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This paper proposes an efficient method to solve the optimal power flow problem in power
systems using Particle Swarm Optimization (PSO). The objective of the proposed method is to find
the steady-state operating point which minimizes the fuel cost, while maintaining an acceptable
system performance in terms of limits on generator power, line flow, and voltage. Three different
inertia weights, a constant inertia weight (CIW), a time-varying inertia weight (TVIW), and
global-local best inertia weight (GLbestIW), are considered with the particle swarm optimization
algorithm to analyze the impact of inertia weight on the performance of PSO algorithm. The PSO
algorithm is simulated for each of the method individually. It is observed that the PSO algorithm
with the proposed inertia weight yields better results, both in terms of optimal solution and faster
convergence. The proposed method has been tested on the standard IEEE 30 bus test system to
prove its efficacy. The algorithm is computationally faster, in terms of the number of load flows
executed, and provides better results than other heuristic techniques.

1. Introduction

In the past two decades, the problem of optimal power flow (OPF) has received much
attention. The OPF problem solution aims to optimize a selected objective function such
as fuel cost via optimal adjustment of the power system control variables, while at the
same time satisfying various equality and inequality constraints. The equality constraints
are the power flow equations, and the inequality constraints are the limits on the control
variables and the operating limits of power system dependent variables. Generally, the OPF
problem is a large-scale highly constrained nonlinear nonconvex optimization problem. This
is widely used in power system operation and planning. Many techniques such as nonlinear
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programming [1–3], linear programming [4–6], quadratic programming [7], Newton-based
techniques [8, 9], and interior point methods [10, 11] have been applied to the solution of
OPF problem.

Nonlinear programming has many drawbacks such as algorithmic complexity.
Linear programming methods are fast and reliable but require linearization of objective
function as well as constraints with nonnegative variables. Quadratic programming is a
special form of nonlinear programming which has some disadvantages associated with
piecewise quadratic cost approximation. Newton-based method has a drawback of the
convergence characteristics that are sensitive to initial conditions. The interior point method
is computationally efficient but suffers from bad initial termination and optimality criteria.
The problem of the OPF is highly nonlinear, where more than one local optimum exists.
Hence the above-mentioned local optimization techniques are not suitable for such a
problem. Therefore the conventional optimization methods are not able to identify the global
optimum. Hence it becomes essential to develop optimization techniques that are efficient to
overcome these drawbacks and handle such complexity.

Heuristic algorithms such as Genetic Algorithm (GA) [12] and evolutionary
programming [13] have been recently proposed for solving OPF problem. But the recent
research has identified some deficiencies in the performance of GA [14] in terms of premature
convergence. Recently, a new evolutionary computation technique called particle swarm
optimization (PSO) has been proposed [15–17]. PSO is a flexible, robust, population-based
stochastic search for optimization problem. In the recent years, this method has gained
popularity over other methods and is increasingly gaining acceptance for solving optimal
power flow problems and also a variety of power system problems [18–22]. Due to its
simplicity, superior convergence characteristics and high accuracy, the PSO technique is also
applied to more complex power system problems [23–25]. More discussions are presented
as a comprehensive survey in [26]. This paper deals with an efficient PSO algorithm for
OPF problem, and the impacts of inertia weight variants are analyzed. The proposed method
provides the results with better accuracy and less convergence time.

A brief introduction has been provided in this section for the existing optimization
techniques that have been applied to power system problems. The rest of the paper is
arranged as follows. In Section 2, the optimal power flow problem is formulated and
discussed. In Section 3, the basic concepts of PSO are explained. The selection of PSO
parameters is highlighted in Section 4. Section 5 presents the algorithm used in the present
work. Section 6 provides the details of the test system on which the proposed algorithm is
tested and the results are presented. Finally concluding remarks appear in Section 7.

