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We investigate the periodic nature of the solution of the max-type difference equation xn+1 =
max{xn,A}/x2

nxn−1, n = 0, 1, 2, . . ., where the initial conditions are x−1 = Ar1 and x0 = Ar2 for
A ∈ (0,∞), and that r1 and r2 are positive rational numbers. The results in this paper solve the
Open Problem proposed by Grove and Ladas (2005).

1. Introduction

Max-type difference equations stem from, for example, certain models in automatic control
theory (see [1, 2]). Althoughmax-type difference equations are relatively simple in form, it is,
unfortunately, extremely difficult to understand thoroughly the behavior of their solutions,
see, for example, [1–41] and the relevant references cited therein. Furthermore, difference
equation appear naturally as a discrete analogues, and as a numerical solution of differential
and delay differential equations having applications various scientific branches, such as in
ecology, economy, physics, technics, sociology, and biology. For some papers on periodicity
of difference equation see, for example, [8, 9, 11, 12, 15] and the relevant references cited
therein.

In [22], the following open problem was posed.

Open Problem 1 (see [22, page 218, Open Problem 6.4]). Assume that A ∈ (0,∞), and that
r1 and r2 are positive rational numbers. Investigate the periodic nature of the solution of the
difference equation:

xn+1 =
max{xn,A}

x2
nxn−1

, n = 0, 1, . . . , (1.1)

where the initial conditions are x−1 = Ar1 and x0 = Ar2 .
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Now, in this paper we give answer to the open problem 6.4.

2. Main Results

2.1. The Case A > 1

We consider (1.1) where A > 1. It is clear that the change of variables

xn = Arn for n ≥ −1 (2.1)

reduces (1.1) to the difference equation:

rn+1 = max{rn, 1} − 2rn − rn−1, n = 0, 1, 2, . . . , (2.2)

where the initial conditions r−1 and r0 are positive rational numbers.
In this section we consider the behavior of the solutions of (2.2) (or equivalently of

(1.1)) in this case A > 1. We give the following lemmas which give us explicit solutions for
some consecutive terms and show us the behavior of the solutions of (2.2) (or equivalently
of (1.1)).

Lemma 2.1. Assume that {rn}∞n=−1 is a solution of (2.2). If 2 < r0 + r−1 = r, then the following
statements are true for some integer N such that N > 0.

(i) If rN = −r, then rN−1 > 1 and rN+1 ≥ 1.

(ii) If rN = −r, then rN = rN+3 or rN = rN+5.

(iii) If rN = −r and rN+2 > 1, then rN+3 = −r and rN+2 = rN−1 + rN − 1.

(iv) If rN = −r and rN+2 ≤ 1, then rN+5 = −r and rN+4 = rN−1 − rN − 2.

Proof. (i) Assume that 2 < r0 + r−1 = r. If r0 > 1, then from (2.2) we get r1 = −r and r2 =
1 + r0 + 2r−1 > 1.

If r0 ≤ 1, then we get r1 = 1 − 2r0 − r−1 < 1, r2 = 3r0 + 2r−1 − 1 > 1, r3 = −r, r4 =
2 − r0 ≥ 1 and r5 = 2r0 + r−1 − 2.

If r5 > 1, then r6 = −r and r7 = r−1 + 3 > 1.

If r5 ≤ 1, then r6 = 3 − 3r0 − 2r−1 < 1, r7 = 4r0 + 3r−1 − 3 > 1, r8 = −r and r9 =
4 − 2r0 − r−1 ≥ 1.

Working inductively we have rN−1 > 1 and rN+1 ≥ 1 for rN = −r. So, the proof of (i) is
complete.

(ii) Assume that rN = −r. From (i) and (2.2) we get that

rN+1 = 1 − 2rN − rN−1 ≥ 1,

rN+2 = rN + rN−1 − 1.
(2.3)

If rN+2 > 1, then rN+3 = rN = −r.
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If rN+2 ≤ 1, then rN+3 = 2 − rN−1 < 1, rN+4 = rN−1 − rN − 2 > 1 and rN+5 = rN = −r. So,
the proof of (ii) is complete.

As for (iii) and (iv), they are immediately obtained from (ii) and (2.2).

Lemma 2.2. Assume that {rn}∞n=−1 is a solution of (2.2). If 2 < r0 + r−1 = k/m, GCD(k,m) = 1,
then the following statements are true.

