) − x). It suffices to prove that f(x) > 0
for all x ∈ (0, λ). The derivative of f(x) is

df

dx
=

β
[
t + β(M1 + x)

]

√[
t + β(M1 + x)

]2 + 4p
− β − 2 < 0. (2.16)

Since f(λ) = 0 and f(0) > 0, thus f(x) > 0 for x ∈ (0, λ).

Therefore, it follows from (2.15) and Claim 1 that

M2 −M1 < 0. (2.17)

Denote

Lk =
2t + β(Mk+1 +Mk + ε/k + ε/(k + 1))

√[
t + β(Mk+1 + ε/(k + 1))

]2 + 4p +
√[

t + β(Mk + ε/k)
]2 + 4p

,

Qk =
2t + β(mk +mk−1 − ε/k − ε/(k − 1))

√[
t + β(mk − ε/k)

]2 + 4p +
√[

t + β(mk−1 − ε/(k − 1))
]2 + 4p

.

(2.18)

Simply, we obtain that |Lk| < 1 and |Qk| < 1.
Observe that

2(mk+1 −mk) = β(1 − Lk)
[

Mk −Mk+1 +
ε

k(k + 1)

]

, k = 1, 2, . . . ,

2(Mk+1 −Mk) = β(Qk − 1)
[

mk −mk−1 +
ε

k(k + 1)

]

, k = 2, 3, . . . .

(2.19)

With (2.17) and (2.19), it follows by induction that (mk)
∞
k=1, (Mk)

∞
k=1 are strictly increasing

and decreasing, respectively. In addition, Mk > 0, k = 1, 2, . . ., hence (Mk)
∞
k=1 possesses

a finite limit denoted by ϕ = limk→∞Mk. From (2.12), we know that the limit of (mk)
∞
k=1

(denoted by μ = limk→∞mk) also exists. Therefore, taking limits on both sides of (2.12), we
have

μ = S
(
ϕ
)
,

ϕ = S
(
μ
) (2.20)
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which imply that

μ2 + tμ + βμϕ = p,

ϕ2 + tϕ + βμϕ = p,
(2.21)

(
μ − ϕ

)(
μ + ϕ + t

)
= 0. (2.22)

Claim 2. If q ≥ r, β ∈ (0,+∞) or q < r, β ∈ (0, β0], then μ = ϕ.

Proof of Claim 2. Suppose that μ/=ϕ, then it follows from (2.22) that μ = −ϕ− t. By substituting
μ = −ϕ − t into the second identity of (2.21), we get

(
1 − β

)
ϕ2 + t

(
1 − β

)
ϕ − p = 0. (2.23)

(i) If β = 1, then p = 0 which is a contradiction to p > 0,

(ii) If β ∈ (0, 1), then the unique positive root of (2.23) is

ϕ =

√
t2 + 4p/

(
1 − β

) − t

2
> M1.

(2.24)

However, ϕ < M1 since (Mk) is strictly decreasing.

(iii) If q = r, β ∈ (1,+∞), then (2.23) reduces to 0 > (1 − β)ϕ2 = p > 0.

(iv) If q /= r, β ∈ (1, β0), then for (2.23), Δ = t2(1 − β)2 + 4p(1 − β) < 0 which implies that
(2.23) has no real roots.

(v) For q > r, β = β0, we have Δ = 0. So, ϕ = (r − q)/2 < 0 which is contradictive to
ϕ ≥ 0.

(vi) For q > r, β ∈ (β0,+∞), (2.23) has two negative roots.

(vii) For q < r, β = β0. Solving (2.23), we get ϕ = (r − q)/2 implying μ = (r − q)/2. Hence
μ = ϕ, which contradicts the assumption.

Obviously Claim 2 follows directly from (i)–(vii).

Applying Claim 2 and (2.21), we conclude that

lim
k→∞

Mk = lim
k→∞

mk =

√
t2 + 4p

(
1 + β

) − t

2
(
1 + β

) . (2.25)

Hence the lemma is complete.
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3. Main Results

Obviously, condition (1.7) in Section 1 guarantees the fact that (1.6) possesses a unique

equilibrium point y = (
√
t2 + 4p(1 + β) − t))/(2(1 + β)), where t = q − r.

First, we present a proposition concerning the boundedness of all positive solutions to
(1.6).

Proposition 3.1. Consider (1.6) with condition (1.7) and p, q, r ∈ R
+, then every positive solution

to (1.6) has permanent bounds.

Proof. Let (yn) be a solution to (1.6)with positive initial values. Then, we have

yn =
p + ryn−s

q + φn

(
yn−1, . . . , yn−m

)
+ yn−s

≤ max
{
p, r
}

min
{
q + φn

(
yn−1, . . . , yn−m

)
, 1
}

≤ max
{
p, r
}

min
{
q, 1
} = U, ∀n ≥ 0,

yn =
p + ryn−s

q + φn

(
yn−1, . . . , yn−m

)
+ yn−s

≥ min
{
p, r
}

max
{
q + φn

(
yn−1, . . . , yn−m

)
, 1
}

≥ min
{
p, r
}

max
{
q + βU, 1

} = L, ∀n ≥ m.