2. Problem Formulation for OPF Solution

The optimal power flow problem is a nonlinear optimization problem with nonlinear
objective function and nonlinear constraints. The OPF problem considered in this paper is
to optimize the steady-state performance of a power system in terms of the total fuel cost
while satisfying several equality and inequality constraints.

Mathematically, the OPF problem can be formulated as follows.

Minimize F(x, u) (2.1)

subject to g(x, u) = 0,

h(x, u) ≤ 0,
(2.2)
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where x is the vector of dependent variables and u is the vector of independent variables
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(2.3)

The load flow equations are

PGi − PDi − Vi
∑
j /= i

Vj
(
Gij sin θij + Bij sin θij

)
= 0, (2.4)

i ∈ n, where set of numbers of buses except the swing bus

QGi −QDi − Vi
∑
j /= i

Vj
(
Gij sin θij − Bij sin θij

)
= 0, (2.5)

i ∈ n, where set of numbers of buses except the swing bus.
The fuel cost function is given as

F =
NG∑
i=1

fi

(
$
h

)
. (2.6)

The generator cost curves are represented by quadratic function as

fi =
(
ai + biPGi + CiP

2
Gi

)( $
h

)
. (2.7)

Vector x consists of dependent variables, and vector u consists of control variables. The
variables h(x, u) comprise a set of system operating constraints that includes the following.

(a) Generation Constraints

Generator voltages, real power outputs, and reactive power outputs are restricted by their
lower and upper limits as follows:

Vmin
Gi ≤ VGi ≤ V

max
Gi , i = 1, . . . ,NG,

Pmin
Gi ≤ PGi ≤ P

max
Gi , i = 1, . . . ,NG,

Qmin
Gi ≤ QGi ≤ Qmax

Gi , i = 1, . . . ,NG.

(2.8)

(b) Transformer Constraints

Transformer tap settings are bounded as follows:

Tmin
i ≤ Ti ≤ Tmax

i , i = 1, . . . ,NT . (2.9)
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(c) Shunt VAR Constraints

Shunt VAR compensations are restricted by their limits as follows:

Qmin
ci ≤ Qci ≤ Qmax

ci , i = 1, . . . ,Nc. (2.10)

(d) Security Constraints

The constraints of the voltages at load buses and transmission line loadings are considered as
follows:

Vmin
Li ≤ VLi ≤ V

max
Li , i = 1, . . . ,NL,

Sli ≤ Slmax
i , i = 1, . . . , nl,

(2.11)

where F is objective function, g equality constraints, h operating constraints,PG1 slack bus
power,PGi real power output of generator i,PDi real power load of bus i,QGi reactive power
output of generator i,QDi reactive power load of bus i,VL load bus voltages,Vi voltage
magnitude of bus i, θi voltage phase angle of bus i, θij phase angle difference between buses
i and j,Gij mutual conductance between buses i and j,Bij mutual susceptance between
buses i and j,NG number of generator buses,NL number of load buses,NT number of
transformers,Nc number of shunt VAR compensators,nl number of lines,Sl transmission
line loadings,Vmin

Gi , Vmax
Gi bus voltage limit,Pmin

Gi ,Pmax
Gi generator real power limit,Qmin

Gi , Qmax
Gi

generator reactive power limit, Tmin
i , Tmax

i transformer tap position limit,Qmin
ci ,Qmax

ci reactive
power source installation capacity limit.

3. Particle Swarm Optimization

3.1. Overview of PSO

PSO has been developed through simulation of simplified social models. The features of the
method are as follows.

(a) The method is based on researches about swarms such as fish schooling and a flock
of birds.

(b) It is based on a simple concept. Therefore, the computation time is short and it
requires less memory.

(c) It was originally developed for nonlinear optimization problems with continuous
variables. However, it is easily expanded to treat problems with discrete variables.
Therefore, it is applicable for the OPF problem which is having both continuous
and discrete variables.

The previous feature (c) is suitable for the OPF problem because it is practically
efficient method which can handle both continuous and discrete variables. The previous
features allow PSO to effectively handle the problem and it requires only short computation
time.