(i) If (8k−m)/= 0(mod 3) for 0 < N < (8k−m+2), then the number of integersN for which
Lemma 2.1(iii) holds is (k − 2m) and the number of integers N for which Lemma 2.1(iv)
holds is (k +m).

(ii) If (8k − m) = 0(mod 3) for 0 < N < ((8k − m)/3 + 2), then the number of integers N
for which Lemma 2.1(iii) holds is ((k − 2m)/3) and the number of integers N for which
Lemma 2.1(iv) holds is ((k +m)/3).

Proof. (i) Assume that 2 < r0 + r−1 = r = k/m, GCD(k,m) = 1, (8k − m)/= 0(mod3) and
0 < N < (8k −m + 2).

Assume that number of integers N satisfying Lemma 2.1(iii) is (k − 2m + 1).This
assumption made Lemma 2.1(iii) be applied consecutively for (k − 2m + 1) times such that;

rN = rN+3 = rN+6 = · · · = rN+3(k−2m) = rN+3(k−2m+1) = −r,
rN+2 = rN−1 + rN − 1 > 1,

rN+5 = rN−1 + 2(rN − 1) > 1,

rN+8 = rN−1 + 3(rN − 1) > 1,

...

rN+3(k−2m)+2 = rN−1 + (k − 2m + 1)(rN − 1) > 1.

(2.4)

Thus, rN−1 > 1 + (k − 2m + 1)(−rN + 1) > −2rN. But, from Lemma 2.1(i) we have
rN+1 = 1−2rN−rN−1 ≥ 1 and (−2rN) ≥ rN−1. This means that Lemma 2.1(iii) cannot be applied
consecutively for (k − 2m + 1) times. So, the number of integers N satisfying Lemma 2.1(iii)
is not more than (k − 2m).

Similarly, assume that the number of integersN satisfying Lemma 2.1(iv) is (k+m+1).
So, we can apply Lemma 2.1(iv) consecutively for (k +m + 1) times such that

rN = rN+5 = rN+10 = · · · = rN+5(k+m) = rN+5(k+m+1) = −r,
rN+4 = rN−1 − rN − 2 > 1,

rN+9 = rN−1 + 2(−rN − 2) > 1,

rN+14 = rN−1 + 3(−rN − 2) > 1,

...

rN+5(k+m−1)+4 = rN−1 + (k +m)(−rN − 2) > 1.

(2.5)
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Thus, we have rN+5(k+m)+2 = rN−1 + (k + m)(−rN − 2) + rN − 1 ≤ 1 and rN−1 ≤ 1 +
(k + m)(rN + 2) − rN + 1 < 1. But, it contradicts Lemma 2.1(i). So, the number of integers N
satisfying Lemma 2.1(iv) is not more than (k +m).

Now, assume that the number of integers N satisfying Lemma 2.1(iii) is (k − 2m − 1).
We have just had the number of integersN satisfying Lemma 2.1(iii) is less than (k−2m+1).
From the proof of Lemma 2.1(i), if j is the smallest integer N satisfying Lemma 2.1(i), then
we have rj = −r for j ∈ {1, 3}. We apply Lemma 2.1(iii) for (k − 2m − 1) times such that

rj = rj+3 = rj+6 = · · · = rj+3(k−2m−2)

= rj+3(k−2m−1) = −r
(2.6)

and from Lemma 2.1(ii)

rj+3(k−2m−1) = rj+3(k−2m−1)+5 = · · · = rj+3(k−2m−1)+5(k+m)

= rj+3(k−2m−1)+5(k+m+1) = −r.
(2.7)

Thus, the number of integers N satisfying Lemma 2.1(iv) is (k + m + 1). But it is not
possible. So, the number of integers N satisfying Lemma 2.1(iii) is (k − 2m).

Similarly, assume that number of integers N satisfying Lemma 2.1(iv) is (k + m − 1).
From Lemma 2.1(ii)–(iv),we have

rj = rj+5 = rj+10 = · · · = rj+5(k+m−2)

= rj+5(k+m−1) = −r,
rj+5(k+m−1) = rj+5(k+m−1)+3 = · · · = rj+5(k+m−1)+3(k−2m+1)

= rj+5(k+m−1)+3(k−2m+2) = −r.

