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We consider a discrete n-species Schoener competition system with time delays and feedback
controls. By using difference inequality theory, a set of conditions which guarantee the permanence
of system is obtained. The results indicate that feedback control variables have no influence on the
persistent property of the system. Numerical simulations show the feasibility of our results.

1. Introduction

The Schoener’s competition system has been studied by many scholars. Topics such as
existence, uniqueness, and global attractivity of positive periodic solutions of the system were
extensively investigated and many excellent results have been derived [1–5].

Liu et al. [1] propose and study the global stability of the following continuous
Schoener’s competition model with delays:

ẋ1(t) = x1(t)
[

a10(t)
x1(t − τ10) + k1(t)

− a11(t)x1(t − τ11) − a12(t)x2(t − τ12) − c1(t)
]
,

ẋ2(t) = x2(t)
[

a20(t)
x2(t − τ20) + k2(t)

− a21(t)x1(t − τ21) − a22(t)x2(t − τ22) − c2(t)
]
,

(1.1)

where {ki(t)}, {aij(t)}, and {ci(t)} are all positive bounded and continuous functions, τij (i =
1, 2; j = 0, 1, 2) are positive integers, τ = max0≤i,j≤2{τij}, xi(s) = φi(s) ≥ 0, s ∈ [−τ, 0] ∩ Z,
φi(0) > 0, i = 1, 2.
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As we all know, though most dynamic behaviors of population models are based
on the continuous models governed by differential equations, the discrete time models are
more appropriate than the continuous ones when the size of the population is rarely small
or the population has nonoverlapping generations. It has been found that the dynamics
behaviors of the discrete system are rather complex and contain more rich dynamics than the
continuous ones [6]. Recently, more and more scholars paid attention to study the discrete
population models (see [4–13] and the references cited therein). For example, [5] considered
the permanence and global attractivity of the following discrete Schoener’s competition
model with delays:

x1(n + 1) = x1(n) exp
{

a10(n)
x1(n − τ10) + k1(n)

− a11(n)x1(n − τ11) − a12(n)x2(n − τ12) − c1(n)
}
,

x2(n + 1) = x2(n) exp
{

a20(n)
x2(n − τ20) + k2(n)

− a21(n)x1(n − τ21) − a22(n)x2(n − τ22) − c2(n)
}
,

(1.2)

where {ki(n)}, {aij(n)}, and {ci(n)} are real positive bounded sequences, τij (i = 1, 2; j =
0, 1, 2) are positive integers, τ = max0≤i,j≤2{τij}, xi(s) = φi(s) ≥ 0, s ∈ [−τ, 0] ∩ Z, φi(0) > 0,
i = 1, 2.

On the other hand, as was pointed out by Huo and Li [14], ecosystem in the real
world is continuously disturbed by unpredictable forces which can result in changes in the
biological parameters such as survival rates. Practical interest in ecology is the question of
whether or not an ecosystem can withstand those unpredictable disturbances which persist
for a finite period of time. In the language of control variables, we call the disturbance
functions as control variables. During the last decade, many scholars did excellent works on
the feedback control ecosystems (see [14–21] and the references cited therein); however, most
of those works are concerned with the continuous model and seldom did scholars considered
the discrete ecosystem with feedback controls ([13, 15, 21]).

Recently, Li and Yang [15] proposed the following discrete n-species Schoener
competition system with time delays and feedback controls:

xi(k + 1) = xi(k) exp

⎧⎨
⎩

ri(k)
xi(k − τi) + ai(k) −

n∑
j=1

bij(k)xj
(
k − τj

)

−ci(k) − di(k)ui(k) − ei(k)ui
(
k − ηi

)
⎫⎬
⎭,

Δui(k) = −αi(k)ui(k) + βi(k)xi(k) + γi(k)xi(k − σi),

(1.3)

where xi(k) (i = 1, 2, . . . , n) is the density of competitive species at kth generations; ui(k) is
the control variable; Δ is the first-order forward difference operator Δui(k) = ui(k+1)−ui(k),
i = 1, 2, . . . , n.
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Throughout this paper, we assume the following.

