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The fuzzy H∞ filter design problem for T-S fuzzy systems with interval time-varying delay
is investigated. The delay is considered as the time-varying delay being either differentiable
uniformly bounded with delay derivative in bounded interval or fast varying (with no restrictions
on the delay derivative). A novel Lyapunov-Krasovskii functional is employed and a tighter upper
bound of its derivative is obtained. The resulting criterion thus has advantages over the existing
ones since we estimate the upper bound of the derivative of Lyapunov-Krasovskii functional
without ignoring some useful terms. A fuzzy H∞ filter is designed to ensure that the filter error
system is asymptotically stable and has a prescribed H∞ performance level. An improved delay-
derivative-dependent condition for the existence of such a filter is derived in the form of linear
matrix inequalities (LMIs). Finally, numerical examples are given to show the effectiveness of the
proposed method.

1. Introduction

During the last decades, the filtering problem has attracted many researchers to study
through various methodologies, see, for example, [1–20] and the references therein, in which
these methods mostly consist of twomain approaches, namely, the Kalman filtering approach
[1–3] and the H∞ filtering approach [4–17]. In contrast with the Kalman filtering, the H∞
filtering approach does not require the exact knowledge of the statistics of the external noise
signals and it is insensitive to the uncertainties both in the exogenous signa statistics and
in dynamic models. This advantage renders the H∞ filtering approach very appropriate
to some practical applications. Recently, the filter design contains two cases of filtering
technique, that is, L2 − L∞ filtering technique [18–20] and the H∞ filtering technique [4–17].
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On the other hand, Takagi-Sugeno (T-S) fuzzy model can provide an effective way to
represent a complex nonlinear system into a weighted sum of some simple linear subsystems
[8, 21, 22], which has been an increasing interest in the study of T-S fuzzy systems. In recent
years, T-S fuzzy model approach has been extended to H∞ filter or controller design [4–
6, 9, 10, 12, 15–21, 23–35]. For instance, the stability analysis and stabilization synthesis
problems of T-S fuzzy systems were studied in [21, 29, 30, 33–35], while fuzzy controllers
were designed in [23–28]. One set of fuzzy H∞ filters for a class of T-S fuzzy systems was
designed in [32]. However, the above-mentioned works use common Lyapunov-Krasovskii
functional, and the results under a common Lyapunov method are quite conservative. To
reduce the conservatism, a fuzzyweighting-dependent Lyapunovmethod has been proposed
in [6], which is effective in reducing conservatism of previous results on fuzzy systems.
More recently, Lin et al. [4] and Su et al. [5] have concerned with H∞ filtering of nonlinear
continuous-time state-space models with time-varying delays via T-S fuzzy model approach.
However, some negative semidefinite terms are ignored and the lower bound of time
delay is restricted to be zero, see, for example, [4–6] and the references therein. Qiu et al.
[36] investigated the problem of delay-dependent robust stability and H∞ filtering design
for a class of uncertain continuous-time nonlinear systems with time-varying state delay
represented by T-S fuzzy models. However, there is room for further investigation to reduce
the conservativeness of the filter design. This motivates the current research.

In this paper, we discuss the fuzzy H∞ filter design problem for T-S fuzzy systems
with interval time-varying delay. Our aim is to design a suitable fuzzy filter, which ensures
both the fuzzy stability and a prescribed performance level of the filter error system.
By constructing a Lyapunov-Krasovskii functional, estimating the time derivative of the
Lyapunov-Krasovskii functional less conservatively, and adopting convex optimization
approach, an improved delay-derivative-dependent condition for the solvability of fuzzy
H∞ filter design problem is proposed in terms of linear matrix inequalities (LMIs). Two
examples are used to compare with the previous literatures and demonstrate the effectiveness
of the proposed method.

The rest of this paper is organized as follows: The fuzzy H∞ filtering problem is
formulated in Section 2; the fuzzy H∞ performance analysis is derived in Section 3; and
fuzzy H∞ filter design is addressed in Section 4. Numerical examples are provided in
Section 5, and Section 6 concludes this paper.

2. Problem Formulation

Consider a nonlinear system with interval time-varying delay which could be approximated
by a class of T-S fuzzy systems with interval time-varying delays. The T-S fuzzy model with
r plant rules can be described by:

Plant rule i: IF θ1(t) isNi1 and· · · and θp(t) isNip, THEN

ẋ(t) = Aix(t) +Aτix(t − τ(t)) + Biw(t),

y(t) = Cix(t) + Cτix(t − τ(t)) +Diw(t),

z(t) = Lix(t) + Lτix(t − τ(t)) +Giw(t),

x(t) = φ(t), ∀t ∈ [−hb, 0],

(2.1)
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where 0 ≤ ha ≤ τ(t) ≤ hb, and x(t) ∈ R
n is the state vector; y(t) ∈ R

m is the measurements
vector; w(t) ∈ R

q is the disturbance signal vector which belongs to L2[0,∞); z(t) ∈ R
p is the

signal vector to be estimated; φ(t) is the continuous initial vector function defined on [−hb, 0];
The system coefficient matrices are constant real matrices with appropriate dimensions,
where i = 1, 2, . . . , r and r is the number of IF-THEN rules; θj(t), (j = 1, 2, . . . , p) are the
premise variables;Ni1,Ni2, . . . ,Nip are the fuzzy sets. For the sake of convenience, we denote
δh = hb − ha.

The time-varying delay τ(t) is assumed to be either differentiable with

d1 ≤ τ̇(t) ≤ d2, (2.2)

where d1 and d2 are given bounds, or fast-varying (with no restrictions on the delay
derivative).

The fuzzy system (2.1) is supposed to have singleton fuzzifier, product inference and
centroid defuzzifier. The final output of the fuzzy system is inferred as follows:

ẋ(t) =
r∑

i=1

hi(θ(t))[Aix(t) +Aτix(t − τ(t)) + Biw(t)],

y(t) =
r∑

i=1

hi(θ(t))[Cix(t) + Cτix(t − τ(t)) +Diw(t)],

z(t) =
r∑

i=1

hi(θ(t))[Lix(t) + Lτix(t − τ(t)) +Giw(t)],

x(t) = φ(t), ∀t ∈ [−hb, 0],

(2.3)

where for i = 1, 2, . . . , r,

hi(θ(t)) =
μi(θ(t))∑r
i=1 μi(θ(t))

, μi(θ(t)) =
p∏

j=1

Nij

(
θj(t)

)
(2.4)

andNij(θj(t)) is the membership function of θj(t) inNij . Here μi(θ(t)) ≥ 0. Here, we assume
that μi(θ(t)) > 0, and

∑r
i=1 hi(θ(t)) = 1.

