Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2010, Article ID 405639, 12 pages
doi:10.1155/2010/405639

Research Article

Neimark-Sacker Bifurcation in
a Discrete-Time Financial System

Baogui Xin,"? Tong Chen,* and Junhai Ma*

I Nonlinear Dynamics and Chaos Group, School of Management, Tianjin University, Tianjin 300072, China
2 Center for Applied Mathematics, School of Economics and Management, Shandong University of
Science and Technology, Qingdao 266510, China

Correspondence should be addressed to Baogui Xin, xin@tju.edu.cn
Received 14 May 2010; Revised 16 July 2010; Accepted 28 August 2010
Academic Editor: Akio Matsumoto

Copyright © 2010 Baogui Xin et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

A discrete-time financial system is proposed by using forward Euler scheme. Based on explicit
Neimark-Sacker bifurcation (also called Hopf bifurcation for map) criterion, normal form method
and center manifold theory, the system’s existence, stability and direction of Neimark-Sacker
bifurcation are studied. Numerical simulations are employed to validate the main results of
this work. Some comparison of bifurcation between the discrete-time financial system and its
continuous-time system is given.

1. Introduction

Economic dynamics have recently become more prominent in mainstream economics [1].
The real financial and economic systems show a lot of complex dynamical phenomena, such
as, business cycle, financial crisis, irregular growth, and bullwhip effect. Many nonlinear
dynamical models of economics and finance [2-9] present various complex dynamical
behaviors such as, chaos, fractals, and bifurcation.

Bifurcation refers to a class of phenomena in dynamic systems such that the dynamic
properties of the system cause a sudden “qualitative” or topological change when the
parameter values (the bifurcation parameters) cross a boundary. Bifurcation boundaries, for
example, Hopf bifurcations [10-13], have been discovered in many macroeconomic systems
[14]. Hopf bifurcations occur at points where the system has a nonhyperbolic equilibrium
with a pair of purely imaginary eigenvalues, but without zero eigenvalues. For a financial
or economic system, there can be disequilibrium thresholds where society decides it cannot
afford the increasing cost of misallocated resources as disequilibrium increases. Such a
threshold then forces a restructuring of the market system. This concept of restructuring to
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maintain the survival of the system is known as bifurcation theory. A bifurcation in a financial
or economic system is a point (or threshold) where the system is restructured to operate
at a more acceptable or stable level of disequilibrium. Bifurcations do not usually lead to
equilibrium conditions, only to a stable or comfortable disequilibrium condition under which
the system can continue to survive [15].

Huang and Li [16] proposed a nonlinear financial model as follows:

x=z+(y—-a)x,

y=1-by-x?% (1.1)

z=-x-cz,

where x denotes the interest rate, y denotes the investment demand, z denotes the price
index, a is the saving amount, b is the cost per investment, c¢ is the demand elasticity of
commercial markets, and all three constants a,b,c > 0.

Chen [1] and Ma et al. [11-13] studied some complex dynamics in system (1.1), such
as, a steady state, a periodic oscillation, a quasiperiodic motion and a chaotic motion. In
this paper, we will apply the forward Euler scheme to system (1.1) in order to obtain an
autonomous discrete-time financial system as follows:

X1 = X +6(2n + (Yn — a)Xp),
Ynel = Yn + 6<1 - by, - xi), (1.2)

Zpil = Zn + O(=x,, — C2y),

where 0 < 6 < 1is the step size.

An arduous task in the study of nonlinear dynamical systems like system (1.2) is to
identify different types of complex nonlinear behaviors and to present how the behavior
evolves as a system parameter varies [17, 18]. Thereinto, bifurcation is a very important
nonlinear behavior which can indicate a qualitative change of system properties as a system
parameter changes. Neimark-Sacker bifurcations give rise to closed invariant curves which
present more interesting complex behaviors. The criterion of Hopf bifurcation in continuous-
time system can be stated in terms of eigenvalues or the coefficients of characteristic
polynomial [19, 20]. The later method, called Schur-Cohn stability criterion, which is more
convenient and efficient for detecting the existence of Hopf bifurcation in high-order and
multiparameters systems was also demonstrated in discrete dynamical systems [21-23].