(H1) αi(k), βi(k), γi(k), ai(k), bij(k), ri(k), ci(k), di(k), ei(k), i = 1, 2, . . . , n, are all bounded
nonnegative sequences such that

0 < αli ≤ αui < 1, 0 < βli ≤ βui , 0 < γli ≤ γui , 0 < ali ≤ aui ,

0 < blij ≤ buij , 0 < rli ≤ rui , 0 < cli ≤ cui , 0 < dli ≤ dui , 0 < eli ≤ eui .
(1.4)

Here, for any bounded sequence {a(k)}, au = supk∈Na(k), a
l = infk∈Na(k).

(H2) τi, ηi, σi, i = 1, 2, . . . , n, are all nonnegative integers.

Let τ = max{τi, ηi, σi, i = 1, 2, . . . , n}; we consider (1.3) together with the following
initial conditions:

xi(θ) = ϕi(θ), θ ∈N[−τ, 0] = {−τ,−τ + 1, . . . , 0}, ϕi(0) > 0,

ui(θ) = φi(θ), θ ∈N[−τ, 0] = {−τ,−τ + 1, . . . , 0}, φi(0) > 0.
(1.5)

It is not difficult to see that solutions of (1.3) and (1.5) are well defined for all k ≥ 0 and satisfy

xi(k) > 0, ui(k) > 0, k ∈ Z, i = 1, 2, . . . , n. (1.6)

By applying the comparison theorem of difference equation, they obtained a set of
sufficient conditions which guarantee the permanence of the system (1.3). Their result shows
that feedback control variables play important roles on the persistent property of the system
(1.3). But the question is whether or not the feedback control variables have influence on the
permanence of the system. The aim of this paper is to apply the analysis technique of Chen et
al. [18] to establish sufficient conditions, which is independent of feedback control variables,
to ensure the permanence of the system.

The organization of this paper is as follow. In Section 2, we will introduce several
lemmas. The permanence of system (1.3) is then studied in Section 3. In Section 4, a suitable
example together with its numerical simulations shows the feasibility of our results.

2. Preliminaries

In this section, we will introduce several useful lemmas.

Lemma 2.1 (see [11]). Assume that {x(k)} satisfies x(k) > 0 and

x(k + 1) ≤ x(k) exp{a(k) − b(k)x(k)} (2.1)

for k ∈ N, where a(k) and b(k) are nonnegative sequences bounded above and below by positive
constants. Then

lim sup
k→+∞

x(k) ≤ 1
bl

exp(au − 1). (2.2)
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Lemma 2.2 (see [12]). Assume that {x(k)} satisfies

x(k + 1) ≥ x(k) exp{a(k) − b(k)x(k)}, k ≥N0, (2.3)

lim supk→+∞x(k) ≤ x∗ and x(N0) > 0, where a(k) and b(k) are nonnegative sequences bounded
above and below by positive constants andN0 ∈N. Then

lim inf
k→+∞

x(k) ≥ min

{
al

bu
exp

(
al − bux∗

)
,
al

bu

}
. (2.4)

Lemma 2.3 (see [13]). Assume that A > 0, y(0) > 0. Suppose that

y(k + 1) ≤ Ay(k) + B(k), k = 1, 2, . . . . (2.5)

Then for any integerm ≤ k,

y(k) ≤ Amy(k −m) +
m−1∑
j=0

AjB
(
k − j − 1

)
. (2.6)

If A < 1 and B is bounded above with respect toM, then

lim sup
k→+∞

y(k) ≤ M

1 −A. (2.7)

Lemma 2.4 (see [13]). Assume that A > 0, y(0) > 0. Suppose that

y(k + 1) ≥ Ay(k) + B(k), k = 1, 2, . . . . (2.8)

Then for any integerm ≤ k,

y(k) ≥ Amy(k −m) +
m−1∑
j=0

AjB
(
k − j − 1

)
. (2.9)

If A < 1 and B is bounded below with respect to P, then

lim inf
k→+∞

y(k) ≥ P

1 −A. (2.10)
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3. Permanence

In this section, we establish the following permanence result for system (1.3).

