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When an impulsive control is adopted for a stochastic delay difference system (SDDS), there are at
least two situations that should be contemplated. If the SDDS is stable, then what kind of impulse
can the original system tolerate to keep stable? If the SDDS is unstable, then what kind of impulsive
strategy should be taken to make the system stable? Using the Lyapunov-Razumikhin technique,
we establish criteria for the stability of impulsive stochastic delay difference equations and these
criteria answer those questions. As for applications, we consider a kind of impulsive stochastic
delay difference equation and present some corollaries to our main results.

1. Introduction

In recent years, stochastic delay difference equations (SDDEs) have been studied by many
researchers; a number of results have been reported [1–7]. In these literatures, stability
analysis stays on the focus of attention; see [1, 2, 4–6] and the references therein. As we all
know, when we adopt an impulsive strategy to an SDDE, the stability of the SDDE may be
destroyed or strengthen. Impulsive phenomena exist widely in the real world; therefore, it is
important to study the stability problem for SDDEs with impulsive effects [8–10], that is to
say, the stability problem for impulsive stochastic delay difference equations (ISDDEs).

For SDDEs, when we take impulsive effects into account, we have at least two
problems to deal with. Problem 1. When a SDDE is stable, what kind of impulsive effect can
the system tolerate so that it remain stable? Problem 2. If the SDDE is unstable, then what kind
of impulsive effect should be taken to make the system stable? Problems 1 and 2 are called
the problem of impulsive stability and the problem of impulsive stabilization, respectively.

As well known, Lyapunov-Razumikhin technique is one of main methods to
investigate the stability of delay systems [11, 12]. There are little papers on the stability of
ISDDEs [13, 14], and up to our knowledge, there is no paper on the stability of ISDDEs
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using Lyapunov-Razumikhin technique. In this paper, we study the stability of ISDDEs
by Lyapunov-Razumikhin technique. We establish criteria for the r-moment exponential
stability; these criteria present the answers to Problems 1 and 2. As for applications, we
consider a kind of ISDDE and present some corollaries to our main theorems.

2. Preliminaries

In the sequel, R denotes the field of real numbers, and N represents the natural numbers. For
some positive integerm and n0, letN−m = {−m,−m+1, . . . ,−1, 0} andNn0−m = {n0−m,n0−m+
1, . . . , n0−1, n0}. Given a matrixA, ‖A‖ denotes the norm ofA induced by the Euclidean vector
norm. Let C([−r, 0],Rn) = {ψ : [−r, 0] → R

n, ψ is continuous}. Given a positive integer m,
we define ‖ϕ‖m = maxθ∈N−m{‖ϕ(s)‖} for any ϕ ∈ C([−m, 0],Rn). Let (Ω,F, P) be a complete
probability space and let {Fn, n ∈ Z} be a nondecreasing family of sub-σ-algebra of F, that
is, Fn1 ⊂ Fn2 for n1 < n2.

Consider the impulsive stochastic delay difference equations of the form

x(n + 1) = f(n, xn) + g(n, xn)ξn, n /=ηk − 1, n � n0, n, k ∈ N,

x
(
ηk

)
= Hk

(
x
(
ηk − 1

))
, k ∈ N,

xn0 = ϕ,

(2.1)

where n0 ∈ N, f, g ∈ C(N × C((−m, 0),Rn),Rn), and m ∈ N represents the delay in system
(2.1), m � 2. xn ∈ C([−m, 0],Rn) is defined by xn(s) = x(n + s) for any s ∈ [−m, 0]. {ξn} are
Fn+1-adapted mutually independent random variables and satisfy Eξn = 0, Eξ2

n = 1, where E
denotes the mathematical expectation. Hk ∈ C(Rn,Rn). Impulsive moment ηk ∈ N satisfies:
n0 < η1 < η2 < · · · < ηn < · · · , and ηk → ∞ as k → ∞. Let η0 = n0.

Assume that f(n, 0) ≡ 0, g(n, 0) ≡ 0, and Hk(0) = 0, then system (2.1) admits the
trivial solution. We also assume there exists a unique solution of system (2.1), denoted by
x(n) = x(n, n0, ϕ), for any given initial data xn0 = ϕ.