Our aim is to design the following fuzzy filter.
Rule i: IF θ1(t) is Ni1 and· · · and θp(t) isNip, THEN

˙̂x(t) = Afix̂(t) + Bfiy(t), x̂(0) = 0,

ẑ(t) = Cfix̂(t) +Dfiy(t),
(i = 1, 2, . . . , r), (2.5)
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where x̂(t) ∈ R
n is the filter state, ẑ(t) ∈ R

p is the estimation of z(t) in fuzzy system (2.1), the
constant matrices Afi ∈ R

n×n, Bfi ∈ R
n×m, Cfi ∈ R

p×n, Dfi ∈ R
p×m are the filter matrices to be

determined. The final fuzzy filter of fuzzy system (2.1) is thus inferred as follows

˙̂x(t) =
r∑

i=1

hi(θ(t))
[
Afix̂(t) + Bfiy(t)

]
, x̂(0) = 0,

ẑ(t) =
r∑

i=1

hi(θ(t))
[
Cfix̂(t) +Dfiy(t)

]
.

(2.6)

Defining the augmented state vector x̃(t) := col{x(t) x̂(t)}, e(t) := z(t) − ẑ(t), from
(2.3) and (2.6), we can then obtain the following filtering error system:

˙̃x(t) = Ã(t)x̃(t) + Ãτ(t)Ex̃(t − τ(t)) + B̃(t)w(t),

e(t) = C̃(t)x̃(t) + C̃τ(t)Ex̃(t − τ(t)) + D̃(t)w(t),

x̃(t) =
[
φT (t) 0

]T
, ∀t ∈ [−hb, 0],

(2.7)

where

Ã(t) =
r∑

i=1

hi(θ(t))
r∑

j=1

hj(θ(t))

[
Aj 0

BfiCj Afi

]
:=

[
A(t) 0

Bf(t)C(t) Af(t)

]
,

Ãτ(t) =
r∑

i=1

hi(θ(t))
r∑

j=1

hj(θ(t))

[
Aτj

BfiCτj

]
:=

[
Aτ(t)

Bf(t)Cτ(t)

]
,

B̃(t) =
r∑

i=1

hi(θ(t))
r∑

j=1

hj(θ(t))

[
Bj

BfiDj

]
:=

[
B(t)

Bf(t)D(t)

]
, E =

[
I 0

]
,

C̃(t) =
r∑

i=1

hi(θ(t))
r∑

j=1

hj(θ(t))
[
Lj −DfiCj − Cfi

]
:=

[
L(t) −Df(t)C(t) −Cf(t)

]
,

C̃τ(t) =
r∑

i=1

hi(θ(t))
r∑

j=1

hj(θ(t))
[
Lτj −DfiCτj

]
:= Lτ(t) −Df(t)Cτ(t),

D̃(t) =
r∑

i=1

hi(θ(t))
r∑

j=1

hj(θ(t))
[
Gj −DfiDj

]
:= G(t) −Df(t)D(t).

(2.8)

So far, the fuzzyH∞ filter design problem for fuzzy system (2.3) can be stated as follows.
Given a scalar γ > 0, design a suitable fuzzy filter in the form of (2.5) such that the filtering
error system (2.7) has a prescribed H∞ performance γ , and the following two purposes are
satisfied:

(i) the system (2.7)with w(t) = 0 is asymptotically stable;

(ii) the H∞ performance ‖e‖2 < γ‖w‖2 is guaranteed for all nonzero w(t) ∈ L2[0,∞)
and a prescribed γ > 0 under the condition x̃(t) = 0, for all t ∈ [−hb, 0]. If this is the
case, we say that the fuzzy H∞ filter design problem is solved.
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3. Fuzzy H∞ Performance Analysis

In this section, we propose the sufficient criterion for the filter error system (2.7) satisfying a
prescribed H∞ performance level for fuzzy system (2.1) or (2.3).

Theorem 3.1. Given scalars 0 ≤ ha ≤ hb, d1 ≤ d2 and γ > 0, theH∞ filter error system (2.7), for all
differentiable delay τ(t) ∈ [ha, hb] with d1 ≤ τ̇(t) ≤ d2, is asymptotically stable and has a prescribed
H∞ performance level γ if there exist real symmetry matrices R0 > 0, Rδ > 0, Q0 > 0, Qδ > 0,
P =

[
P1 P2
∗ P3

]
> 0, Rτ ≥ 0, Pτ ≥ 0, and real matrices Xij(t), (i = 1, 2; j = 1, 2, . . . , 6) with appropriate

dimensions such that the two LMIs (3.1) where τ̇(t) = d1, d2, are feasible.

Ξi(t)

:=

⎡
⎢⎢⎢⎢⎢⎣

Ω(t) +
[
−ITi QδIi + δhXi(t)Ii + δhITi X

T
i (t)

]
haΓT1 (t)Q0 δhΓT1 (t)Qδ δhXi(t) ΓT3 (t)

∗ −Q0 0 0 0
∗ ∗ −Qδ 0 0
∗ ∗ ∗ −Qδ 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦

< 0,

(i = 1, 2),
(3.1)

where

Ω(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ11 ϕ12 Q0 0 ϕ15 ϕ16

∗ ϕ22 0 0 ϕ25 ϕ26

∗ ∗ Rτ − R0 + Rδ −Q0 −Qδ 0 Qδ 0

∗ ∗ ∗ −Rδ −Qδ − Pτ Qδ 0

∗ ∗ ∗ ∗ −(1 − τ̇(t))(Rτ − Pτ) − 2Qδ 0

∗ ∗ ∗ ∗ ∗ −γ2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ϕ11 = P1A(t) +AT (t)P1 + P2Bf(t)C(t) + CT (t)BT
f (t)P