Theorem 3.1. Assume that (H1) and (H2) hold. Then there exist positive constants Mi, Ni which
are independent of the solutions of system (1.3) such that

lim sup
k→∞

xi(k) ≤Mi, i = 1, 2, . . . , n,

lim sup
k→∞

ui(k) ≤Ni, i = 1, 2, . . . , n.
(3.1)

Proof. Let x(k) = (x1(k), x2(k) · · ·xn(k), u1(k), u2(k) · · ·un(k))T be any positive solution of
system (1.3) with initial condition (1.5). From the first equation of system (1.3), it follows
that

xi(k + 1) ≤ xi(k) exp
{
ri(k)
ai(k)

− bii(k)xi(k − τi)
}

≤ xi(k) exp

{
rui

ali

}
. (3.2)

By using (3.2), one can easily obtain that

k−1∏
j=k−τi

xi
(
j + 1

) ≤
k−1∏

j=k−τi
xi
(
j
)

exp

{
rui

ali

}
, (3.3)

that is,

xi(k) ≤ xi(k − τi) exp

{
τir

u
i

ali

}
. (3.4)

Substituting (3.4) into (3.2), it follows that

xi(k + 1) ≤ xi(k) exp

{
ri(k)
ai(k)

− bii(k) exp

{
−τir

u
i

ali

}
xi(k)

}
. (3.5)

By applying Lemma 2.1, it follows that

lim sup
k→∞

xi(k) ≤
exp

{(
rui /a

l
i

)
(1 + τi) − 1

}

blii
=: Mi, i = 1, 2, . . . , n. (3.6)
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Thus, for all ε > 0, there exists a K1 > 0, K1 ∈ N, for all k > K1, xi(k) ≤ Mi + ε, i = 1, 2, . . . , n,
and so

ui(k + 1) = (1 − αi(k))ui(k) + βi(k)xi(k) + γi(k)xi(k − σi)

≤
(

1 − αli
)
ui(k) +

(
βui + γ

u
i

)
(Mi + ε) (k > K1 + σi).

(3.7)

For 0 < 1 − αli < 1, Lemma 2.3 implies that

lim sup
k→∞

ui(k) ≤
(
βui + γ

u
i

)
(Mi + ε)

αli
. (3.8)

Letting ε → 0 in the above inequality leads to

lim sup
k→∞

ui(k) ≤
(
βui + γ

u
i

)
Mi

αli
:=Ni. (3.9)

The proof of Theorem 3.1 is completed.

Theorem 3.2. Assume that (H1) and (H2) hold; assume further that

Ri :=
rli

Mi + aui
−

n∑
j=1, j /= i

buijMj − cui > 0, i = 1, 2, . . . , n. (H)

Then there exist positive constants mi, ni which are independent of the solution of system (1.3), such
that

lim inf
k→∞

xi(k) ≥ mi, i = 1, 2, . . . , n,

lim inf
k→∞

ui(k) ≥ ni, i = 1, 2, . . . , n.
(3.10)

Proof. Let x(k) = (x1(k), x2(k) · · ·xn(k), u1(k), u2(k) · · ·un(k))T be any positive solution of
system (1.3) with initial condition (1.5). From Theorem 3.1, for all 0 < ε < 1, there exists a
K2 > K1, for all k > K2,

xi(k) ≤Mi + ε, ui(k) ≤Ni + ε, i = 1, 2, . . . , n, (3.11)

Riε :=
rli(

Mj + ε
)
+ aui

−
n∑

j=1, j /= i

buij
(
Mj + ε

) − cui > 0, i = 1, 2, . . . , n. (3.12)
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From (3.12), we have

xi(k + 1) ≥ xi(k) exp

⎧⎨
⎩

rli
(Mi + ε) + aui

−
n∑

j=1, j /= i

buij
(
Mj + ε

)

−cui − dui ui(k) − eui ui
(
k − ηi

) − buiixi(k − τi)
⎫⎬
⎭

≥ xi(k) exp

⎧⎨
⎩−

n∑
j=1

buij
(
Mj + ε

) − cui − (
dui + e

u
i

)
(Ni + ε)

⎫⎬
⎭

=: xi(k) exp{Diε}.

(3.13)

for all k > K2 + τ, where Diε = −∑n
j=1 b

u
ij(Mj + ε) − cui − (dui + e

u
i )(Ni + ε) < 0.