Definition 2.1. One calls the trivial solution of system (2.1) r-moment exponentially stable if
for any initial data xn0 = ϕ there exist two positive constants α andM, such that for all n � n0,
n ∈ N, the following inequality holds:

E‖x(n)‖r � M
∥∥ϕ

∥∥r
me
−αn. (2.2)

If the trivial solution of system (2.1) is r-moment exponentially stable, then we also
call the system (2.1) r-moment exponentially stable.

3. Main Results

In this section, we will establish two theorems on r-moment exponential stability of system
(2.1); these theorems give the answers to Problems 1 and 2.

First, we present the theorem on impulsive stability. The technique adopted in the
proof is motivated by [15].
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Theorem 3.1. Assume that there exist a positive function V (n, x) for system (2.1) and positive
constants r, p, c1, c2, and λ, where p > 1, 0 < λ < 1, such that.

(C1) c1‖x‖r � V (n, x) � c2‖x‖r for any n ∈Nn0−m ∪ N and x ∈ R
n.

(C2) For n/=ηk − 1, any s ∈ N−m, EV (n + 1, x(n + 1)) � λEV (n, x(n)) whenever EV (n +
s, x(n + s)) � pEV (n, x(n)).

(C3) For n/=ηk−1, some s ∈N−m−{0}, EV (n+1, x(n+1) � (1/p)maxθ∈N−m{EV (n+θ, x(n+
θ))}wheneverEV (n+s, x(n+s)) > eαEV (n, x(n)), where α = min{− lnλ, ln p/(m+1)}.

(C4) EV (ηk, x(ηk)) � dkEV (ηk − 1, x(ηk − 1)), where dk > 1 and d = maxk∈N{dk} <∞.

(C5) ηk+1 − ηk > m, α(1 − 1/m) − lnd/m = β > 0.

Then for any initial data xn0 = ϕ,

E‖x(n)‖r � c2

c1
E
∥∥ϕ

∥∥r
me
−βn. (3.1)

That is the trivial solution of system (2.1) that is r-moment exponentially stable.

Proof. Let U(n) = maxθ∈N−m{eα(n+θ)EV (n + θ, x(n + θ))}. For any n � n0, n ∈ [ηk, ηk+1 − 1),
k ∈ N, define

θn = max
{
θ ∈N−m : eα(n+θ)EV (n + θ, x(n + θ)) = U(n)

}
, (3.2)

then U(n) = eα(n+θn)EV (n + θn, x(n + θn)).
Next, we will show that, for any n ∈ [ηk, ηk+1 − 1),

U(n + 1) � U(n). (3.3)

For a given n, we have two situations to contemplate: θn � −1 and θn = 0.

Case 1 (θn � −1). Under this situation, we have eαnEV (n, x(n)) < eα(n+θn)EV (n+θn, x(n+θn)),
then

EV
(
n + θn, x

(
n + θn

))
> eα(−θn)EV (n, x(n)) � eαEV (n, x(n)). (3.4)

Using condition (C3) and noticing p � eα(m+1), we obtain

max
s∈N−m

{EV (n + s, x(n + s))} � eα(m+1)EV (n + 1, x(n + 1)). (3.5)

Multiplying both sides by eαn and rearranging yield

eα(n−m) max
s∈N−m

{EV (n + s, x(n + s))} � eα(n+1)EV (n + 1, x(n + 1)). (3.6)
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Then we get

eα(n+1)EV (n + 1, x(n + 1)) � max
s∈N−m

{
eα(n+s)EV (n + s, x(n + s))

}
= U(n), (3.7)

which implies that

U(n + 1) � U(n). (3.8)

Case 2 (θn = 0). Making use of the definition of U(n) and θn, noticing that p > e−αθ for any
θ ∈N−m, we have

EV (n + θ, x(n + θ)) � eα(−θ)EV (n, x(n)) < pEV (n, x(n)). (3.9)

Under condition (C2), the above inequality implies that

EV (n + 1, x(n + 1)) � λEV (n, x(n)). (3.10)

Multiplying both sides by eα(n+1), we have

eα(n+1)EV (n + 1, x(n + 1)) � eα(n+1)λEV (n, x(n))

= eαnEV (n, x(n))eαλ

� eαnEV (n, x(n)) = U(n).