T
2 + R0 −Q0,

ϕ12 = P2Af(t) +AT (t)PT
2 + CT (t)BT

f (t)P3, ϕ22 = P3Af(t) +AT
f (t)P3,

ϕ15 = P1Aτ(t) + P2Bf(t)Cτ(t), ϕ25 = PT
2 Aτ(t) + P3Bf(t)Cτ(t),

ϕ16 = P1B(t) + P2Bf(t)D(t), ϕ26 = PT
2 B(t) + P3Bf(t)D(t),

I1 =
[
0 0 0 −I I 0

]
, I2 =

[
0 0 I 0 −I 0

]
,

Xi(t) := col
{
Xi1(t) Xi2(t) Xi3(t) Xi4(t) Xi5(t) Xi6(t)

}
, (i = 1, 2),

(3.2)

Γ1(t) :=
[
A(t) 0 0 0 Aτ(t) B(t)

]
,

Γ2(t) :=
[
Bf(t)C(t) Af(t) 0 0 Bf(t)Cτ(t) Bf(t)D(t)

]
,

Γ3(t) :=
[
L(t) −Df(t)C(t) −Cf(t) 0 0 Lτ(t) −Df(t)Cτ(t) G(t) −Df(t)D(t)

]
.

(3.3)
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Proof. First, we show that the error system (2.7) with w(t) ≡ 0 is asymptotically stable, and
then prove that the second condition of the fuzzy H∞ filter design problem in the previous
section can be achieved.

We introduce the following Lyapunov-Krasovskii Functional:

V (t, x̃t) = Vp(t, x̃t) + Vh(t, x̃t), (3.4)

where x̃t denotes the function x̃(s) defined on [t − hb, t], Vp(t, x̃t) = x̃T (t)Px̃(t) and

Vh(t, x̃t) =
∫ t

t−ha

x̃T (s)ETR0Ex̃(s)ds +
∫ t−ha

t−hb

x̃T (s)ETRδEx̃(s)ds

+
∫ t−ha

t−τ(t)
x̃T (s)ETRτEx̃(s)ds +

∫ t−τ(t)

t−hb

x̃T (s)ETPτEx̃(s)ds

+ ha

∫0

−ha

∫ t

t+θ

˙̃x
T
(s)ETQ0E ˙̃x(s)dsdθ + δh

∫−ha

−hb

∫ t

t+θ

˙̃x
T
(s)ETQδE ˙̃x(s)dsdθ

(3.5)

with Rδ > 0, Qδ > 0, R0 > 0, Rτ ≥ 0, Pτ ≥ 0, Q0 > 0, P =
[
P1 P2
∗ P3

]
> 0 being real symmetry

matrices with appropriate dimensions.
We employ (3.4) and Jensen’s inequality [40] to study the performance analysis for the

filter error system (2.7). In doing so, for simplicity, we introduce the following vector:

Υ := col
{
x(t) x̂(t) x(t − ha) x(t − hb) x(t − τ(t)) w(t)

}
(3.6)

Then, rewrite error system (2.7) as

˙̃x(t) =

[
Γ1(t)

Γ2(t)

]
Υ,

e(t) = Γ3(t)Υ,

x̃(t) =
[
φT (t) 0

]T
, ∀t ∈ [−hb, 0],

(3.7)

where Γi(t), (i = 1, 2, 3) are defined in (3.3).
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Now, taking the derivative of (3.4)with respect to t along the trajectory of (2.7) yields

V̇p(t, x̃t) = 2x̃T (t)P
[
Γ1(t)
Γ2(t)

]
Υ, (3.8)

V̇h(t, x̃t) = xT (t)R0x(t) − xT (t − ha)R0x(t − ha) + xT (t − ha)Rδx(t − ha) − xT (t − hb)Rδx(t − hb)

+ xT (t − ha)Rτx(t − ha) − (1 − τ̇(t))xT (t − τ(t))Rτx(t − τ(t))

+ (1 − τ̇(t))xT (t − τ(t))Pτx(t − τ(t)) − xT (t − hb)Pτx(t − hb)

+ h2
aẋ

T (t)Q0ẋ(t) − ha

∫ t

t−ha

ẋT (s)Q0ẋ(s)ds + δ2
hẋ

T (t)Qδẋ(t)

− δh

∫ t−ha

t−hb

ẋT (s)Qδẋ(s)ds

(3.9)

Since τ(t) ∈ [ha, hb], and defining ρ(t) = (hb − τ(t))/δh, we apply Jensen’s inequality to yield
the following inequalities:

− ha

∫ t

t−ha

ẋT (s)Q0ẋ(s)ds ≤
[

x(t)
x(t − ha)

]T[−Q0 Q0

∗ −Q0

][
x(t)

x(t − ha)

]
(3.10)

− δh

∫ t−ha

t−hb

ẋT (s)Qδẋ(s)ds

= −δh
∫ t−τ(t)

t−hb

ẋT (s)Qδẋ(s)ds − δh

∫ t−ha

t−τ(t)
ẋT (s)Qδẋ(s)ds

= −(hb − τ(t))
∫ t−τ(t)

t−hb

ẋT (s)Qδẋ(s)ds − (τ(t) − ha)
∫ t−ha

t−τ(t)
ẋT (s)Qδẋ(s)ds

− (
1 − ρ(t)

)
δh

∫ t−τ(t)

t−hb

ẋT (s)Qδẋ(s)ds − ρ(t)δh

∫ t−ha

t−τ(t)
ẋT (s)Qδẋ(s)ds

≤
⎡

⎣
x(t − ha)
x(t − hb)
x(t − τ(t))

⎤

⎦

T⎛

⎝

⎡

⎣
−Qδ 0 Qδ

∗ −Qδ Qδ

∗ ∗ −2Qδ

⎤

⎦

⎞

⎠

⎡

⎣
x(t − ha)
x(t − hb)
x(t − τ(t))

⎤

⎦

− (
1 − ρ(t)

)
δh

∫ t−τ(t)

t−hb

ẋT (s)Qδẋ(s)ds − ρ(t)δh

∫ t−ha

t−τ(t)
ẋT (s)Qδẋ(s)ds.