The remainder of this paper is organized as follows. In Section 2, we present some
preliminaries. In Section 3, we prove stabilities of the fixed points in system (1.2). In Section 4,
we analyze the existence of Neimark-Sacker bifurcation in system (1.2) by means of Wen's
Neimark-Sacker bifurcation criterion. In Section 5, we study the stability and direction of
Neimark-Sacker bifurcation in system (1.2) by utilizing Kuznetsov’s normal form method
and center manifold theory. In Section 6, we illustrate the Neimark-Sacker bifurcation in
system (1.2). In Section 7, we give some comparison of bifurcation between the continuous-
time system (1.1) and the discrete-time system (1.2). Finally conclusions in Section 8 close the

paper.
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2. Preliminaries

Lemma 2.1 (see [24]). Let F from R" to R" be C2. Assume po is a period-k point. Let Ay, Ay, ..., Ay,
be the eigenvalues of D(F¥) .

(i) If all the eigenvalues A; of D(Fk)(po) have |\;| < 1, then the periodic orbit Op.(po) is
attracting.
(ii) If one eigenvalue \ig of D(F¥),,

(iii) If all the eigenvalues \; of D(Pk)(pg) have |\;| > 1, then the periodic orbit Of(po) is
repelling.

y has |\io| > 1, then the periodic orbit OF(po) is unstable.

Next, we will study the stability of a nonlinear discrete dynamical system which can
be described as follows:

X = F(Xy), X(0) = Xo = (x10, %20, - -, Xn0)", Where (2.1)

f1 (X1t X2t, -+ - Xt)
F(Xt) — f2(xlt/x2f‘/- --/xnt) , (22)

fn(xlt/ X2ty /xnt)

T
Xt = (xlt,x2t,. . .,xnt) € R".

Theorem 2.2. Let X = (X1, %2, ..., %n)" be aﬁxedApoint of system (2.1), that is, X =F(X)and A =
(0F/0X)|x_x is the Jacobian matrix at the point X; then the necessary condition for asymptotically
stability of the point X is that

(i) [tr(Ah| < nforallt >0,

(i) | det(A")| < 1 forall t >0,
where tr(A) denotes the trace of A and det(A) the determinant of A.
Proof. Assume that the point X is asymptotically stable and let \i,...,A;,A, be the

eigenvalues of the Jacobian matrix A at the point X. Then it follows from Lemma 2.1 that
all the eigenvalues satisfy

<1, i=12,...,n (2.3)
Thus
n n
[tr(AD)] = | D] < Dl <n, VE>0,
i=1 i=1 (24)
n n
|det(A")| = [ M| =] JIul <1, vt>o.
i=1 i=1

The theorem is proved. O
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Theorem 2.3. Let X = (fl,iz,...,a?n)T be a fixed point of system (2.1), that is, X = F(X) and
A = (0F/0X)|_g is the Jacobian matrix at the point X; then the necessary condition for repellent of
the point X is that

() [tr(AH| > nforallt >0,

(i) | det(A")| > 1 forall t > 0,

where tr(A) denotes the trace of A and det(A) the determinant of A.

Proof. Assume that the point X is repelling and let A4,..., 1,4, be the eigenvalues of the
Jacobian matrix A at the point X. Then it follows from Lemma 2.1 that all the eigenvalues
satisfy

[\l >1, i=12,...,n (2.5)
Thus
[tr(A)] = | DN < Dl >n, VE>0,
i=1 i=1 (26)
|det(A")| = [ M| =] [l >1, ve>o.
i=1 i=1
The theorem is proved. O