(2.8)

Thus, the number of integers N satisfying Lemma 2.1(iii) is (k − 2m + 2). But it is not
possible. So, the number of integers N satisfying Lemma 2.1(iv) is (k + m). So, the proof of
(i) is completed.

(ii) Proof of (ii) is similar to the proof of (i). So, it is omitted.

We omit the proofs of Lemmas 2.3 and 2.4 since they can easily be obtained in a way
similar to the proofs of Lemmas 2.1 and 2.2.

Lemma 2.3. Assume that {rn}∞n=−1 is a solution of (2.2). If 1 < r0 + r−1 = r < 2, then the following
statements are true for some integer N such that N > 0.

(i) If rN = −r, then rN−1 > 1 and rN+1 ≥ 1.

(ii) If rN = −r, then rN = rN+5 or rN = rN+7.

(iii) If rN = −r and rN+4 > 1, then rN+5 = −r and rN+4 = rN−1 − rN − 2.

(iv) If rN = −r and rN+4 ≤ 1, then rN+7 = −r and rN+6 = rN−1 − 3rN − 3.
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Lemma 2.4. Assume that {rn}∞n=−1 is a solution of (2.2). If 1 < r0+r−1 = k/m < 2, GCD(k,m) = 1,
then the following statements are true.

(i) If (8k −m)/= 0(mod 3) for 0 < N < (8k −m − 1), then number of integers N for which
Lemma 2.3(iii) holds is 3(k − m) and the number of integers N for which Lemma 2.3(iv)
holds is (2m − k).

(ii) If (8k − m) = 0(mod3) for 0 < N < ((8k − m)/3 − 1), then the number of integers
N for which Lemma 2.3(iii) holds is (k − m) and the number of integers N for which
Lemma 2.3(iv) holds is ((2m − k)/3).

Lemma 2.5. Assume that {rn}∞n=−1 is a solution of (2.2). If r0 + r−1 < 1 and r0 + r−1 /= 1/2, then the
following statements are true for some integerN such that N ≥ −1.

(i) Assume that rN > 1, and rN+2 ≥ 1. If r0 + r−1 < 1/2, then rN+1 = r0 + r−1 − 1 or if
r0 + r−1 > 1/2, then rN+1 = −r0 − r−1.

(ii) If rN > 1 and rN+2 ≥ 1, then rN+3 < 1, rN+4 < 1, rN+5 < 1, rN+6 = 3 + 2rN+1 − rN < 1
and rN+7 = rN − 3(rN+1 + 1),

(iii) If rN /∈ (rNi , rNi+1, rNi+2, rNi+3, rNi+4, rNi+5, rNi+6) such that rNi > 1 and rNi+2 ≥ 1, then
rN ≤ 1.

Proof. (i) Assume that r0 + r−1 < 1/2. From (2.2), we get that r1 = 1 − 2r0 − r−1 < 1, r2 =
3r0 + 2r−1 − 1 < 1 and r3 = 2 − 4r0 − 3r−1.

If r3 > 1, then r4 = r0 + r−1 − 1, r5 = 1 + 2r0 + r−1 > 1.

If r3 ≤ 1, then r4 = 5r0 + 4r−1 − 2 < 1, r5 = 3 − 6r0 − 5r−1 and r5 > 1 or r5 ≤ 1.

If r5 > 1, then r6 = r0 + r−1 − 1 and r7 = 4r0 + 3r−1 ≥ 1.

If r5 ≤ 1, then r6 = 7r0 + 6r−1 − 3 < 1, r7 = 4 − 8r0 − 7r−1 and r7 > 1 or r7 ≤ 1.

Working inductively, we have rN+1 = r0 + r−1 −1 for r0 + r−1 < 1/2, rN > 1 and rN+2 ≥ 1.
Assume that r0 + r−1 > 1/2. From (2.2), we get that r1 = 1 − 2r0 − r−1 < 1 and r2 =

3r0 + 2r−1 − 1.

If r2 > 1, then r3 = −r0 − r−1 and r4 = 2 − r0 > 1.

If r2 ≤ 1, then r3 = 2 − 4r0 − 3r−1 < 1 and r4 = 5r0 + 4r−1 − 2.

If r4 > 1, then r5 = −r0 − r−1 and r6 = 3 − 3r0 − 2r−1 > 1.