(3.1)

Thus we have L ≤ yn ≤ U, for all n ≥ m.

In the following, we will give the proof of the main result (i.e., Theorem 1.1) presented
in Section 1.

Proof of Theorem 1.1. Let ε ∈ R
+ be an arbitrary fixed number satisfying 0 < ε < λ (λ

defined by (2.13) in Lemma 2.2). Define two sequences (Mk)
∞
k=1, (mk)

∞
k=1 as shown by (2.12)

in Lemma 2.2. Let (yn) be any positive solution to (1.6). In the following, we proceed by
presenting two claims.

Claim 1. There exists N1 ∈ N, such that m1 − ε ≤ yn ≤ M1 + ε for all n ≥ N1.

Proof of Claim 1. From (2.1), we have that

yn = Φ

(
φn

(
yn−1, . . . , yn−m

)

β
, yn−s

)

≤ Φ
(
0, yn−s

)
. (3.2)

Suppose that (xn) is a solution to the following difference equation

xn = Φ(0, xn−s), n ∈ N0, (3.3)

with initial values x−s = y−s, . . . , x−1 = y−1. From this and in view of the monotonicity of the
function f(x) = (p + rx)/(q + x), x ∈ R

+, by induction we can easily get that yn ≤ xn for
n ≥ −s.
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By Lemma 2.1, limn→∞xn = M1. Hence, there exists b1 ∈ N such that xn ≤ M1 + ε for
n ≥ b1, then

yn ≤ M1 + ε (3.4)

for all n ≥ b1.
From (2.1), (1.7), and (3.4), it follows that

yn ≥ Φ
(
max

{
yn−1, . . . , yn−m

}
, yn−s

) ≥ Φ
(
M1 + ε, yn−s

)
(3.5)

for all n ≥ b1 +m.
Suppose that (un) is a solution to the following difference equation:

un = Φ(M1 + ε, un−s), n ∈ N0, (3.6)

with initial values ub1+m−s = yb1+m−s, . . . , ub1+m−1 = yb1+m−1.
Since the function h(x) = Φ(M1 + ε, x) is increasing on the interval (0,+∞), we can

easily get by induction that yn ≥ un for n ≥ b1 + m − s, and by Lemma 2.1, limn→∞un = m1.
Hence there exists a natural number N1 ≥ b1 such that un ≥ m1 − ε for n ≥ N1, then m1 − ε ≤
yn ≤ M1 + ε for n ≥ N1.

Working inductively, we will eventually reach the following claim.

Claim 2. For each k ∈ N, there exists Nk ∈ N such that mk − ε/k ≤ yn ≤ Mk + ε/k for all
n ≥ Nk.

Proof of Claim 2. By Claim 1, if k = 1, we have N1 ∈ N such that m1 − ε ≤ yn ≤ M1 + ε for all
n ≥ N1. Then by the method of induction, we can assume that for k ∈ N fixed, there exists
Nk ∈ N such thatmk − ε/k ≤ yn ≤ Mk + ε/k for all n ≥ Nk. Thus, it suffices to show that there
exists Nk+1 ∈ N such that mk+1 − ε/(k + 1) ≤ yn ≤ Mk+1 + ε/(k + 1) for all n ≥ Nk+1.

Let z = max{s,m}. Define a sequence (x(k+1)
n ) as follows

x
(k+1)
n = Φ

(
S−1(Mk+1), x

(k+1)
n−s
)
, n ≥ Nk + z, (3.7)

with x
(k+1)
n = yn, for n = Nk, . . . ,Nk + z − 1.
By reasoning inductively on n ≥ Nk + z, one has

yn ≤ Φ
(
min
{
yn−1, . . . , yn−m

}
, yn−s

) ≤ Φ
(
S−1(Mk+1), yn−s

)

≤ Φ
(
S−1(Mk+1), x

(k+1)
n−s
)

= x
(k+1)
n , ∀n ≥ Nk + z.

(3.8)

By Lemma 2.1, limn→∞x
(k+1)
n = Mk+1. Therefore, there is bk+1 ≥ Nk such that yn ≤ Mk+1 +

ε/(k + 1) for all n ≥ bk+1.
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Define the other sequence (u(k+1)
n ) as follows:

u
(k+1)
n = Φ

(
S−1(mk+1), u

(k+1)
n−s
)
, for n ≥ bk+1, (3.9)

where u(k+1)
n = yn, for n = bk+1, . . . , bk+1 + z − 1.

Once more, by induction on n ≥ bk+1 + z,

yn ≥ Φ
(
max

{
yn−1, . . . , yn−m

}
, yn−s

) ≥ Φ
(

Mk+1 +
ε

k + 1
, yn−s

)

≥ Φ
(
S−1(mk+1), u

(k+1)
n−s
)
= u

(k+1)
n , ∀n ≥ bk+1 + z.