According to the research results for a flock of birds, birds find food by flocking
(not by each individual). The observation leads the assumption that all information is



Discrete Dynamics in Nature and Society 5

shared inside flocking. Moreover, according to observation of behavior of human groups,
behavior of each individual (agent) is also based on behavior patterns authorized by the
groups such as customs and other behavior patterns according to the experiences by each
individual. PSO was developed through simulation of a simplified social system, and has
been found to be robust in solving continuous nonlinear optimization problems. The PSO
technique can generate a high-quality solution within shorter calculation time and stable
convergence characteristic than other stochastic methods. Researchers have presented PSO
solving techniques applied to OPF, economic dispatch problem, available transfer capability
problem, reactive power optimization problem in the recent past. Many researches are still
in progress for proving the potential of the PSO in solving complex power system operation
problems.

3.2. Implementation of PSO for Optimal Power Flow Problems

A swarm consists of a set of particles moving within the search space, each representing
a potential solution (fitness). In a physical n-dimensional search space, the position and
velocity of each particle i are represented as the vectors Xi = (xi1 , . . . , xin) and Vi =
(vi1 , . . . , vin), respectively. Searching procedures by PSO based on the above concept can
be described as follows. A flock of agents optimizes a certain objective function. Each
individual knows its best value Pbest so far and its position. Moreover, each individual
knows the best value in the group Gbest among pbest. Let Pbest i = ( xpbest

i1 , . . . , x
pbest
in ) and

Gbest i = ( xgbest
i1 , . . . , x

gbest
in ) be the position of the individual i and its neighbor’s best position

so far. Using this information, the modified velocity of each individual can be calculated using
the current velocity and the distance from Pbest and Gbest as shown in

V k+1
i = ωVk

i + c1 rand1 ×
(
Pbestki −Xk

i

)
+ c2 rand2 ×

(
Gbestki −Xk

i

)
, (3.1)

where V k
i is current velocity of individual i at iteration k,V k+1

i modified velocity of
individual i at iteration k + 1, Xk

i current position of individual i at iteration k,ω inertia
weight parameter, c1 , c2 acceleration factors, rand1, rand2: random numbers between 0 and
1,Pbestki : best position of individual i until iteration k,Gbestki : best position of the group until
iteration k.

Each individual moves from the current position to the next one by the modified
velocity in (3.1) using the following equation:

Xk+1
i = Xk

i + V
k+1
i . (3.2)

The parameters c1 and c2 are set to constant values. Low values allow individual to
roam far from the target regions before being tugged back. On the other hand, high values
result in abrupt movement towards target regions. Hence the acceleration constants c1 and
c2 are normally set as 2.0 whereas rand1 and rand2 are random values, and they are uniformly
distributed between zero and one. These values are not the same for each iteration because
they are generated randomly every time.

The search mechanism of the PSO using the modified velocity and position of the
individual i based on (3.1) and (3.2) is illustrated in Figure 1.
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Figure 1: Search mechanism of PSO.

3.3. PSO Algorithm

The general PSO algorithm is presented below.

(1) The technique is initialized with a population of random solutions or particles and
then searches the optima by updating generations. Each individual particle I has the
three following properties: a current position in search space xi, a current velocity
vi, and a personal best position in search space yi.

(2) In every iteration, each particle is updated by the following two best values. The
first one is the personal best position yi which is the position of the particle i in the
search space, where it has reached the best solution so far. The second one is the
global best solution y∗ which is the position yielding the best solution among all
the yi’s. The pbest and gbest values are updated at time t using the following (3.3)
and (3.4), respectively. Here it is assumed that the swarm has s particles.
Therefore, i ∈ 1, . . . , s and assuming the minimization of the objective function F,

yi(t + 1) =

⎧
⎪⎨
⎪⎩
yi(t), if f

(
yi(t)

)
≤ f(xi(t + 1)),

xi(t + 1), if f
(
yi(t)

)
> f(xi(t + 1)),

(3.3)

y∗(t) ∈
{
y1(t), . . . , ys(t)

}
,

f
(
y∗(t)

)
= min

{
f
(
y1(t)

)
, . . . , f

(
ys(t)

)}
.