Working inductively, we have rN+1 = −r0 − r−1 for 1/2 < r0 + r−1 < 1, rN > 1 and
rN+2 ≥ 1. So, the proof of (i) is completed.

(ii) Assume that r0 + r−1 < 1 and that rN > 1, rN+2 ≥ 1. From (2.2) and (i), we get that

rN+2 = max{rN+1, 1} − 2rN+1 − rN = 1 − 2rN+1 − rN, rN ≤ −2rN+1. (2.9)
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Then,

rN+3 = max{rN+2, 1} − 2rN+2 − rN+1 = rN + rN+1 − 1 < 1,

rN+4 = max{rN+3, 1} − 2rN+3 − rN+2 = 2 − rN < 1,

rN+5 = max{rN+4, 1} − 2rN+4 − rN+3 = rN − rN+1 − 2 < 1,

rN+6 = max{rN+5, 1} − 2rN+5 − rN+4 = −rN + 2rN+1 + 3 < 1,

rN+7 = max{rN+6, 1} − 2rN+6 − rN+5 = rN − 3(rN+1 + 1).

(2.10)

So, the proof of (ii) is completed.

(iii) Assume that the smallest integer of integersN satisfying (i) isN1. From the proof of
(i), we have rj < 1 for j < N1. Also, from this assumption we have the subsequence
(rN1 , rN1+1, rN1+2, rN1+3, rN1+4, rN1+5, rN1+6) such that rN1 > 1 and rN1+2 ≥ 1. Then,
from (ii) we get that rN1+7 = rN1 − 3(rN1+1 + 1) and rN1+7 ≤ 1 or rN1+7 > 1.
If rN1+7 ≤ 1, we get that rN1+8 = −rN1 + 4(rN1+1 + 1) < 1. It means that rN1+7

and rN1+8 are not the element previous and later subsequences satisfying (ii). If
rN1+7 > 1, then we get that rN1+9 ≥ 1 and that rN1+7 is a element of the subsequence
(rN1+7, rN1+8, rN1+9, rN1+10, rN1+11, rN1+12, rN1+13) such that rN1+7 > 1 and rN1+9 ≥ 1. If
this proceeds, we have rN ≤ 1, for rN /∈ (rNi , rNi+1, rNi+2, rNi+3, rNi+4, rNi+5, rNi+6) such
that rNi > 1 and rNi+2 ≥ 1.

Lemma 2.6. Assume that {rn}∞n=−1 is a solution of (2.2). If r0 + r−1 = k/m < 1/2, GCD(k,m) = 1,
then the following statements are true.

(i) If (7m − 8k)/= 0(mod3) for N < (7m − 8k − 1), then number of integers N for which
Lemma 2.5(ii) holds is (m − 2k) and the number of integers N for which Lemma 2.5(iii)
holds is 6k.

(ii) If (7m−8k) = 0(mod 3) forN < ((7m−8k)/3−1), then number of integersN for which
Lemma 2.5(ii) holds is ((m−2k)/3) and the number of integersN for which Lemma 2.5(iii)
holds is 2k.

Lemma 2.7. Assume that {rn}∞n=−1 is a solution of (2.2). If 1/2 < r0+r−1 = k/m < 1, GCD(k,m) =
1, then the following statements are true.

(i) If (8k − m)/= 0(mod3) for N < (8k − m − 1), then number of integers N for which
Lemma 2.5(ii) holds is (2k − m) and the number of integers N for which Lemma 2.5(iii)
holds is 6(m − k).

(ii) If (8k −m) = 0(mod 3) for N < ((8k −m)/3 − 1), then number of integers N for which
Lemma 2.5(ii) holds is ((2k−m)/3) and the number of integersN for which Lemma 2.5(iii)
holds is 2(m − k).

Theorem 2.8. Consider (2.2). If r−1 + r0 = k/m ≤ 1/2 and GCD(k,m) = 1, then the following
statements are true.