(3.11)

Thus

U(n + 1) � U(n), (3.12)

which is the desired assertion.

When n = ηk+1, under condition (C4) and using the definition of U(n), we get

U
(
ηk+1

)
= max

θ∈N−m

{
eα(ηk+1+θ)EV

(
ηk+1 + θ, x

(
ηk+1 + θ

))}

= max
{
eαηk+1EV

(
ηk+1, x

(
ηk+1

))
,

max
θ∈N−m−{0}

{
eα(ηk+1+θ)EV

(
ηk+1 + θ, x

(
ηk+1 + θ

))}
}
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� max
{
dk+1e

αeα(ηk+1−1)EV
(
ηk+1 − 1, x

(
ηk+1 − 1

))
,

max
θ∈N−m−{0}

{
eα(ηk+1+θ)EV

(
ηk+1 + θ, x

(
ηk+1 + θ

))}
}

� dk+1e
α max
θ∈N−m−{0}

{
eα(ηk+1+θ)EV

(
ηk+1 + θ, x

(
ηk+1 + θ

))}

� dk+1e
αU

(
ηk+1 − 1

)
� dk+1e

αU
(
ηk

)
.

(3.13)

By induction and taking (3.3) into account, when n ∈ [ηl, ηl+1), for all l ∈ N, we have

U(n) � U
(
ηl
)

� dle
αU

(
ηl−1

)
�

l∏

i=1

(dieα)U(n0), (3.14)

which yields

eαnEV (n, x(n)) �
l∏

i=1

(dieα)c2E
∥∥ϕ

∥∥r
m. (3.15)

By virtue of condition (C5),

EV (n, x(n)) � e−n(α(1−l/n)(−1/n)
∑l

i=1 lndi)c2E
∥∥ϕ

∥∥r
m � c2E

∥∥ϕ
∥∥r
me
−βn. (3.16)

The desired result follows when we take condition (C1) into account.

Now, we are in position to state the theorem on impulsive stabilization. The method
used in the proof is motivated by [16].

Theorem 3.2. Assume that there exist a function V (n, x) for system (2.1) and constants r > 0,
c1 > 0, c2 > 0, λ > 0, and natural number α > 1, such that the following conditions hold.

(C1) c1‖x‖r � V (n, x) � c2‖x‖r for any n ∈Nn0−m ∪ N and x ∈ R
n.

(C2) For n/=ηk − 1, any s ∈ N−m, EV (n + 1, x(n + 1)) � (1 + λ)EV (n, x(n)) whenever
qEV (n + 1, x(n + 1)) � EV (n + s, x(n + s)), where q > e2λα.

(C3) EV (ηk, x(ηk)) � dkEV (ηk − 1, x(ηk − 1)), where dk > 0.

(C4) m � ηk+1 − ηk � α, lndk + αλ < −λ(ηk+1 − ηk).

Then for any initial data xn0 = ϕ there exists positive constant C; for any n ∈ N, the following
inequality holds:

E‖x(n)‖r � CE
∥∥ϕ

∥∥r
me
−λn, (3.17)

that is, the trivial solution of system (2.1) is r-moment exponentially stable.
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Proof. Choose M > 1 such that

(1 + λ)c2E
∥
∥ϕ

∥
∥r
m � ME

∥
∥ϕ

∥
∥r
me
−λη1e−αλ < ME

∥
∥ϕ

∥
∥r
me
−λη1 � qc2E

∥
∥ϕ

∥
∥r
m. (3.18)

We will show that, for any n ∈ [ηk, ηk+1), k = 1, 2, . . .,

EV (n, x(n)) � ME
∥∥ϕ

∥∥r
me
−ληk+1 . (3.19)

Write EV (n, x(n)) = EV (n) for the sake of brevity.
First we will show that, for any n ∈ [0, η1),