Thus, for η < K, by using (3.13) we obtain

xi
(
η
) ≤ xi(k) exp

{−(k − η)Diε

}
. (3.14)

From the second equation of (1.3), we obtain

ui(k + 1) = (1 − αi(k))ui(k) + βi(k)xi(k) + γi(k)xi(k − σi)

≤
(

1 − αli
)
ui(k) + βui xi(k) + γ

u
i xi(k − σi)

� Aiui(k) + Bi(k),

(3.15)

where 0 < Ai = 1 − αli < 1 and Bi(k) = βui xi(k) + γ
u
i xi(k − σi).

Then, Lemma 2.3, (3.14), and (3.15) imply that for any m ≤ K,

ui(k) ≤ Am
i ui(k −m) +

m−1∑
j=0

A
j

iBi
(
k − j − 1

)

= Am
i ui(k −m) +

m−1∑
j=0

A
j

i

{
βui xi

(
k − j − 1

)
+ γui xi

(
k − j − 1 − σi

)}

≤ Am
i ui(k −m)

+
m−1∑
j=0

A
j

i

{
βui exp

{−(j + 1
)
Diε

}
+ γui exp

{−(j + 1 + σi
)
Diε

}}
xi(k)

≤ Am
i ui(k −m) + xi(k)

m−1∑
j=0

A
j

i

(
βui + γ

u
i

)
exp

{−(j + 1
)
Diε

}
.

(3.16)
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For 0 < Ai < 1, limm→∞(dui + e
u
i )(Ni + 1)Am

i = 0. That is, there exists an M > 0, for all m >M

(Ni + ε)
(
dui + e

u
i

)
Am
i < (Ni + 1)

(
dui + e

u
i

)
Am
i ≤ Riε0

2
≤ Riε

2
. (3.17)

For enough small ε0 > 0, we have

Riε0 :=
rli

(Mi + ε0) + aui
−

n∑
j=1,j /= i

buij
(
Mj + ε0

) − cui < Riε < Ri, i = 1, 2, . . . , n. (3.18)

We choose M ≥ max{1, logAi
(Riε0/2(Ni + 1)(dui + e

u
i ))}, i = 1, 2, . . . , n. For fixed M, we get

ui(k) ≤ AM
i ui(k −M) + xi(k)

M−1∑
j=0

A
j

i

(
βui + γ

u
i

)
exp

{−(j + 1
)
Diε

}

≤ AM
i (Ni + ε) + Eiεxi(k),

(3.19)

for all k ≥ K2 +M where Eiε =
∑M−1

j=0 A
j

i (β
u
i + γ

u
i ) exp{−(j + 1)Diε}.

Substituting (3.14) (3.17) and (3.19) into (3.13), for k ≥ K2 +M + τ, one has

xi(k + 1) ≥ xi(k) exp
{
Riε − buiixi(k − τi) − dui ui(k) − eui ui

(
k − ηi

)}

≥ xi(k) exp
{
Riε−

(
eui + d

u
i

)
AM
i (Ni+ε)−buiixi(k − τi) − dui Eiεxi(k) − eui Eiεxi

(
k − ηi

)}

≥ xi(k) exp
[
Riε

2
− buii exp{−τiDiε} − dui Eiε − eui Eiε exp

{−ηiDiε

}]
xi(k)

:= xi(k) exp
{
Riε

2
−Qiεxi(k)

}
,

(3.20)

where Qiε := buii exp{−τiDiε} + dui Eiε + eui Eiε exp{−ηiDiε}.
By applying Lemma 2.2, it follows that

lim inf
k→∞

x(k) ≥ min
{
Riε

2Qiε
exp

{
Riε

2
−QiεMi

}
,
Riε

2Qiε

}
. (3.21)

Letting ε → 0 in the above inequality leads to

lim inf
k→∞

x(k) ≥ min
{
Ri

2Qi
exp

{
Ri

2
−QiMi

}
,
Ri

2Qi

}
:= mi. (3.22)
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For the above ε > 0, there exists aK3 > K2, for all k > K3, we have xi(k) ≥ mi−ε, i = 1, 2, . . . , n.
Then for k > K3 + σi,

ui(k + 1) = (1 − αi(k))ui(k) + βi(k)xi(k) + γi(k)xi(k − σi)

≥ (
1 − αui

)
ui(k) +

(
βli + γ

l
i

)
(mi − ε).