(3.11)
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In addition, by the Leibniz-Newton formula, we obtain the following equation for any real
matrices Xij(t), i = 1, 2; j = 1, 2, . . . , 6 with appropriate dimensions:

0 = 2δh
(
1 − ρ(t)

)
ΥTX1(t)

[
x(t − τ(t)) − x(t − hb) −

∫ t−τ(t)

t−hb

ẋ(s)ds

]
,

0 = 2δhρ(t)ΥTX2(t)

[
x(t − ha) − x(t − τ(t)) −

∫ t−ha

t−τ(t)
ẋ(s)ds

]
,

Xi(t) := col
{
Xi1(t) Xi2(t) Xi3(t) Xi4(t) Xi5(t) Xi6(t)

}
, i = 1, 2.

(3.12)

By adding the right-hand side of (3.12) to (3.11), and combining with (3.8)−(3.11) We yield
the following inequality:

V̇ (t, x̃t) − γ2wT (t)w(t)

≤ ΥTΩτ̇(t)Υ − δh
(
1 − ρ(t)

) ∫ t−τ(t)

t−hb

(
ΥTX1 + ẋT (s)Qδ

)
Q−1

δ

(
XT

1Υ +Qδẋ(s)
)
ds

− δhρ(t)
∫ t−ha

t−τ(t)

(
ΥTX2 + ẋT (s)Qδ

)
Q−1

δ

(
XT

2Υ +Qδẋ(s)
)
ds,

(3.13)

where

Ωτ̇(t) =
(
1 − ρ(t)

)
Ω1(t) + ρ(t)Ω2(t),

Ωi(t) := Ω(t) +
[
−ITi QδIi + δhXi(t)Ii + δhITi X

T
i (t)

]

+ h2
aΓ

T
1 (t)Q0Γ1(t) + δ2

hΓ
T
1 (t)QδΓ1(t) + δ2

hX
T
i (t)Q

−1
δ Xi(t), i = 1, 2.

(3.14)

with Xi(t), (i = 1, 2) and Ω(t), I1, I2 are defined in (3.12) and (3.2), respectively.
Notice that, since Qδ > 0, ρ(t) ∈ [0, 1], (3.13) implies the following:

V̇ (t, x̃t) − γ2wT (t)w(t) ≤ ΥTΩτ̇(t)Υ. (3.15)

Due to ρ(t) ∈ [0, 1], Ωτ̇(t) is negative definite only if Ωi(t) < 0, i = 1, 2. According to Schur’s
complement, Ωi(t) < 0, i = 1, 2 is equivalent to the following LMIs:

Ξ̂i(t) :=

⎡
⎢⎢⎢⎢⎢⎣

Ω(t) +
[
−ITi QδIi + δhXi(t)Ii + δhITi X

T
i (t)

]
haΓT1 (t)Q0 δhΓT1 (t)Qδ δhXi(t)

∗ −Q0 0 0

∗ ∗ −Qδ 0

∗ ∗ ∗ −Qδ

⎤
⎥⎥⎥⎥⎥⎦

< 0,

i = 1, 2.
(3.16)
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And Ξ̂1(t) < 0 leads for τ̇(t) = di, i = 1, 2 to the following:

Ξ̂1i(t) = Ξ̂1(t)
∣∣∣
τ̇(t)=di

< 0, i = 1, 2. (3.17)

Notice that

Ξ̂1(t) =
d2 − τ̇(t)
d2 − d1

Ξ̂11(t) +
τ̇(t) − d1

d2 − d1
Ξ̂12(t). (3.18)

Therefore, the two LMIs (3.17) imply (3.16), and Ξ̂1(t) is thus convex in τ̇(t) ∈ [d1, d2].
Similarly, Ξ̂2(t) is also convex in τ̇(t) ∈ [d1, d2]. Then if the two LMIs in (3.16) are feasible,
then Ωτ̇(t) < 0. It follows from (3.15) that

V̇ (t, x̃t) − γ2wT (t)w(t) < −λ‖x̃(t)‖2, ∀x̃(t)/= 0, (3.19)

where λ = λmin(−Ωτ̇(t)).
From the above process, we can obtain the asymptotic stability of error system (2.7)

with w(t) = 0.
Next, assuming that x̃(t) = 0, for all t ∈ [−hb, 0], we prove that the H∞ performance

‖e‖2 < γ‖w‖2 is also guaranteed for all nonzerow(t) ∈ L2[0,∞) and a prescribed performance
level γ > 0.

Notice that eT(t)e(t) = ΥTΓT3 (t)Γ3(t)Υ, one rewrites (3.15) to the following:

V̇ (t, x̃t) ≤ ΥTΩ̂τ̇(t)Υ − eT (t)e(t) + γ2wT (t)w(t), (3.20)

where

Ω̂τ̇(t) =
(
1 − ρ(t)

)
Ω̂1(t) + ρ(t)Ω̂2(t),

Ω̂i(t) := Ω(t) +
[
−ITi QδIi + δhXi(t)Ii + δhITi X

T
i (t)

]

+ h2
aΓ

T
1 (t)Q0Γ1(t) + δ2

hΓ
T
1 (t)QδΓ1(t) + δ2

hX
T
i (t)Q

−1
δ Xi(t) + ΓT3 (t)Γ3(t), (i = 1, 2).

(3.21)

If the LMIs (3.1) are feasible, applying Schur’s complement yields Ω̂τ̇(t) < 0. Otherwise,
similar to (3.16) and (3.17), then Ξ̂i(t), (i = 1, 2) are also convex in τ̇(t) ∈ [d1, d2]. So far,
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one has the following:

V̇ (t, x̃t) ≤ −eT (t)e(t) + γ2wT(t)w(t). (3.22)

Integrating both sides of (3.22) from 0 to ∞ on t, and considering the zero initial condition,
one obtains

∫∞

0
eT (t)e(t)dt < γ2

∫∞

0
wT(t)w(t)dt, (3.23)

that is, ‖e‖2 < γ‖w‖2. This completes the proof.

For unknown d1, only by substituting τ̇(t) = d2 into (3.1)-(3.2), we can obtain the
following Corollary.