Lemma 2.4 (An explicit criterion of Neimark-Sacker bifurcation [22]). For an nth-order
discrete-time dynamical system like system (1.2), assume first that at the fixed point xo, its
characteristic polynomial of Jacobian matrix A = (aij) ., takes the following form:

pu(A) = A"+ N+ v a, )l +ay, (2.7)

where aj = aj(u, k), j =1,...,n,u, is the bifurcation parameter, and k is the control parameter or the
other to be determined. Consider the sequence of determinants Aj(u, k) =1, AT (u, k), ..., Ax(u, k),
where

1 a ap - aj-1 Ap-j+1 QAp-j+2 " Op-1 Qn
0 1 a - aj2 An-js2 Anjs3 -+ An 0
A]*(‘u,k)= o o0 1 --- aj3 |+ , j=1,...,n. (2.8)
Ap1 a, -~ 0 0
0 0 O 1 a, 0 -+ 0 0

If the following conditions hold,

(H1) eigenvalue assignment A~ (o, k) = 0, pu,(1) > 0, (=1)"py,(=1) > 0, A (o, k) >
0, A]*(yo, k)>0,j=n-3,n-5,...,1 (or 2)when niseven (or odd, resp.),

(H2) transversality condition dA, _, (uo, k)/du+0,
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(H3) nonresonance condition cos(2sr/m) # ¢ or resonance condition cos(2sxr/m) = , where
m=3,4,5,...and ¢ =1-0.5p,,(1)A, _(po, k)/ A} _,(po, k),

then a Neimark-Sacker bifurcation occurs at py.

3. Stability of the Fixed Points

The fixed points of system (1.2) satisfy the following equations:

x=x+6(z+ (y-a)x),

y=y+6(1-by-22), 3.1)

z=z+0(-x—-cz).
By the analysis of roots for (3.1), one obtains the following proposition.

Proposition 3.1. (1) If ¢ —b —abc <0, system (1.2) has only one fixed point Py = (0,1/b,0).
(2)If ¢—-b—-abc >0, system (1.2) has three fixed points:

f[c—b- [c—b-ab
P, = <0/1/0>, Pys = <:i: c-b abc, 1+ ac,q:l c a c>‘ (3.2)
b c c c c

The Jacobian matrix J(P) of system (1.2) evaluated at the fixed point P(x*,y*, z*) is given by

1+6(y*—a) Ox* o
J(P) = 25t 1-6b 0 | (33)
-6 0 1-6c

Following from Theorem 2.2, it is easy to obtain the following propositions.

Proposition 3.2. When ¢ — b — abc <0, the fixed point Py is not asymptotically stable if
l—ab-b>—bc>0 or <1—ab—b2—bc>h+6b<0. (3.4)

Proposition 3.3. When ¢ —b — abc > 0,

(1) the fixed point Py is not asymptotically stable if

l—ab-b-bc>0 or (1—ab—b2—bc)h+6b<o; (3.5)
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(2) the fixed points P, 3 are not asymptotically stable if

1-bc-c*>0 or <1—bc—c2>h+6c<0. (3.6)

That is, if one of Propositions 3.2 and 3.3 holds, it is possible that bifurcation occurs in system (1.2).
The Jacobian matrix J(Py) of the system (1.2) evaluated at the fixed point Py = (0,1/b,0) is
given by

1+6 % - a> 0 6
J(Po) = 0 1-66 0 |- (3.7)
-6 0 1-6c

Its eigenvalues can be written as

s = 21_b <5 +2b — ab — b + i6\/4b? — (ab - bc - 1)2>, la=1-b6. (38
Following from Theorem 2.2, it is easy to obtain the following propositions.
Proposition 3.4. When ¢ —b —abc <0,

(1) the fixed point Py is asymptotically stable if a > (c6 — b6 +bc —1)/b(6 - 1);
(2) the fixed point Py is unstable if a < (c6 —bd + bc —1)/b(6 - 1).
(3) a bifurcation occurs at the fixed point Py if a = (c6 —bd +bc-1)/b(6 - 1).