(i) If (7m − 8k)/= 0(mod 3), then {rn}∞n=−1 is periodic with prime period (7m − 8k),

(ii) If (7m − 8k) = 0(mod 3), then {rn}∞n=−1 is periodic with prime period ((7m − 8k)/3).
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Proof. (i) Assume that r−1 + r0 = k/m < 1/2, GCD(k,m) = 1 and (7m − 8k)/= 0(mod3). It
suffices to prove rn = rn+7m−8k for n ≥ −1. We must show that r−1 = r7m−8k−1 and r0 = r7m−8k.
From Lemmas 2.5 and 2.6, for getting the last two terms we need, we can assume that

rn ≤ 1 for n = −1, 0, . . . , (6k − 2) (2.11)

and that

r6k−1+7l > 1, r6k+1+7l ≥ 1 for l = 0, 1, . . . , (m − 2k − 1). (2.12)

From this assumption and (2.2), we get that for n = 1, 2, . . . , (3k − 1)

r2n−1 = r−1 +
n∑

i=1

[1 − 2(r−1 + r0)] ≤ 1

r2n = r0 +
n∑

i=1

[2(r−1 + r0) − 1] ≤ 1

(2.13)

and that

r6k−1 = r−1 +
3k∑

i=1

[1 − 2(r−1 + r0)] > 1,

r6k = (r−1 + r0) − 1,

r6k+1 = 2 − r−1 +
3k−1∑

i=1

[2(r−1 + r0) − 1] ≥ 1,

...

r6k+5 = 3r−1 + 4r0 +
3k−1∑

i=1

[2(r−1 + r0) − 1] ≤ 1,

r6k+6 = 1 − (4r−1 + 5r0) −
3k−1∑

i=1

[2(r−1 + r0) − 1] > 1,

r6k+7 = (r−1 + r0) − 1,

...

r6k+12 = 6r−1 + 7r0 +
3k−1∑

i=1

[2(r−1 + r0) − 1] ≤ 1,

r6k+13 = 1 − (7r−1 + 8r0) −
3k−1∑

i=1

[2(r−1 + r0) − 1] > 1,

...
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r6k−1+7(m−2k−1) = 1 − r−1 − 2r0 − 3(m − 2k − 1)(r−1 + r0) −
3k−1∑

i=1

[2(r−1 + r0) − 1] > 1,

...

r6k−1+7(m−2k−1)+6 = r0 + 3(m − 2k)(r−1 + r0) +
3k−1∑

i=1

[2(r−1 + r0) − 1] ≤ 1,

r6k−1+7(m−2k) = 1 − [−r−1 + (3m − 6k + 2)(r−1 + r0)] −
3k−1∑

i=1

[2(r−1 + r0) − 1].

(2.14)

Then we get r7m−8k−1 = r−1 and that

r7m−8k = 1 − 2r7m−8k−1 − r7m−8k−2

= 1 − 2r−1 − r7m−8k−2 −
[
r0 + 3(m − 2k)(r−1 + r0) +

3k−1∑

i=1

[2(r−1 + r0) − 1]

]
= r0.

(2.15)

So, we have rn = rn+7m−8k for n ≥ −1.

(ii) Assume that r−1 + r0 = 1/2. From (2.2), we get immediately r1 = r−1 and r2 = r0.
So, we have rn = rn+(7m−8k)/3 for n ≥ −1. If r−1 + r0 < 1/2, GCD(k,m) = 1 and
(7m − 8k) = 0(mod3), then the proof of (ii) is similar to the proof of (i). So, it is
omitted.

Theorem 2.9. Consider (2.2). If r = r−1 + r0 = k/m > 1/2 and GCD(k,m) = 1, then the following
statements are true.

(i) If (8k −m)/= 0(mod 3), then {rn}∞n=−1 is periodic with prime period (8k −m).

(ii) If (8k −m) = 0(mod 3), then {rn}∞n=−1 is periodic with prime period ((8k −m)/3).

Proof. (i) If r−1+r0 = 1, then from (2.2)we get that r1 = −r0, r2 = 1+r0, r3 = −1, r4 = 2−r0, r5 =
r0 − 1, r6 = r−1 and r7 = r0. So, we have rn = rn+8k−m for n ≥ −1.