Corollary 3.2. Given scalars 0 ≤ ha ≤ hb, d2 and γ > 0, the H∞ filter error system (2.7), for
all differentiable delay τ(t) ∈ [ha, hb] with τ̇(t) ≤ d2, is asymptotically stable and has a prescribed
H∞ performance level γ if there exist matrices R0 > 0, Rδ > 0, Q0 > 0, Qδ > 0, P =

[
P1 P2
∗ P3

]
> 0,

Rτ ≥ 0, Pτ ≥ 0, and real matrices Xij(t), (i = 1, 2; j = 1, 2, . . . , 6) with appropriate dimensions such
that two LMIs (3.1) where τ̇(t) = d2, with notations in (3.2) and (3.3), are feasible.

Moreover, if the above LMIs are feasible with Rτ = 0, Pτ = 0, then the H∞ filter error system
(2.7), for all fast-varying delay τ(t) ∈ [ha, hb], is also asymptotically stable and has a prescribedH∞
performance level γ .

In addition, when the number of IF-THEN rules is one, and the system is reduced to a
simple time delay systems, that is, the system can be described as follows:

ẋ(t) = Ax(t) +Adx(t − τ(t)), t > 0,

x(t) = φ(t), t ∈ [−hb, 0],
(3.24)

where

τ(t) ∈ [ha, hb], d1 ≤ τ̇(t) ≤ d2. (3.25)

According to the similar line of Theorem 3.1, without using the free-weighting matrices
technique, one derives the following Corollary.

Corollary 3.3. Given scalars 0 ≤ ha ≤ hb, d1 ≤ d2, the system (3.24), for all differentiable delay
τ(t) ∈ [ha, hb] with d1 ≤ τ̇(t) ≤ d2, is asymptotically stable if there exist real symmetry matrices
R0 > 0, Rδ > 0, Q0 > 0, Qδ > 0, P > 0, Rτ ≥ 0, Pτ ≥ 0 such that the following LMIs, where
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τ̇(t) = di, (i = 1, 2), are feasible:

⎡
⎢⎣
Ω̂ +

[
Î
t
iQδ Îi

]
haΓ̂T1Q0 δhΓ̂T1Qδ

∗ −Q0 0
∗ ∗ −Qδ

⎤
⎥⎦ < 0, (i = 1, 2), (3.26)

where Î1 := [0 0 − I I], Î2 := [0 I 0 − I], Γ̂1 := [A 0 0 Ad] and

Ω̂

:=

⎡
⎢⎢⎣

PA +ATP + R0 −Q0 Q0 0 PAd

∗ −R0 + Rδ + Rτ −Q0 −Qδ 0 Qδ

∗ ∗ −Rδ − Pτ −Qδ Qδ

∗ ∗ ∗ −(1 − τ̇(t))(Rτ − Pτ) − 2Qδ

⎤
⎥⎥⎦

(3.27)

Remark 3.4. It is worth mentioning that in the previous studies (see [37–39, 41]), some
negative terms are ignored when estimating the time derivative of the Lyapunov-Krasovskii
functional, which may lose a great amount of useful information and lead to conservative
results. Instead, in this paper, those negative terms are effectively used in (3.11). In
addition, when constructing the Lyapunov-Krasovskii functional candidate, the information
on the lower bound of the delay is taken full advantage of by introducing the terms∫ t−ha

t−hb
x̃T (s)ETRδEx̃(s)ds and

∫ t−ha

t−τ(t) x̃
T (s)ETRτEx̃(s)ds in the Lyapunov-Krasovskii functional.

From Example 5.3 below, it is clear to see that our approach is less conservative than the
existing ones.

4. Fuzzy H∞ Filter Design

It is worth mentioning that the problem in this paper essentially aims at designing a filter
to estimated z(t) based on H∞ norm constraint. The following theorem provides sufficient
condition for the existence of fuzzy H∞ filter for fuzzy system (2.3) with interval time-
varying delay. And a suitable filter design is obtained from the parameter matrices Afi, Bfi,
Cfi, and Dfi, (i = 1, 2, . . . , r).

Theorem 4.1. Given scalars 0 ≤ ha ≤ hb, d1 ≤ d2 and γ > 0, the fuzzyH∞ filter design problem, for
all differentiable delay τ(t) ∈ [ha, hb] with d1 ≤ τ̇(t) ≤ d2, is solvable if there exist matrices P1 > 0,
U > 0, Rτ ≥ 0, Pτ ≥ 0, R0 > 0, Rδ > 0,Q0 > 0, andQδ > 0, and real matricesN1i,N2i,N3i,N4i, (i =
1, 2, . . . , r), X̂k

i := col {Xk
i1 X̂k

i2 Xk
i3 Xk

i4 Xk
i5 Xk

i6}, and i = 1, 2; k = 1, 2, . . . , r with appropriate
dimensions such that the following LMIs: where τ̇(t) = d1, d2, are feasible:

U − P1 < 0, (4.1)

Πi(m,n) + Πi(n,m) < 0, m ≤ n, (m,n = 1, 2, . . . , r), (i = 1, 2), (4.2)
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where I1, I2 is defined in (3.2), and

Πi(m,n)

:=

⎡
⎢⎢⎢⎢⎢⎢⎣

Ω̂mn +
[
−ITi QδIi + δhX̂

m
i Ii + δhITi

(
X̂m

i

)T
]

ha

(
Γm1

)T
Q0 δh

(
Γm1

)T
Qδ δhX̂

m
i

(
Γ̂m3

)T

∗ −Q0 0 0 0
∗ ∗ −Qδ 0 0
∗ ∗ ∗ −Qδ 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Ω̂mn

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ϕ̂11 ϕ̂12 Q0 0 ϕ̂15 ϕ̂16

∗ ϕ̂22 0 0 ϕ̂25 ϕ̂26

∗ ∗ Rτ − R0 + Rδ −Q0 −Qδ 0 Qδ 0
∗ ∗ ∗ −Rδ −Qδ − Pτ Qδ 0
∗ ∗ ∗ ∗ −(1 − τ̇(t))(Rτ − Pτ) − 2Qδ 0
∗ ∗ ∗ ∗ ∗ −γ2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

ϕ̂11 = P1Am +AT
mP1 +N2nCm + CT

mN
T
2n + R0 −Q0,

ϕ̂12 = N1n +AT
mU + CT

mN
T
2n, ϕ̂22 = N1n +NT

1n,

ϕ̂15 = P1Aτm +N2nCτm, ϕ̂25 = UAτm +N2nCτm

ϕ̂16 = P1Bm +N2nDm, ϕ̂26 = UBm +N2nDm.

