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This paper presents a strategy for designing a robust discrete-time adaptive controller for
stabilizing linear time-invariant (LTI) continuous-time dynamic systems. Such systems may be
unstable and noninversely stable in the worst case. A reduced-order model is considered to design
the adaptive controller. The control design is based on the discretization of the system with the
use of a multirate sampling device with fast-sampled control signal. A suitable on-line adaptation
of the multirate gains guarantees the stability of the inverse of the discretized estimated model,
which is used to parameterize the adaptive controller. A dead zone is included in the parameters
estimation algorithm for robustness purposes under the presence of unmodeled dynamics in the
controlled dynamic system. The adaptive controller guarantees the boundedness of the system
measured signal for all time. Some examples illustrate the efficacy of this control strategy.

1. Introduction

Adaptive control theory has been widely applied for stabilizing increasingly complex
engineering systems with large uncertainties [1], including the incorporation of parallel
multiestimation and time-delayed and hybrid models [2–6]. Such model uncertainties may
come from the fact that the parameters of the dynamic system model are partially or fully
unknown and/or from the presence of unmodeled dynamics [3]. On the other hand, discrete
equations are useful for modeling and controlling discretized continuous-time systems in
practical situations [2, 5–9] and as a tool for describing more complex nonlinear structures via
discretization [10, 11]. A frequently used method to stabilize an unknown dynamic system is
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based on the model reference adaptive control (MRAC) problem [12]. However, the presence
of unstable system zeros does not make possible the design of a controller to achieve the
model-matching objective unless such unstable zeros are transmitted to the reference model
[1, 2, 6, 13, 14]. Unfortunately, such a transmission cannot be available if some of the zeros
of the system to be controlled are unknown as it can occur in the context of the adaptive
control where the dynamic system may be completely or partially unknown. However, there
are several alternative methods to circumvent this difficulty and carry out the stable adaptive
control design. Two of them depend on relaxing the control objective from the MRAC to the
less exigent adaptive pole-placement control (APPC) [15, 16]. In this way, the stabilization of
the feedback (or closed-loop) system can be ensured although its transient behavior cannot
be fixed to a predefined one. On one hand, the method in [15] includes a modification in the
estimated parameters to ensure the controllability of the estimation model of the dynamic
system. In this way, closed-loop unstable pole-zero cancellations are avoided, which is crucial
for the controller synthesis. Such a method is applicable for both continuous-time and
discrete-time dynamic systems to be controlled. On the other hand, the research [16] may be
used in the case of continuous-time dynamic systems. There, a periodic piecewise constant-
gain controller is added in the feedback chain. In the nonadaptive case, the gain values
are those required so that the discretized system model under the fundamental sampling
period and a zero-order hold (ZOH) could be stabilized. It is worth that such a control gain
is piecewise constant during the sampling period in order to place the discretized poles at
stable desired locations. Concretely, each sampling period is split into a certain finite number
of uniform subintervals and the control gain takes a different value within each subinterval.
In this way, the controller consists of a constant vector of gains. In this sense, the controller
works with a sampling rate faster than that used to discretize the controlled system. In the
adaptive case, the discretized dynamic system model parameters are on-line updated; then
the controller gains vector is time varying and converges asymptotically to a constant one.

Another method, which does not relax the MRAC objective, to overcome the drawback
of the unstable zeros of a continuous-time dynamic system is the design of a discrete-time
controller with the use of a hold device combined with a multirate sampling with fast input
rate in the discretization of the continuous-time system [7, 8]. In this way, an inversely stable
estimated model of the discretized dynamic system can be obtained and a controller can be
designed to match a stable arbitrarily chosen discrete-time reference model since all of the
discretized zeros may be cancelled if suited. In this context, this paper presents a robust adaptive
control scheme for stabilizing uncertain controlled continuous-time dynamic systems while matching
a freely chosen discrete-time reference model, with a bounded tracking-error, to be applied when the
continuous-time system is unknown and subject to the presence of unmodeled dynamics. The main
novelty is that the discrete zeros may be always stabilized even if the zeros of the continuous
system are not all stable. As a result, the reference model zeros can all be freely fixed. The
control scheme is based on the discretization process by combining the use of a fractional-
order hold (FROH) and a multirate with fast sampling control signal. In this way, the
estimated discretized model can be guaranteed to be inversely stable by means of a suitable
on-line updating of the multirate gains without requirements neither on the stability of the
continuous-time zeros nor the size of the sampling period [17]. Such a strategy gives place to
hybrid systems where continuous-time and discrete-time dynamics are mixed. Concretely, a
discrete-time controller is designed to govern the behavior of a continuous-time dynamical
system. Epidemic control of infectious diseases and species population control systems in
Ecology are two typical examples of this class of hybrid systems [18–20]. A discrete-time
control strategy depending on a pulse vaccination is designed in [18]. Such vaccination pulses
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work as a discrete-time control signal and the eradication of the diseases is reached provided
that the vaccination rate is sufficiently large. The researches [19, 20] study, respectively, the
necessary conditions which guarantee the stabilization and permanence of single-species
and predator-prey systems populations in their respective habitats. Both are continuous-
time dynamic systems which can be described efficiently by means of discrete-time models
in order to prescribe its evolution and then to develop discrete-time control strategies to
ensure the permanence of the species. All of these systems are subject to eventual changes in
the continuous-time dynamics whenever the discrete-time control action takes place. In this
sense, they belong to a class of switched systems whose stability and stabilization conditions
have been studied in the recent literature [4, 21].