In the case 1/2 < r−1 + r0 < 1, the proof is similar to the proof of Theorem 2.8(i) such
that; from Lemmas 2.5 and 2.7, we can assume that

rn ≤ 1 for n = −1, 0, . . . , [6(m − k) − 3] (2.16)

and that

r6(m−k)−2+7l > 1, r6(m−k)+7l ≥ 1, r6(m−k)−2+7(2k−m) ≤ 1 (2.17)
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for l = 0, 1, . . . , (2k −m − 1). Thus, we get that

r2n = r0 +
n∑

i=1

[2(r−1 + r0) − 1] ≤ 1,

r2n+1 = r−1 +
n+1∑

i=1

[1 − 2(r−1 + r0)] ≤ 1

(2.18)

for n = 1, 2, . . . , [3(m − k) − 2] and that

r6(m−k)−2 = r0 +
3(m−k)−1∑

i=1

[2(r−1 + r0) − 1] > 1,

r6(m−k)−1 = −(r−1 + r0),

r6(m−k) = 1 + 2r−1 + r0 +
3(m−k)−1∑

i=1

[1 − 2(r−1 + r0)] ≥ 1,

...

r6(m−k)−2+7(2k−m)−1 = r−1 + 3(2k −m)(1 − r−1 − r0) −
3(m−k)−1∑

i=1

[2(r−1 + r0) − 1] ≤ 1,

r6(m−k)−2+7(2k−m) = r0 + 3(2k −m)(r−1 + r0 − 1) +
3(m−k)−1∑

i=1

[2(r−1 + r0) − 1] ≤ 1,

r6(m−k)+7(2k−m)−1 = 1 − 2r6(m−k)+7(2k−m)−2 − r6(m−k)+7(2k−m)−3 = r−1,

r6(m−k)+7(2k−m) = 1 − 2r6(m−k)+7(2k−m)−1 − r6(m−k)+7(2k−m)−2 = r0

(2.19)

So, we have rn = rn+8k−m for n ≥ −1.
Assume that 1 < r−1 + r0 < 2. From Lemmas 2.3 and 2.4, for getting the last two terms,

we can assume that

rN+5l1 = rN+5(l1+1) = −r,

rN+5[3(k−m)]+7l2 = rN+5[3(k−m)]+7(l2+1) = −r
(2.20)
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for l1 = 0, 1, . . . , [3(k − m) − 1] and l2 = 0, 1, . . . , (2m − k − 1). From this assumption and
Lemma 2.4(iii)-(iv),we get that

rN+4 = rN−1 − rN − 2,

rN+9 = rN−1 + 2(−rN − 2),

...

rN+5[3(k−m)−1]+4 = rN−1 + 3(k −m)(−rN − 2),

(2.21)

and that

rN+5[3(k−m)]+6 = rN+5[3(k−m)−1]+4 − 3rN − 3,

rN+5[3(k−m)]+13 = rN+5[3(k−m)−1]+4 + 2(−3rN − 3),

...

rN+5[3(k−m)]+7(2m−k−1)+6 = rN+5[3(k−m)−1]+4 + (2m − k)(−3rN − 3) > 1

(2.22)

Thus, we get rN+8k−m−1 = rN−1 and rN+8k−m = rN. From rn−1 = max{rn, 1} − 2rn −
rn+1, we have rn = rn+8k−m for n ≥ −1. Also, it is easy to see that rN−1 /= rN+5l1−1 and
rN−1 /= rN+5[3(k−m)]+7l2−1 for l1 = 1, 2, . . . , [3(k − m)] and l2 = 1, 2, . . . , (2m − k) which imply
that 8k −m is the smallest period.

In the case 2 < r−1 + r0, the proof is similar. So, it is omitted.

(ii) Assume that r−1+r0 = 2. If r0 > 1, then from (2.2)we get that r1 = −2, r2 = 5−r0, r3 =
r0 − 3, r4 = r−1 and r5 = r0. If r0 ≤ 1, then r1 = −1 − r0, r2 = 3 + r0, r3 = −2, r4 = r−1
and r5 = r0. So, we have rn = rn+(8k−m)/3 for n ≥ −1. The rest of proof is similar to the
proof of (i) and is omitted.

2.2. The Case A < 1

We consider (1.1) where A < 1. It is clear that the change of variables

xn = Arn for n ≥ −1 (2.23)

reduces (1.1) to the difference equation:

rn+1 = min{rn, 1} − 2rn − rn−1, n = 0, 1, 2, . . . , (2.24)

where the initial conditions r−1 and r0 are positive rational numbers.
In this section we consider the behavior of the solutions of (2.24) (or equivalently of

(1.1)) in this case A < 1. We omit the proofs of the following results since they can easily be
obtained in a way similar to the proofs of the lemmas and theorems in the previous section.
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Lemma 2.10. Assume that {rn}∞n=−1 is a solution of (2.24). If r−1, r0 > 1 and r = r0 + r−1, then the
following statements are true for some integerN > 0.