4, Existence of Neimark-Sacker Bifurcation

The main task of this paper is to determine the value of bifurcation parameter when the
system (1.2) has only one fixed point Py = (0,1/b,0) with ¢—b—abc < 0.
The characteristic polynomial of the Jacobian matrix (3.7) is

p(L) = L2+ p2A® + prd +po =0, (4.1)

where

p1:6<a+b+c—%>—3,

By A 21
p2—6<ab+ac+bc b> 26<a+b+c b>+3, (4.2)

p3=63(abc+b—c)—62<ab+ac+bc—g)+6<a+b+c—%>—1.
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According to Lemma 2.4, for n = 3, we can get the following equalities and inequalities:
Asay=|(F P) (P2 P2
2 01 p3 O

(-1)°pa(-1) = %(2 —b6) (4b — 2bc6 + 26 — c6% - 2ab6 + abcd* + b6?) > 0,

SR

According to (4.3), the critical value of Neimark-Sacker bifurcation of system (1.2) can be
obtained as

=1+ %(519 ~1)*(6%b - 6bc — 6ab + 6 + b + 5abc — 620)2 >0,

pa(1) = 63(abc+b-c) >0,

=1- %(5&;— 1)%(6% — 6bc - 6ab + 6 + b + 6%abc — 6%¢)” > 0.
(4.3)

. CO—bb+bc—1
a —W. (44)

Thus, it follows (3.8) that the eigenvalues modules |Aip| = 1, |[A3] = 1 — b6 satisfy the
condition (H1) in Lemma 2.4, that is, Neimark-Sacker bifurcation occurs at the fixed point
Py=1(0,1/b,0).

5. Direction and Stability of the Neimark-Sacker Bifurcations

In this section, we will use Kuznetsov’s normal form method and center manifold theory [25]
to investigate the direction and stability of the Neimark-Sacker bifurcations in system (1.2).

Since the fixed point Py = (0,1/b,0) is not the origin O(0,0,0), the Py needs to be
transformed to the origin by the change of variables

1
x=1u, y=E+v, z = w. (5.1)
This transforms system (1.2) into the following equivalent system:
(e (s )
Ups1 = Uy + O W, + U"_a+E u, ),
1 .
Vpsl = Uy + — — 6<bvn + uﬁ), (5.2)

b

Wyi1 = Wy — O(Uy + CWy),
This system can be written as

1
Xni1 = JXn + %B(Xn,Xn) + gC(Xn,Xn,Xn) + O<X3>, (5.3)
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where ] is the Jacobin matrix of system (5.2) evaluated at the origin O(0, 0, 0) as follows.

V262 +2¢6-¢c262+1 0 6
J(O) = 0 1-6b 0 ) (5.4)
—-d 0 1-6¢

And the multilinear functions B : RZ x R2 — R2 and C : R3 x R® — R3 are defined,
respectively, by

L 92X(¢,0
Z 0°Xi(6,0)

Bilxy) = 24 5o,

XjYk, 1= 1,2,3,
=0

e (5.5)
| & PXiE,0)
Ci(xy.2) ‘]lela 0604 |,

x,ykzl, i=1,2,3.

For the system (5.2),

6§11’12 0
B(¢,n) = <—6§1711>, C(¢én,¢) = <0> (5.6)
0 0

The eigenvalues of the matrix J(O) are

A= 21_b <6 +2b—a*bd — bcod + ih\/4b2 — (a*b-bc - 1)2> =% where 0 <6, < .
(5.7)

Let g € C° be a complex eigenvector of the matrix J corresponding to A; given by (5.7),
and satisfy

Jg = e’eoq (5.8)

Let p € C? be a complex eigenvector of the transposed matrix J corresponding to >
given by (5.7), and satisfy

*190

J'p=e"p. (5.9)

Then we can obtain

g~ <%(1 he - A1)01>T, p~<%(1—hc—)tz),0,1>T. (5.10)
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For the eigenvector g = (1/h(1 — hc - 14),0, 1)7, to normalize p, let