(3.4)

(3) After finding the two best values, each particle updates its velocity and current
position. The velocity of the particle is updated according to its own previous best
position and the previous best position of its companions which is given in (3.1).
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This new velocity is added to the current position of the particle to obtain its next
position by using (3.2).

(4) The acceleration coefficients control the distance moved by a particle in the
iteration. The inertia weight controls the convergence behavior of PSO. Initially the
inertia weight was considered as a constant value. However, experimental results
indicated that it is better to initially set the inertia weight to larger value and
gradually reduce it to get refined solutions. A new inertia weight which is neither
set to a constant value nor set as a linearly decreasing time-varying function is used
in this paper and appears in (4.2).

4. Experimental Parameter Settings

4.1. Initial Population

The initial populations are generated randomly, and it is a set of n particles at time t.

4.2. Swarm

It is an apparently disorganized population of moving particles that tend to cluster together
while each particle seems to be moving in a random direction.

4.3. Population Size

From the earlier research performed by Eberhart and Shi [27], it is proved that the
performance of the standard algorithm is not sensitive to the population size but to the
convergence rate. Based on these results, the population size in the present work is fixed
at 20 particles in order to keep the computational requirements low.

4.4. Search Space

The range in which the algorithm computes the optimal control variables is called search
space. The algorithm will search for the optimal solution in the search space between 0 and 1.
When any of the optimal control values of any particle exceed the searching space, the value
will be reinitialized. In this paper, the lower and upper boundaries are set to 0 and 1.

4.5. Maximum Generations

This refers to the maximum number of generations allowed for the fitness value to converge
with the optimal solution. In this paper, the maximum generation is set as 200.

4.6. Inertia Weight Considerations

4.6.1. Constant Inertia Weight (CIW)

The conventional PSO algorithm initially used a constant value for the inertia weight.
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4.6.2. Time-Varying Inertia Weight (TVIW)

In order to improve the performance of the PSO, the time-varying inertia weight was
proposed in [24]. This inertia weight linearly decreases with respect to time. Generally for
initial stages of the search process, large inertia weight to enhance the global exploration
(searching new area) is recommended while, for last stages, the inertia weight is reduced for
local exploration (fine tuning the current search area). The mathematical expression for the
same is given as follows:

Inertia weight ω = (ω1 −ω2)
(

maxiter − iter
iter

)
+ω2, (4.1)

whereω1 is initial value of the inertia weight,ω2 final values of the inertia weight, iter current
iteration, the max iter the maximum number of allowable iterations.

4.6.3. Inertia Weight Used in the Present Work (GLbestIW)

The GLbestIW method is proposed in [28] in which, the inertia weight is neither set to a
constant value nor set as linearly decreasing time-varying function. The inertia weight is
defined as a function of local best (pbest) and global best (gbest) values of the particles in
each generation. The GLbest inertia weight is given by the following equation

Inertia weight ωi =

(
1.1 −

gbesti(
pbesti

)
)
. (4.2)

5. Flow Chart and Implementation of the Proposed PSO Technique

5.1. Flowchart

Figure 2 shows the flowchart for the PSO based on the Global-Local best inertia weight
technique used in this paper.

5.2. Implementation

The proposed PSO algorithm was implemented using MATLAB 7.0 software. PSO
parameters are selected as shown in Table 1.