EV (n) � ME
∥
∥ϕ

∥
∥r
me
−λη1 . (3.20)

Obviously, when n ∈ [−m, 0], EV (n) � ME‖ξ‖rme−λη1 . If (3.20) is not true, then there exists
n ∈ [0, η1 − 1) such that

EV (n + 1) > ME
∥∥ϕ

∥∥r
me
−λη1 . (3.21)

And when n � n, EV (n) � ME‖ϕ‖rme−λη1 . At the same time there exists n∗ � 0 such that
EV (n∗) � c2E‖ϕ‖rm, and when n∗ < n � n,

c2E
∥∥ϕ

∥∥r
m < EV (n) � ME

∥∥ϕ
∥∥r
me
−λη1 . (3.22)

Note that there may not exist the natural number n that satisfies n∗ < n � n such that
(3.22) holds. However, we claim that there must be a natural number n satisfing n∗ < n � n
such that (3.22) holds. If not, we have n∗ = n; then we get

EV (n) � c2E
∥∥ϕ

∥∥r
m, n � n. (3.23)

Obviously,

qEV (n + 1) � EV (n + s), ∀s ∈N−m. (3.24)

Under condition (C2) we get

EV (n + 1) � (1 + λ)EV (n). (3.25)

That is

EV (n) � 1
1 + λ

EV (n + 1) >
1

1 + λ
ME

∥∥ϕ
∥∥r
me
−λη1

=
eαλ

1 + λ
ME

∥∥ϕ
∥∥r
me
−λη1e−αλ

> ME
∥∥ϕ

∥∥r
me
−λη1e−αλ � c2E

∥∥ϕ
∥∥r
m,

(3.26)



Discrete Dynamics in Nature and Society 7

which contradicts with (3.23). Then there must be an n satisfing n∗ < n � n such that (3.22)
holds.

For any n ∈ [n∗ + 1, n],

EV (n + s) � ME
∥
∥ϕ

∥
∥r
me
−λη1 < qc2E

∥
∥ϕ

∥
∥r
m < qEV (n). (3.27)

By virtue of (C2), for any n ∈ [n∗ + 1, n],

EV (n) � (1 + λ)EV (n − 1), (3.28)

and for s ∈N−m, we have

qEV (n + 1) � EV (n + s),

qEV (n∗ + 1) � EV (n∗ + s).
(3.29)

Making use of (3.28), we get

EV (n + 1) � (1 + λ)EV (n) � (1 + λ)n−n
∗
EV (n∗ + 1)

� (1 + λ)αEV (n∗) < eαλc2E
∥∥ϕ

∥∥r
m.

(3.30)

Taking (3.3) into account, the above inequality yields

EV (n + 1) > ME
∥∥ϕ

∥∥r
me
−λη1 , (3.31)

which implies that

ME
∥∥ϕ

∥∥r
me
−λη1 < eαλc2E

∥∥ϕ
∥∥r
m. (3.32)

It contradicts with (3.18); then (3.20) holds, that is, (3.19) holds for k = 1.
Assume that (3.19) holds for k = 1, 2, . . . , h, that is, when n ∈ [ηk−1, ηk), k = 1, 2, . . . , h,

EV (n) � ME
∥∥ϕ

∥∥r
me
−ληk . (3.33)

Under conditions (C3) and (C4), we have

EV
(
ηh

)
� dhEV

(
ηh − 1

)
� dhME

∥∥ϕ
∥∥r
me
−ληh

� ME
∥∥ϕ

∥∥r
me
−ληh+1e−αλ � ME

∥∥ϕ
∥∥r
me
−ληh+1 .