Γm1 :=
[
Am 0 0 0 Aτm Bm

]
,

Γ̂m3 :=
[
Lm −N4nCm −N3n 0 0 Lτm −N4nCτm Gm −N4nDm

]
.

(4.3)

Moreover, a suitable filter in the form of (2.5) is given by

Afi = N1iU
−1, Bfi = N2i, Cfi = N3iU

−1, Dfi = N4i (i = 1, 2, . . . , r). (4.4)

Proof. Set

Nk(t) :=
r∑

i=1

hi(θ(t))[Nki], k = 1, 2, 3, 4, (4.5)

X̂i(t) := col
{
Xi1(t) X̂i2(t) Xi3(t) Xi4(t) Xi5(t) Xi6(t)

}
, i = 1, 2, (4.6)

where

Xik(t) :=
r∑

j=1

hj(θ(t))
[
X

j

ik(t)
]
, i = 1, 2; k = 1, 3, . . . , 6,

X̂i2(t) :=
r∑

j=1

hj(θ(t))
[
X̂

j

i2(t)
]
,

Γ1(t) :=
r∑

m=1

hm(θ(t))
[
Γm1

]
, Γ̂3(t) :=

r∑

m=1

hm(θ(t))
[
Γ̂m3

]
.

(4.7)
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Thus, from (2.8) and the above definition, we have

Πi(t) =
r∑

m=1

h2
m(θ(t))[Πi(m,m)] +

r∑

m<n

hm(θ(t))hn(θ(t))[Πi(m,n) + Πi(n,m)], (i = 1, 2),

(4.8)

where

Πi(t)

:=

⎡
⎢⎢⎢⎢⎢⎣

Ψ(t) +
[
−ITi QδIi + δhX̂i(t)Ii + δhITi X̂

T
i (t)

]
haΓT1 (t)Q0 δhΓT1 (t)Qδ δhX̂i(t) Γ̂T3 (t)

∗ −Q0 0 0 0
∗ ∗ −Qδ 0 0
∗ ∗ ∗ −Qδ 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦

< 0

(i = 1, 2)
(4.9)

with

Ψ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ11 Ψ12 Q0 0 Ψ15 Ψ16

∗ Ψ22 0 0 Ψ25 Ψ26

∗ ∗ Rτ − R0 + Rδ −Q0 −Qδ 0 Qδ 0

∗ ∗ ∗ −Rδ −Qδ − Pτ Qδ 0

∗ ∗ ∗ ∗ −(1 − τ̇(t))(Rτ − Pτ) − 2Qδ 0

∗ ∗ ∗ ∗ ∗ −γ2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ψ11 = P1A(t) +AT (t)P1 +N2(t)C(t) + CT (t)NT
2 (t) + R0 −Q0,

Ψ12 = N1(t) +AT (t)U + CT (t)NT
2 (t), Ψ22 = N1(t) +NT

1 (t),

Ψ15 = P1Aτ(t) +N2(t)Cτ(t), Ψ25 = UAτ(t) +N2(t)Cτ(t),

Ψ16 = P1B(t) +N2(t)D(t), Ψ26 = UB(t) +N2(t)D(t).
(4.10)

Next, based on Theorem 3.1, we calculate the feasibility of the LMIs Πi(t) < 0, (i = 1, 2).
Due to U > 0, there exist a nonsingular real n × n matrix P2 and a real n × n matrix

P3 > 0 such that U = P2P
−1
3 PT

2 .Let us define

J := diag
{
I P−T

2 P3 I I I I I I I I
}

(4.11)
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left- and right-multiply Πi(t), i = 1, 2 defined in (4.8) by JT and J , respectively, and take
Xi2(t) := P3P

−1
2 X̂i2(t), i = 1, 2 and

A(t) = P−1
2 N1(t)U−1P2, B(t) = P−1

2 N2(t),

C(t) = N3(t)U−1P2, D(t) = N4(t),
(4.12)

By replacing (Af(t), Bf(t), Cf(t), Df(t)) in Ξi(t), i = 1, 2 defined in (3.1) with
(A(t), B(t), C(t), D(t)), one yields

Ξi(t) = JTΠi(t)J, i = 1, 2 (4.13)

Note that if LMIs (4.1) and (4.2) hold, from (4.8), we arrive at Πi(t) < 0, then Ξi(t) < 0.
On the other hand, from (4.1), notice that P1 −U = P1 − P2P

−1
3 PT

2 > 0, applying Schur

complement yields
[
P1 P2
∗ P3

]
> 0.

So far, we conclude from Theorem 3.1 that the filter, that is,

ẋ(t) = A(t)x(t) + B(t)y(t), x(0) = 0,

z(t) = C(t)x(t) +D(t)y(t),
(4.14)

with (A(t), B(t), C(t), D(t)) defined in (4.12), guarantees that theH∞ filter error system (2.7)
is asymptotically stable and has a prescribed H∞ performance level γ .

And, performing an irreducible linear transformation x̂(t) = P2x(t) in (4.14) yields

˙̂x(t) = N1(t)U−1x̂(t) +N2(t)y(t), x̂(0) = 0,

ẑ(t) = N3(t)U−1x̂(t) +N4(t)y(t).
(4.15)

Therefore, the desired filter (2.5) with the filter matrices in (4.4) is readily obtained
from (4.15). This completes the proof.

Similar to Corollary 3.2, when d1 is unknown, by substituting τ̇(t) = d2 into (4.2), the
following result is then obtained.

Corollary 4.2. Given scalars 0 ≤ ha ≤ hb, d2 and γ > 0, the fuzzy H∞ filter design problem, for all
differentiable delay τ(t) ∈ [ha, hb] with τ̇(t) ≤ d2, is solvable if there exist matrices R0 > 0, Rδ > 0,
Q0 > 0,Qδ > 0, P1 > 0,U > 0, Rτ ≥ 0, Pτ ≥ 0, and real matricesN1i,N2i,N3i,N4i, (i = 1, 2, . . . , r),
X̂k

i :=col {Xk
i1 X̂k

i2 Xk
i3 Xk

i4 Xk
i5 Xk

i6}, i = 1, 2; k = 1, 2, . . . , r with appropriate dimensions such
that the LMIs: (4.1) and (4.2) where τ̇(t) = d2, are feasible. Meanwhile, a desired filter in the form of
(2.5) is given by the filter matrices in (4.4).