6. Simulation and Results

6.1. IEEE 30 Bus Test System

The proposed algorithm is implemented and tested on a standard IEEE 30 bus test system as
shown in Figure 3. The brief description of the test bus system is given in Table 2, and the
single line diagram of the network is shown in Figure 3. The system has 6 generators at buses
1, 2, 5, 8, 11, and 13 and four transformers with off-nominal tap ratio in lines 6–9, 6–10, 4–12
and 28-27. Detailed analyses of the results are presented and discussed in this section.
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Read in data and define constraints

Initialize swarm:
1. Randomize each particle
2. Randomize velocity of each particle

1. Select the type of PSO from Table 3
2. Run optimal power flow
3. Initialize each Pbest equal to the current position of each particle
4.Gbest equals the best one among all Pbest

Update iteration count

Update velocity of the particle using (3.1) and position using (3.2)

Get the nw particle position

Update Pbest if the new position is better than that of Pbest

Update Gbest if the new position is better than that of Gbest

Repeat for each particle

Stopping criteria satisfied?

Gbest is the optimal solution

Stop

Figure 2: Flow chart for the proposed technique.

The limits for different variables are given in Table 3. The cost coefficients for the
system under consideration are given in Table 4. The state variable constraints of IEEE 30
bus test system are given in Table 5.

6.2. Various Optimization Methods

The three methods listed in Table 6 are simulated 200 times at different periods of time, and
their statistical analyses are recorded. The mean or average standard deviations (SDs) are the
basic statistical tests. These statistical analyses are presented in this section.



10 Discrete Dynamics in Nature and Society

Table 1: PSO parameters.

Population size 20
Generations 200
Acceleration coefficients 2
Inertia weight As proposed in (4.2)
Number of load flows
(Population × Generations) 4000

Stopping criteria
(i) When the difference between the results of the
two consecutive iterations is ≤0.000001
(ii) The number of iterations reaches 200

Table 2: System description.

S.no. Variables IEEE 30 bus test system
(1) Number of buses 30
(2) Number of branches 41
(3) Number of generators 6
(4) Number of generator buses 6
(5) Number of shunts 9
(6) Number of tap-changing transformers 4

Table 3: Limits for the different variables for IEEE 30 bus test system.

S.no. Description Units Variable type Lower limit Upper limit
(1) Generator bus voltage p.u Continuous 0.95 1.05
(2) Load bus voltage p.u Continuous 0.95 1.10
(3) Transformer taps p.u Discrete 0.90 1.10
(4) Shunt capacitor p.u Discrete 0.0 0.05

Table 4: Generator cost coefficients for IEEE 30 bus test system.

G1 G2 G5 G8 G11 G13

ai 0.00375 0.0175 0.0625 0.0083 0.025 0.025
bi 2.0 1.75 1.0 3.25 3.0 3.0
ci 0.0 0.0 0.0 0.0 0.0 0.0

The average deviation which gives the average of the absolute deviation of the fitness
value from their mean is also tabulated. Added to these analyses, hypothesis t test and analysis
of variance (ANOVA) test were also conducted to validate the efficiency of the three different
methods. These statistical analyses are presented in Tables 7 and 8. The graphical analysis of
the ANOVA test is shown in Figure 4.

Table 9 gives the minimum, maximum, and average costs for 1st trial, 100 trials and
200 trials for all the three PSO methods under consideration. It can be seen that the minimum
cost as well as the average cost produced by GLBestIW PSO is the least as compared to
other methods. This emphasizes the better quality solution of the proposed method. Table 10
presents the generator outputs and the best cost achieved by the different PSO algorithms
for the 30-bus test system while satisfying the constraints. All the methods achieve the global
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Table 5: State Variable Constraints for IEEE 30 bus test system.

Bus Pmin Pmax Qmin Qmax Vmin Vmax

1 50 200 −20 200 0.95 1.10
2 20 80 −20 100 0.95 1.10
5 15 50 −15 80 0.95 1.10
8 10 35 −15 60 0.95 1.10
11 10 30 −10 50 0.95 1.10
13 12 40 −15 60 0.95 1.10

Table 6: Various Methods.