(3.34)

Now we will show that, when n ∈ [ηh, ηh+1),

EV (n) � ME
∥∥ϕ

∥∥r
me
−ληh+1 . (3.35)
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If (3.35) is not true, then there must be an n ∈ (ηh, ηh+1 − 1), such that

EV (n + 1) > ME
∥
∥ϕ

∥
∥r
me
−ληh+1 , (3.36)

and for n ∈ [ηh, n]

EV (n) � ME
∥
∥ϕ

∥
∥r
me
−ληh+1 . (3.37)

At the same time, there exists an n∗ ∈ [ηh, n] such that

EV (n∗) � ME
∥
∥ϕ

∥
∥r
me
−ληh+1e−αλ, (3.38)

And, when n∗ < n � n,

EV (n) > ME
∥∥ϕ

∥∥r
me
−ληh+1e−αλ. (3.39)

If there does not exist an n satisfing n∗ < n � n such that (3.39) holds, then n∗ = n. Obviously,
for any s ∈N−m, qEV (n+1) � EV (n+s). Using condition (C2) yields EV (n+1) � (1+λ)EV (n),
that is,

EV (n) � 1
1 + λ

EV (n + 1) � eλα

1 + λ
ME

∥∥ϕ
∥∥r
me
−ληh+1e−αλ > ME

∥∥ϕ
∥∥r
me
−ληh+1e−αλ, (3.40)

which contradicts with the definition of n; then there exists at least one number n satisfing
n∗ < n � n such that (3.39) holds.

For n ∈ [n∗ + 1, n] and s ∈N−m, we have

EV (n + s) � ME
∥∥ϕ

∥∥r
me
−ληh

= eλ(ηh+1−ηh)ME
∥∥ϕ

∥∥r
me
−ληh+1

� e2λαME
∥∥ϕ

∥∥r
me
−ληh+1e−αλ

< qEV (n),

(3.41)

which implies that, under condition (C2),

EV (n) � (1 + λ)EV (n − 1). (3.42)

Obviously, qEV (n + 1) � EV (n). Using condition (C2) again, we get

EV (n + 1) � (1 + λ)EV (n). (3.43)

since qEV (n∗ + 1) > EV (n∗ + s), s ∈N−m, we have, under condition (C2)

EV (n∗ + 1) � (1 + λ)EV (n∗). (3.44)
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Then

EV (n + 1) � (1 + λ)EV (n) � (1 + λ)n−n
∗
EV (n∗ + 1)

� (1 + λ)n−n
∗+1EV (n∗) � (1 + λ)αEV (n∗)

< eαλME
∥
∥ϕ

∥
∥r
me
−ληh+1e−αλ

=ME
∥
∥ϕ

∥
∥r
me
−ληh+1 < EV (n),

(3.45)

which conflicts with the definition of n. Then (3.19) holds for k = h + 1.
By induction, we know that (3.19) holds for n ∈ [ηk, ηk+1), k ∈ N.
Using condition (C1), for any n ∈ [ηk, ηk+1), k ∈ N, we have

c1E‖x(n)‖r � EV (n) � ME
∥∥ϕ

∥∥r
me
−ληk+1 � ME

∥∥ϕ
∥∥r
me
−λn. (3.46)

That is the desired result.

4. Applications

In this section, we consider a kind of impulsive stochastic delay difference equation as
follows:

x(n + 1) = f(n, x(n), x(n −m)) + g(n, x(n), x(n −m))ξn, n /=ηk − 1,

x
(
ηk

)
= Hk

(
x
(
ηk − 1

))
,

x(n0 + s) = ϕ(s), s ∈N−m.

(4.1)

Using the obtained results, we present three corollaries for system (4.1).

Corollary 4.1. Assume that conditions (C1), (C4), and (C5) of Theorem 3.1 hold, but conditions (C2)
and (C3) are replaced with the following conditions:

(C∗2) There exist constants λ1 and λ2, 0 < λ1, λ2 < 1, such that

EV (n + 1, x(n + 1)) � λ1EV (n, x(n)) + λ2EV (n −m,x(n −m)). (4.2)

If λ1 + λ2 < 1, then the trivial solution of system (4.1) is r-moment exponentially stable.