Moreover, if the above LMIs are feasible with Rτ = 0, Pτ = 0, then the fuzzy H∞ filter design
problem, for all fast-varying delay τ(t) ∈ [ha, hb], is solvable in which a desired filter in (2.5) is given
by the filter matrices in (4.4).
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Remark 4.3. Notice that for any scalar σ, if (σZ − P)Z−1(σZ − P) ≥ 0, then −PZ−1P ≤ −2σP +
σ2Z. The fact played a key role in the existing results in [4, 5, Lemma 1], respectively. But there
existed some coupled matrix variables in the LMIs in [4, 5].Therefore, to solve filter design
problem, [4, 5] must use decoupling technique similar to [42] to convert the conditions in
[4, 5, Lemma 1] into another form, respectively. These decoupling approaches were shown
as [4, 5, Lemma 2], respectively. Furthermore, because of a scalar being predescribed, the
constraint may lead to considerable conservativeness of these results. Examples below show
that for different δ yields different γmin. From simulation results in Table 2, we can see that
if δ = 0.7 or δ = 20, the conditions in [4, 5] are unsolvable when hb = 1.0, while our result
works. Meanwhile, the scalar is not needed in this paper. Examples 5.1 and 5.2 below show
that our approach yields less conservative results.

5. Numerical Examples

In this section, three examples are given to show the effectiveness of the proposed method in
this paper.

Example 5.1. Consider the following fuzzy system borrowed from [4, 5]:

ẋ(t) =
2∑

i=1

hi(θ(t))[Aix(t) +Aτix(t − τ(t)) + Biw(t)],

y(t) =
2∑

i=1

hi(θ(t))[Cix(t) + Cτix(t − τ(t)) +Diw(t)],

z(t) =
2∑

i=1

hi(θ(t))[Lix(t) + Lτix(t − τ(t)) +Giw(t)],

(5.1)

where

A1 =

[−2.1 0.1

1 −2

]
, A2 =

[−1.9 0

−0.2 −1.1

]
, Aτ1 =

[−1.1 0.1

−0.8 −0.9

]
, Aτ2 =

[−0.9 0

−1.1 −1.2

]
,

B1 =

[
1

−0.2

]
, B2 =

[
0.3

0.1

]
,

C1 =
[
1 0

]
, C2 =

[
0.5 −0.6], Cτ1 =

[−0.8 0.6
]
, Cτ2 =

[−0.2 1
]

D1 = 0.3, D2 = −0.6,

L1 =
[
1 −0.5], L2 =

[−0.2 0.3
]
, Lτ1 =

[
0.1 0

]
, Lτ2 =

[
0 0.2

]
,

G1 = 0, G2 = 0.
(5.2)

For d2 = 0.3 and γ = 0.5, choosing d1 and ha in Table 1 and applying Theorems 4.1, the results
are d1-dependent (see Table 1). Moreover, for unknown d1 and d2, that is, fast-varying delay
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Table 1: Maximum values of hb for d2 = 0.3.

ha \ d1 0 −0.1 −0.3 −0.5 −0.7 −1
ha = 1 2.358 2.357 2.355 2.353 2.349 2.351
ha = 0 2.011 2.012 2.012 2.011 2.011 2.012

Table 2: Minimum index γ for d2 = 0.2 (d1 unknown and ha = 0).

Method δ = 0.7 δ = 1 δ = 2 δ = 10 δ = 20 Any δ

[4] [5] [4] [5] [4] [5] [4] [5] [4] [5] Our results
hb = 0.5 0.59 0.42 0.38 0.27 0.35 0.25 0.34 0.24 0.37 0.26 0.2054
hb = 0.6 1.03 0.74 0.43 0.31 0.36 0.25 0.35 0.25 0.45 0.32 0.2100
hb = 0.8 11.98 8.54 0.83 0.59 0.38 0.27 0.37 0.26 1.01 0.70 0.2204
hb = 1 — — 2.22 1.57 0.41 0.29 0.45 0.32 — — 0.2324

Table 3:Minimum index γ for different cases (d1 unknown and hb = 1.25).

ha method d2 = 0.4 d2 = 0.6 d2 = 0.8 d2 ≥ 1

0

[4] 0.44 2.77 ∞ ∞
[37] 0.42 1.41 ∞ ∞
[36] 0.32 0.49 0.84 1.14

Our results 0.29 0.41 0.79 1.03

0.8
[37] 0.40 0.89 1.06 1.06
[36] 0.32 0.40 0.40 0.40

Our results 0.24 0.24 0.24 0.24

1.0
[37] 0.37 0.38 0.38 0.38
[36] 0.28 0.28 0.28 0.28

Our results 0.20 0.20 0.20 0.20

Table 4: Minimum performance level γ .

Method δ = 0.7 δ = 1 δ = 2 δ = 4 Any δ

[4] [5] [4] [5] [4] [5] [4] [5] Our results
hb = 0.5 0.37 0.26 0.35 0.24 0.36 0.24 0.38 0.26 0.218
hb = 0.6 0.44 0.31 0.38 0.27 0.38 0.27 0.41 0.29 0.241
hb = 0.8 0.63 0.45 0.49 0.34 0.44 0.31 0.55 0.39 0.300

case, according to Corollary 4.2, by setting Rτ = 0, Pτ = 0, ha = 0, and hb = 0.5, we get the
optimal attenuation level γopt = 0.230 after 38 iterations.