(3.23)

By applying Lemma 2.4, it follows that

lim inf
k→∞

ui(k) ≥

(
βli + γ

l
i

)
(mi − ε)

αui
. (3.24)

Letting ε → 0 in the above inequality leads to

lim inf
k→∞

ui(k) ≥

(
βli + γ

l
i

)
mi

αui
:= ni, i = 1, 2, . . . , n. (3.25)

The proof of Theorem 3.2 is completed.

Remark 3.3. Theorems 3.1 and 3.2 show that under the assumption (H1), (H2) and (H) hold,
and system (1.3) is permanent.

4. Example and Numeric Simulations

The following example lends credence to the plausibility of Theorem 3.2.

Example 4.1. Consider the following system:

x1(k + 1) = x1(k) exp
{

0.5
x1(k − 1) + 1

− x1(k − 1) − 0.02(sin(k) + 2)x2(k − 2)

−0.01 − (cos(k) + 2.5)u1(k) − (cos(k) + 1.5)u1(k − 1)
}
,

x2(k + 1) = x2(k) exp
{

1
x2(k − 2) + 3

− 0.05(cos(k) + 2)x1(k − 1) − 2x2(k − 2)

−0.05 − (sin(k) + 2)u2(k) − (sin(k) + 1.1)u2(k − 1)
}
,

Δu1(k) = −0.5u1(k) + 0.1(sin(10 + k) + 1.5)x1(k) + 0.1(sin(k) + 1.5)x1(k − 1),

Δu2(k) = −1
3
u2(k) + 0.1(cos(10 + k) + 1.5)x2(k) + 0.1(cos(k + 5) + 1.5)x2(k − 1).

(4.1)
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Figure 1: Dynamic behaviors of system (4.1) with initial conditions (x1(s), x2(s), u1(s), u2(s))
T =

(0.73, 0.1, 0.1, 0.1)T , (0.33, 0.24, 0.25, 0.15)T , (0.52, 0.18, 0.5, 0.2)T , s = −1, 0.

Here corresponding to system (1.3), we assume that

r1(k) = 0.5, a1(k) = 1, b11(k) = 1, b12(k) = 0.02(sin(k) + 2),

c1(k) = 0.01, η1 = 1, d1(k) = cos(k) + 2.5, e1(k) = cos(k) + 1.5,

α1(k) = 0.5, β1(k) = 0.1(sin(k + 10) + 1.5),

γ1(k) = 0.1(sin(k) + 1.5), σ1 = 1,

r2(k) = 1, τ2 = 2, a2(k) = 3, b22(k) = 2, b21(k) = 0.05(cos(k) + 2),

c2(k) = 0.05, η2 = 1, d2(k) = sin(k) + 2, e2(k) = sin(k) + 1.1,

α2(k) =
1
3
, β2(k) = 0.1(cos(k + 10) + 1.5),

γ2(k) = 0.1(cos(k + 5) + 1.5), σ2 = 1.

(4.2)
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It is easy to see that M1 = 1,M2 = 0.5, and

rl1
M1 + au1

− bu12M2 − cu1 = 0.21 > 0,

rl2
M2 + au2

− bu21M1 − cu2 =
3

35
> 0.

(4.3)

Inequalities (4.3) show that all the conditions of Theorem 3.2 are satisfied; thus, system (1.3)
is permanent. Numerical simulation from Figure 1 supports this conclusion.

5. Discussion

In this paper we have attempted to understand the effect of feedback control variables on
the permanence of system (1.3). The present work is an extension of an earlier work by Li
and Yang [15]. By developing the analysis technique of Chen et al. [18], a set of sufficient
conditions are established for the permanence of system (1.3). Theorems 3.1-3.2 and the
numerical simulations indicate that feedback control variables have no influence on the
permanence of system (1.3).

We would like to mention here that an interesting but challenging problem associated
with the study of system (1.3) should be the global attractivity. We leave this for future work.
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