Proof. Let x(n) be a solution of system (4.1). Take (p =
√
λ2

1 + 4λ2 + λ2 − λ1)/3λ2. It is easy to
see that, under the conditions 0 < λ1, λ2 < 1, and 0 < λ1 + λ2 < 1,

1 < p <

√
λ2

1 + 4λ2 − λ1

2λ2
<

1
λ1 + λ2

<
1 − λ1

λ2
. (4.3)
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If EV (n+ θ, x(n+ θ)) � pEV (n, x(n)) for any θ ∈N−m, it follows from the condition (C∗2) that

EV (n + 1, x(n + 1)) �
(
λ1 + pλ2

)
EV (n, x(n)). (4.4)

Then condition (C2) of Theorem 3.1 follows under (4.3).
Let λ = λ1 + pλ2; using inequality (4.3), we get α in Theorem 3.1: α =

min{− lnλ, ln p/(m + 1)} = ln p/(m + 1).
Now we assume that V (n + θ, x(n + θ)) > eαV (n, x(n)) for some θ ∈N−m; by virtue of

(C∗2) and inequality (4.3),

EV (n + 1, x(n + 1)) � λ1EV (n, x(n)) + λ2EV (n −m,x(n −m))

< λ1e
−αEV (n + θ, x(n + θ)) + λ2EV (n −m,x(n −m))

< (λ1 + λ2)max
s∈N−m

{EV (n + s, x(n + s))}

<
1
p

max
s∈N−m

{EV (n + s, x(n + s))}.

(4.5)

Then condition (C3) of Theorem 3.1 follows, which completes the proof.

From the above proof, we know that constant β in Theorem 3.1 equals to

m − 1
m(m + 1)

ln

√
λ2

1 + 4λ2 + λ2 − λ1

3λ2
− lnd

m
. (4.6)

Corollary 4.2. Assume that conditions (C1), (C4), and (C5) of Theorem 3.1 hold, but conditions (C2)
and (C3) are replaced with the following condition.

(C∗∗2 ) There exists a constant 0 < λ < 1 such that

EV (n + 1, x(n + 1)) � λmax
s∈N−m

{EV (n + s, x(n + s))}. (4.7)

Then the trivial solution of system (4.1) is r-moment exponentially stable.

Proof. Let x(n) be a solution of system (4.1). Take

p =
(

1
λ

)(m+1)/(m+2)

. (4.8)

Since 0 < λ < 1, we have 1 < p < 1/λ and

ln p
(m + 1)

=
ln(1/λ)
(m + 2)

< ln
(

1
λ

)
. (4.9)
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For any s ∈ N−m, assume that V (n + s, x(n + s)) � pV (n, x(n)); by virtue of condition (C∗∗2 ),
we get

EV (n + 1, x(n + 1)) � pλEV (n), (4.10)

that is, condition (C2) of Theorem 3.1.
Since 1 < p < 1/λ we have 1/p > λ. Under condition (C∗∗2 ), for any n ∈ N, we get

EV (n + 1, x(n + 1)) � λmax
s∈N−m

{EV (n + s, x(n + s))}

<

(
1
p

)
max
s∈N−m

{EV (n + s, x(n + s))},
(4.11)

that is condition (C3) of Theorem 3.1.

From the above proof, we know that constant α in Theorem 3.1 equals to

min
{
− ln

(
λp

)
,

ln p
(m + 1)

}
= − ln

(
λp

)
=

ln p
(m + 1)

= − lnλ
(m + 2)

. (4.12)

Then constant β in Theorem 3.1 equals

− lnλ
(m + 2)

(
1 − 1

m

)
− lnd

m
. (4.13)

Now, we present a corollary of Theorem 3.2 which establishes a criterion of mean
square exponential stability for system (4.1).

Corollary 4.3. Assume that there exist positive constants λ, α, and q where α is a natural number
and α > 1, q � e2λαsuch that system (4.1) satisfies the following.

(1)

E
∥∥f(n, x(n), x(n −m))

∥∥2 + E
∥∥g(n, x(n), x(n −m))

∥∥2

� 1
2

(
aE‖x(n)‖2 + bE‖x(n −m)‖2

)
,

(4.14)

where a, b are positive constants, b < 1/q, and

0 <
a + bq − 1

1 − bq � λ. (4.15)
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(2) ‖Hk(x)‖ � βk‖x‖, for any x ∈ R
n, βk > 0, and 2 ln βk + λ(ηk+1 − ηk) � −λα. The

impulsive moments satisfym � ηk+1 − ηk � α.