(i) If rN = r − 1, then rN−1 ≤ 1 and rN+1 ≤ 1.

(ii) If rN = r − 1, then rN = rN+3 or rN = rN+5.

(iii) If rN = r − 1 and rN+2 < 1, then rN+3 = r − 1 and rN+2 = rN−1 + rN − 1.

(iv) If rN = r − 1 and rN+2 ≥ 1, then rN+5 = r − 1 and rN+4 = rN−1 − rN − 2.

Lemma 2.11. Assume that {rn}∞n=−1 is a solution of (2.24) for which Lemma 2.10 holds. If r = r0 +
r−1 = k/m, GCD(k,m) = 1, then the following statements are true.

(i) If (8k − 7m)/= 0(mod 3) for 0 < N < (8k − 7m− 1), then number of integersN for which
Lemma 2.10(iii) holds is (k +m) and the number of integers N for which Lemma 2.10(iv)
holds is (k − 2m).

(ii) If (8k − 7m) = 0(mod3) for 0 < N < ((8k − 7m)/3 − 1), then number of integers N
for which Lemma 2.10(iii) holds is ((k + m)/3) and the number of integers N for which
Lemma 2.10(iv) holds is ((k − 2m)/3).

Lemma 2.12. Assume that {rn}∞n=−1 is a solution of (2.24). If max{r−1, r0} = r > 1 and one of the
initial contitions r−1, r0 is less than or equal to one, then the following statements are true for some
integerN > 0.

(i) If rN = r, then rN−1 ≤ 1 and rN+1 ≤ 1.

(ii) If rN = r, then rN = rN+3 or rN = rN+5.

(iii) If rN = r and rN+2 < 1, then rN+3 = r and rN+2 = rN−1 + rN − 1.

(iv) If rN = r and rN+2 ≥ 1, then rN+5 = r and rN+4 = rN−1 − rN − 2.

Lemma 2.13. Assume that {rn}∞n=−1 is a solution of (2.24) for which Lemma 2.12 holds. If r =
max{r−1, r0} = k/m, GCD(k,m) = 1, then the following statements are true.

(i) If (8k +m)/= 0(mod 3) for 0 < N < (8k +m − 1), then number of integers N for which
Lemma 2.12(iii) holds is (2m + k) and the number of integersN for which Lemma 2.12(iv)
holds is (k −m).

(ii) If (8k + m) = 0(mod3) for 0 < N < ((8k + m)/3 − 1), then number of integers N
for which Lemma 2.12(iii) holds is ((2m + k)/3) and the number of integers N for which
Lemma 2.12(iv) holds is ((k −m)/3).

Theorem 2.14. Consider (2.24). If r−1, r0 > 1, r = (r0 + r−1) = k/m and GCD(k,m) = 1, then the
following statements are true.

(i) If (8k − 7m)/= 0(mod 3), then {rn}∞n=−1 is periodic with prime period (8k − 7m).

(ii) If (8k − 7m) = 0(mod 3), then {rn}∞n=−1 is periodic with prime period ((8k − 7m)/3).

Theorem 2.15. Consider (2.24). If at least one of the initial conditions of (2.24) is less than or equal
to one, max{r−1, r0, 1} = k/m and GCD(k,m) = 1, then the following statements are true.

(i) If (8k +m)/= 0(mod 3), then {rn}∞n=−1 is periodic with prime period (8k +m).

(ii) If (8k +m) = 0(mod 3), then {rn}∞n=−1 is periodic with prime period ((8k +m)/3).
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3. Conclusion

Difference equation appears naturally as a discrete analogue and as a numerical solutions of
differential and delay differential equations having applications various scientific branches,
such as in ecology, economy, physics, technics, sociology, and biology. Specially, max-type
difference equations stem from, for example, certain models in automatic control theory. In
this paper, periodic nature of the solution of (1.1) which was open problem proposed by
Grove and Ladas [22] was investigated. We describe a new method in investigating periodic
character of max-type difference equations. It is expected that after some modifications our
method will be applicable to Open Problem 6.3 in [22].
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