) _2K? . —4b6 '
P=\JK2(c=a+ (1/b) + (Ka/bb)) —bK6" " K(c—a+ (1/b) + (Ka/b6)) —4b6 )
(5.11)

where

K= ih\/462 — (ab—bc—1)2, K = ab6—6—bcb + K. (5.12)

We have (p,q) = 1, where (-,-) means the standard scalar product in C>: (p,q) = p,q1 + P,q>
So the coefficients of the normal of the system (5.2) can be computed by the formulas
as follows:

820 =(p,B(4,9)),
g =(p,B(4,9)),
g0 ={(p,B(9,9)),
g2 = (p.C00.0) +2(p,B(0. 1~ D'B@.D)) + (p.B (3 (1.~ 1) Ba.a) )

-i60 (1 — i
L€ (1 ‘2e o)
1 - et

ei@o 5
+ 238 — | |802| .

2
0811 + |11

1 - e
(5.13)

The direction coefficient of bifurcation of a closed invariant curve can be obtained by
following formula

e—ieo o1 6*21.90 (1 — Zeieo) 1 ) 1 >
d —Re<T - Re Wgzogu - §|g11| - Z|g02| . (5.14)

Thus we can obtain the theorem as follows.

Proposition 5.1. The direction and stability of Neimark-Sacker bifurcation of system (1.2) can be
determined by the sign of d. If d < 0 (> 0), then the Neimark-Sacker bifurcation of system (1.2) at
a* = (c6-bd +bc—1)/b(6 - 1) is supercritical (subcritical), and the unique closed invariant curve
bifurcating from Py = (0,1/b,0) is asymptotically stable (unstable).

6. Numerical Simulations

In this section, we will give an example to illustrate above analytic results.

Let h = 0.3, b = 0.6, and ¢ = 0.2 with an initial state (xo, yo, zo) = (0.4,0.6,0.8); we can
obtain the critical saving amount a* = (¢6 —bd + bc — 1) /b(6 — 1) = 1.773. By substituting this
into (5.14), we have d = —1.83 < 0. It follows from Proposition 5.1 that system (1.2) undergoes
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Figure 1: Phase portrait with a = 1.7731
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Figure 2: Time histories with a = 1.7731

a supercritical Neimark-Sacker bifurcation at a = 1.773. When we give a small perturbation
Aa =0.0001, a sufficiently small positive real number, that is, a = a* + Aa = 1.773 + 0.0001 =
1.7731, system (1.2) has a stable closed invariant curve around the equilibrium (quasiperiodic
solution), as shown in Figures 1 and 2.

7. Comparison

For system (1.1) at the fixed point Py = (0,1/b,0) with c—b—abc < 0, Ma and Chen [11] gave
the critical value of Hopf bifurcation as follows.

a*=--c. (7.1)
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By simple calculation, we can get the following conclusions.

Proposition 7.1. Hopf bifurcations of continuous-time system (1.1) and discrete-time system (1.2)
occur simultaneously at a =1/b -1 when ¢ = 1.

Proposition 7.2. The continuous-time system (1.1) undergoes Hopf bifurcation earlier than the
discrete-time system (1.2) when

() c<land (b+8)/b(1-6) < -1
or

(I) ¢ > 1and (b+6)/b(1-6) < 1.

Proposition 7.3. The discrete-time system (1.2) undergoes Hopf bifurcation earlier than the
continuous-time system (1.1) when

(D) ¢ <1and (b+86)/b(1-6) <1
or

(I) ¢ > Land (b+6)/b(1-6) > 1.

8. Conclusion

In this paper, we introduce a discrete-time financial system obtained by Euler method.
The existence of Neimark-Sacker bifurcation is studied by means of Wen’s Neimark-Sacker
bifurcation criterion. The stability and direction of Neimark-Sacker bifurcation are proved
by utilizing Kuznetsov’s normal form method and center manifold theory. Numerical
simulations are used to illustrate the above main results. We give Some comparison of
bifurcation between the discrete-time financial system and its continuous-time system.
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