For ha = 0, d1unknown and d2 = 0.2, to compare with the recently developed fuzzy
H∞ filter, it is worthwhile to point out that a given scalar δ is needed in [4, 5] while the
scalar δ is any value in our results. Thus, we consider different hb and δ to find the minimum
index γ . The results obtained by various methods in the literature and in this paper are listed
in Table 2. Moreover, for the case of no additional prescribed scalar, in order to demonstrate
the advantages of the proposed approach over the existing results, a detailed comparison
between the minimum H∞ performance levels obtained by the methods in [4, 36, 37] and
in this paper for different cases is summarized in Table 3. From Tables 2 and 3, it can be seen
that stability conditions obtained in this paper are less conservative than the existing ones.
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As an example, for given ha = 0, hb = 0.5, d1 = 0, ans d2 = 0.3, according to
Theorem 4.1, solve LMIs in (4.1) and (4.2), and get the minimum performance level γopt =
0.206 after 32 iterations, and then compute the fuzzyH∞ filter matrices from (4.4) as follows

Af1 =

[−7.1207 −5.3463
−0.7273 −4.5289

]
, Bf1 =

[−0.1932
0.2146

]
,

Cf1 =
[−6.3345 −2.6742], Df1 = 0.2486,

Af2 =

[−3.5662 −1.3711
−7.4183 −10.6811

]
, Bf2 =

[−0.1765
0.1956

]
,

Cf2 =
[−2.3625 −5.2980], Df2 = 0.2498.

(5.3)

In order to further show the merit of our method, let us consider the following
numerical example.

Example 5.2. Consider the following fuzzy system with interval time-varying delay:

ẋ(t) =
2∑

i=1

hi(θ(t))[Aix(t) +Aτix(t − τ(t)) + Bw(t)],

y(t) =
2∑

i=1

hi(θ(t))[Cix(t) + Cτix(t − τ(t)) +Dw(t)],

z(t) =
2∑

i=1

hi(θ(t))[Lix(t) + Lτix(t − τ(t)) +Giw(t)],

(5.4)

where

A1 =

⎡
⎢⎢⎣

−1 0 0

0 −0.9 0

0 −0.5 −1

⎤
⎥⎥⎦, A2 =

⎡
⎢⎢⎣

−0.9 0.2 0

−0.2 −0.5 0

0 −0.1 −0.8

⎤
⎥⎥⎦, Aτ1 =

⎡
⎢⎢⎣

−0.8 0.2 −0.1
0.1 −0.8 0

−0.4 0.25 −1

⎤
⎥⎥⎦,

Aτ2 =

⎡
⎢⎢⎣

−1 0.5 0.1

0.5 −1 0

−0.8 0.9 −0.25

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

0

0

0.5

⎤
⎥⎥⎦, C1 =

[
0.5 0.4 0

]
,

C2 =
[
0.5 −1 0

]
, Cτ1 =

[
1 −0.5 0.5

]
, Cτ2 =

[
1 0.1 −0.5],

D = 0.25, L1 =
[
0.5 0 0

]
, L2 =

[
1 −0.5 0

]
,

Lτ1 =
[
0.1 0.5 0.5

]
, Lτ2 =

[
0.1 0 0.5

]
, G1 = 0, G2 = 0.

(5.5)
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Table 5: Maximum values of hb.

Method δ = 0.7 δ = 1 δ = 2 δ = 5 Any δ

[4] [5] [4] [5] [4] [5] [4] [5] Our results
γ = 0.3 0.33 0.59 0.33 0.69 0.25 0.78 0.12 0.59 0.80
γ = 0.4 0.55 0.76 0.64 0.91 0.70 1.08 0.52 0.70 1.16
γ = 0.5 0.69 0.84 0.82 1.02 0.97 1.13 0.67 0.70 1.19

Table 6:Maximum values of hb for ha = 1.0 (d1 unknown).

d2 \Method [38] [37] [39] Our results
unknown 1.50 1.5187 1.6169 1.7001
0.3 — 2.2125 2.2474 2.3076

To compare with the ones existing in [4, 5], we assumed that d1is unknown and ha = 0.
According to Corollary 4.2, choose d2 = 0.2 and the simulations are run for two cases. In
the first case, we compute the minimum index γ for the given different hb and δ in [4, 5] or
any δ in this paper. In the second case, we compute the maximum values of hb for the given
different γ and δ in [4, 5] or any δ in this paper. The simulation results are shown by Tables 4
and 5, respectively. It can also be clearly seen that our approach has less conservative results
than the results in the literatures.

As an example, we assume that ha = 0, hb = 1.0, d1 = 0, d2 = 0.2, γ = 0.5, the solutions
can be obtained after 20 iterations in which the fuzzy H∞ filter in the form of (2.5) is given
by the following filter matrices as

Af1 =

⎡
⎢⎢⎣

−3.3579 3.2252 −0.3286
5.2755 −12.3863 12.6979

−0.4419 −0.1659 −7.8342

⎤
⎥⎥⎦, Bf1 =

⎡
⎢⎢⎣

4.1741

2.2921

−0.2958

⎤
⎥⎥⎦,

Cf1 =
[
0.2597 0.0547 2.2850

]
, Df1 = 0.4963,

Af2 =

⎡
⎢⎢⎣

−1.6047 −1.0030 −4.2861
1.0643 −4.9469 0.2980

−0.2451 0.1274 −3.3907

⎤
⎥⎥⎦, Bf2 =

⎡
⎢⎢⎣

5.1135

2.0674

−0.4810

⎤
⎥⎥⎦,

Cf2 =
[−0.7162 0.2062 −6.4570], Df2 = −0.2080.

(5.6)

Next, we will give another example to illustrate that our methods are reduced more
conservative than the existing results.

Example 5.3. Consider the linear system (3.24)with the following parameters

A =
[
0 1
−1 −2

]
, Ad =

[
0 0
−1 1

]
. (5.7)

To compare with those results in the previous literatures, assume that d1 is unknown. For
ha = 1.0, d2 unknown or d2 = 0.3, the result of Corollary 3.3 coincides with the one in [41] (the
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latter are less conservative than those of [39]). Comparison with various existing methods in
the literature for the admissible upper-bound hb, which guarantee the stability of the system
(3.24) is listed in Table 6. It is clear that our results are much less conservative than those in
[37–39].

6. Conclusion

This paper deals with the problem of fuzzy H∞ filter design for T-S fuzzy systems with
interval time-varying delay through T-S fuzzy models. By constructing a novel Lyapunov-
Krasovskii functional and estimating the time derivative of the Lyapunov-Krasovskii
functional less conservatively, an improved H∞ filter design scheme is proposed. Three
numerical examples are used to illustrate the design procedure and the merit of the proposed
method.
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