Then, for any initial data xn0 = ϕ, the solution x(n) of system (4.1) satisfies

E‖x(n)‖2 ≤ E
∥
∥ϕ

∥
∥2
me
−(λ/2)n. (4.16)

That is to say, the trivial solution of system (4.1) is mean square exponentially stable.

Proof. Let V (n, x) = ‖x‖2, then,

EV (n + 1, x(n + 1))

= E‖x(n + 1)‖2

= E
∥∥f(n, x(n), x(n −m)) + g(n, x(n), x(n −m))ξn

∥∥2

� 2
(
E
∥∥f(n, x(n), x(n −m))

∥∥2 + E
(∥∥g(n, x(n), x(n −m))

∥∥2
ξ2
n

))

� aE‖x(n)‖2 + bE‖x(n −m)‖2

= aEV (n) + bEV (n −m).

(4.17)

Assume that qEV (n + 1, x(n + 1)) � EV (n + s, x(n + s)) holds for any s ∈N−m, then

EV (n + 1) = E‖x(n + 1)‖2 � a

1 − bqEV (n) � (1 + λ)EV (n). (4.18)

The other conditions of Theorem 3.2 are easy to be verified and the conclusion of this corollary
now follows.

5. Examples

Now we study some examples to illustrate our results.
We consider a linear impulsive stochastic delay difference equation as following:

x(n + 1) = ax(n) + bx(n −m) + cx(n −m)ξn, n /=ηk − 1, n � 0,

x
(
ηk

)
= βkx

(
ηk − 1

)
, k ∈ N,

x(s) = ϕ(s), s ∈N−m.
(5.1)

First we take a = 0.5, b = 0.25, c = 0.25, m = 9, ηk = 10k, βk = 1.1, k = 1, 2, . . . , and
ϕ(s) = 1/(100 + s2). By virtue of Corollary 4.1, taking V (x, n) = x2(n), we can get the mean
square exponential stability of (5.1). The stability is shown in Figure 1.
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Figure 1: Mean square exponential stability of (5.1): a = 0.5, b = 0.25, c = 0.25,m = 9, ηk = 10k, and βk = 1.1.
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Figure 2: Instability without impulsive effects of (5.1): a = 1.09, b = 0, c = e−19, and m = 3.

Now we take a = 1.09, b = 0, c = e−19, m = 3, and ϕ(s) = 1/(10 + s2) in (5.1) without
impulsive effects. It is easy to see that equation is unstable. This property is shown in Figure 2.
Then we take an impulsive strategy: ηk = 4k, βk = e−19. In light of Corollary 4.3, we can see
that equation is mean square exponentially stable. The stability is shown in Figure 3.

It should be pointed that the conditions of Corollary 4.3 are sufficient but not necessary.
If we take a = 1.09, b = 0, c = e−19, m = 3, ηk = 4k, and βk = 0.7 and ϕ(s) = 1/(10 + s2), then it
is not difficult to show that the conditions of Corollary 4.3 are not satisfied again, but under
this situation, the equation is still stable. The stability is shown in Figure 4.
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Figure 3: Mean square exponential stability of (5.1): a = 1.09, b = 0, c = e−19, m = 3, ηk = 4k, and βk = e−19.

0 20 40 60 80 100

E
X

2 n

n

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Figure 4: Stability of (5.1): a = 1.09, b = 0, c = e−19, m = 3, ηk = 4k, and βk = 0.7.

6. Conclusions

In this paper, we considered the r-moment exponential stability for impulsive stochastic
delay difference equations. Using the Lyapunov-Razumikhin method, we established criteria
of r-moment exponential stability and these criteria presented the answers for the problem
of impulsive stability and the problem of impulsive stabilization. As for applications, we
considered a kind of impulsive stochastic delay difference equation and obtained three
corollaries for our main theorems. The results we got may work in the study of stability of
numerical method for the impulsive delay differential equations.
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