(3.10)

By Lemma 2.1, limn→∞u
(k+1)
n = mk+1. Thus, let Nk+1 ≥ bk+1 be greater enough so as yn ≥

mk+1 − (ε/(k + 1)) = S−1(Mk+2) for all n ≥ Nk+1.
Therefore, we get that there exists Nk+1 ∈ N such that

mk+1 − ε

k + 1
≤ yn ≤ Mk+1 +

ε

k + 1
(3.11)

for all n ≥ Nk+1.

By Claim 2, we have

lim
k→∞

mk = lim
k→∞

(

mk − ε

k

)

≤ lim inf
n→∞

yn ≤ lim sup
n→∞

yn ≤ lim
k→∞

(

Mk +
ε

k

)

= lim
k→∞

Mk. (3.12)

This plus Lemma 2.2 leads to

lim
n→∞

yn = y =

√
t2 + 4p

(
1 + β

) − t

2
(
1 + β

) . (3.13)

The proof is complete.

4. Applications and Future Work

Next, several examples are presented.

Example 4.1. Let pn ∈ (0,+∞) for all n ∈ N0, and

φn(x1, x2, . . . , xm) = β
pn

√∑m
i=1 x

pn
i

m
, n ∈ N0

(4.1)
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for some β > 0. If rq > p and q ≥ r, β ∈ (0,+∞) or q < r, β ∈ (0, β0], where β0 = 4p/(q −
r)2 + 1, then by Theorem 1.1 we conclude that every positive solution to the following non-
autonomous difference equation:

yn =
p + ryn−s

q + β
pn

√(∑m
i=1 y

pn
n−i
)
/m + yn−s

, n ∈ N0,
(4.2)

converges to the unique positive equilibrium point y = (
√

(q − r)2 + 4p(1 + β)+r−q)/2(1+β).

Example 4.1 extends Example 2.4 in [2].

Example 4.2. Let φn(x1, x2, . . . , xm) = βmax{x1, x2, . . . , xm} for all n ∈ N0, then under the
conditions of Theorem 1.1, all positive solutions to the recursive equation

yn =
p + ryn−s

q + βmax
{
yn−1, yn−2, . . . , yn−m

}
+ yn−s

, n ∈ N0, (4.3)

converge to the unique positive equilibrium y = (
√

(q − r)2 + 4p(1 + β) + r − q)/2(1 + β).

In this paper, the behavior of positive solutions to the case when rq ≥ p, q < r, β ∈
(β0,+∞), where β0 = 4p/(q − r)2 + 1, isn’t investigated, since we have no further new ideas
for the particular case. Through certain calculations, easily we know that the equation S ◦
S(x) = x has two different positive roots, if q < r, β ∈ (β0,+∞), which implies limk→∞Mk >
limk→∞mk. From this we propose the following open problem.

Open Problem. Is there a positive solution (yn) to (1.6) with condition (1.7) when rq ≥ p, q <
r, β ∈ (β0,+∞), where β0 = 4p/(q − r)2 + 1, such that (yn) eventually converges to a periodic
solution?

Furthermore, the case rq < p for (1.6) is also of extreme value to study.
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[9] S. Stević, “Global stability and asymptotics of some classes of rational difference equations,” Journal
of Mathematical Analysis and Applications, vol. 316, no. 1, pp. 60–68, 2006.
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[11] S. Stević and K. S. Berenhaut, “The behavior of positive solutions of a nonlinear second-order
difference equation,” Abstract and Applied Analysis, vol. 2008, Article ID 653243, 8 pages, 2008.

[12] T. Sun and H. Xi, “Global behavior of the nonlinear difference equation xn+1 = f(xn−s, xn−t),” Journal
of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 760–765, 2005.

[13] T. Sun, H. Xi, and L. Hong, “On the system of rational difference equations xn+1 = f(xn, yn−k), yn+1 =
f(yn, xn−k),” Advances in Difference Equations, vol. 2006, Article ID 16949, 7 pages, 2006.

[14] X. Yang, L. Cui, Y. Y. Tang, and J. Cao, “Global asymptotic stability in a class of difference equations,”
Advances in Difference Equations, vol. 2007, Article ID 16249, 7 pages, 2007.

[15] X. Yang, Y. Y. Tang, and J. Cao, “Global asymptotic stability of a family of difference equations,”
Computers & Mathematics with Applications, vol. 56, no. 10, pp. 2643–2649, 2008.
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[30] S. Stević and G. L. Karakostas, “On the recursive sequence xn+1 = B+xn−k/(α0xn+· · ·+αk−1xn−k+1+γ),”
Journal of Difference Equations and Applications, vol. 10, no. 9, pp. 809–815, 2004.



Discrete Dynamics in Nature and Society 13

[31] L. Berg, “Inclusion theorems for non-linear difference equations with applications,” Journal of
Difference Equations and Applications, vol. 10, no. 4, pp. 399–408, 2004.

[32] L. Berg, “Corrections to: “Inclusion theorems for non-linear difference equations with applications”,”
Journal of Difference Equations and Applications, vol. 11, no. 2, pp. 181–182, 2005.

[33] L. Berg, Asymptotische Darstellungen und Entwicklungen, Deutscher Verlag der Wissenschaften, Berlin,
Germany, 1968.
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