Method name Description
PSO-1 PSO with constant inertia weight (CIW)
PSO-2 PSO with time-varying inertia weight (TVIW)
PSO-3 PSO with proposed global-local best inertia weight (GLbestIW)

Table 7: Statistical Analyses of fitness value in 100th iteration.

Stat.test Average SD AVEDEV t test for 100th iteration
PSO-1 803.8812 0.2562 0.0757 Method no. P value Best method
PSO-2 802.4946 0.1188 0.0716 1 and 2 .97192 2
PSO-3 801.8441 0.0002 0.0002 2 and 3 .00000 3

Table 8: Statistical Analyses of fitness value in 200th iteration.

Stat.test Average SD AVEDEV t test for 100th iteration
PSO-1 803.8449 0.00794 0.00248 Method no. P value Best method
PSO-2 802.8438 0.0008 0.0003 1 and 2 .98799 2
PSO-3 801.8438 0.0001 0.0001 2 and 3 1.00000 3

Table 9: Comparison of different PSO methods.

S. no. Number of trails Method Min. cost Max. cost Average

(1) 1
CIW 802.959 822.351 809.587

TVIW 802.741 824.391 809.741
GLBestIW 801.113 816.277 807.828

(2) 100
CIW 802.843 804.921 803.881

TVIW 802.543 802.551 802.494
GLBestIW 801.843 801.845 801.844

(3) 200
CIW 802.843 804.913 803.844

TVIW 802.543 802.852 802.843
GLBestIW 801.843 801.845 801.843

minimum solution, but comparatively, the GLBestIW PSO has better consistency and also
achieved global minimum.

Table 11 shows the comparison between the existing methods and the proposed
GLBestIW method. The comparison has been made for the results obtained from Matpower
(Matpower is a powerful tool created by Professor Ray Zimmerman and Professor Deqiang
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Table 10: Generator output.

Unit power output CIW TVIW GLBestIW
P1 (MW) 175.73 176.23 176.72
P2 (MW) 48.83 48.94 48.96
P5 (MW) 21.47 21.42 21.52
P8 (MW) 21.65 21.34 21.57
P11 (MW) 12.09 12.23 12.37
P13 (MW) 12 12 12.02
Total power Output (MW) 291.771 292.16 293.16
Cost ($/h) 802.843 802.543 801.843

Table 11: Performance comparison.

Parameter Matpower CPSO GLBestIW PSO
P1 (MW) 176.2 179.2 176.74
P2 (MW) 48.79 48.3 48.8
P5 (MW) 21.48 20.92 21.47
P8 (MW) 22.07 20.56 21.64
P11 (MW) 12.19 11.57 12.14
P13 (MW) 12.00 12.48 12.00
Cost ($/hr) 802.1 802.0 801.84
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Figure 3: IEEE 30 bus test system.
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Gan of PSERC at Cornell University under the direction of Professor Robert Thomas),
conventional particle swarm optimization technique (cPSO) and the GLBestIW technique.

Figure 5 shows the convergence plot. From the plot, it is clearly identified that the
proposed method converges faster than that of the other methods. It could be observed that
the constant IW (CIW) method takes 60 iterations and the Time-Varying IW (TVIW) method
takes 50 iterations, while the proposed method converges in 20 iterations. This shows the
computational efficiency of the proposed method.

7. Conclusion

This paper presents a GLbestIW-based PSO technique for the solution of optimal power
flow problem in a power system. The results of study on the impact of inertia weight
for improving the performance of the PSO to obtain the optimal power flow solution are
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presented and discussed. The OPF problem considered in this paper is to minimize the
fuel cost and determine the control strategy with continuous and discrete control variables,
such as generator bus voltages, transformer tap positions, and reactive power installations.
The performance of the proposed GLbestIW-based PSO has been validated on the standard
IEEE 30 bus test system. It is shown through different trials that the GLbestIW PSO
outperforms other methods in terms of high quality solution, consistency, faster convergence,
and accuracy.
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