Furthermore, the presented control strategy guarantees the stabilization of the
continuous-time dynamic system without any assumption about the stability of its zeros,
which had been supposed in previous works [13, 22], and without requiring estimates
modification in contrast with previous works on the subject [2, 15]. Such relaxations
constitute the main contribution of the present work. A FROH is used since it allows a
better accommodation of discrete adaptive techniques to the transient response of discrete-
time controlled continuous-time dynamic systems [9]. Furthermore, the estimation algorithm
includes a relative adaptation dead-zone to deal with the presence of unmodeled dynamics
[14]. Such a dead-zone is crucial to ensure the estimates convergence and the stability of the
adaptive control system. The stabilization is guaranteed provided that (1) the continuous-time
dynamic system is stabilizable and observable (2) the size of the unmodeled dynamics is sufficiently
small, and (3) such an unmodeled dynamics can be related to the system input by means of additive
and/or multiplicative stable transfer functions.

The paper is organized as follows. Section 2 presents the discretization process used
to obtain an inversely stable discretized dynamic system model from a possibly inversely
unstable continuous-time dynamic system. Section 3 deals with the control design to match
a discrete-time reference model at sampling instants for both nonadaptive and adaptive
cases. Then, the stability analysis of the designed adaptive control algorithm is presented
in Section 4. Finally, simulation results, which illustrate the behavior of the adaptive control
system, are shown in Section 5 and conclusions end the paper in Section 6.

2. Problem Statement

Consider a linear time invariant SISO and strictly proper continuous-time dynamic system
described by the following state-space equations:

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), (2.1)

where u(t) and y(t) are, respectively, the control (or input) and measured (or output) signals,
x(t) ∈ R

n is the state vector, and A, B, and C are constant matrices of suitable dimensions.
The transfer function of (2.1) is Gp(s) = q(s)/p(s) = C(sIn −A)−1B where n = Deg(p(s)) ≥
Deg(q(s)) = m, s denotes the Laplace transform argument [1], and In represents the n-order
identity matrix. In the sequel, the controlled dynamic system is referred to as the “plant”
to be controlled as it is commonly referred to in the Engineering Automation context. The
following assumptions are made on the plant.
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Assumption 1. (i) An upper-bound n of the plant order n is known as it is the nominal order
n0 ≤ n.

(ii) The plant realization matrices can be expressed as

A =

[
A0 0

A21 A22

]
, B =

[
B0

B21

]
, C =

[
C0 C12

]
, (2.2)

where {A0, B0, C0} denotes the state-space realization for the nominal model of the plant and
the other matrix blocks are related to the unmodeled dynamics. In this context, the state
vector is composed of two sets of state variables, namely, x �

[
xT0 xT1

]T where x0 ∈ R
n0

is the nominal state vector. Furthermore, the eigenvalues of the block A22 are strictly stable,
‖B21‖ ≤ μ0, and ‖C12‖ ≤ μ0 for some sufficiently small real μ0 > 0 with ‖M‖ denoting the
norm of the matrix M.

(iii) The nominal pair (A0, C0) is observable.

Remark 2.1. (i) Given any state-space realization, there always exists an infinite number of
state-space realizations in triangular form as (2.2) which have the same transfer function
that the former has. Each one of such state-space realizations may be obtained by applying
an appropriate coordinates transformation on the original realization. Then, whenever
the original state-space realization of the plant is not a triangular form, an appropriate
coordinates transformation is required to obtain a triangular form state-space realization as
(2.2).

(ii) The internal representation (2.2) gives place to an input-output relation defined by
a transfer function as

Gp(s) = G0(s)(1 + Δm(s)) + Δa(s), (2.3)

where G0(s) denotes the transfer function of the plant nominal model and Δm(s) and Δa(s)
are two rational transfer functions related to the multiplicative and additive unmodeled
dynamics, respectively. The poles of Δm(s) and Δa(s) are the eigenvalues of the block A22

and their gains depend on the norms of the blocks B21 and C12.
(iii) If the nominal triple {A0, B0, C0} is known, then a classical pole-placement

controller may be synthesized without using estimation. However, this knowledge is not
necessary to synthesize adaptive control with the less restrictive knowledge of n0, which is
the nominal plant order.

The plant can be unstable and of nonstable inverse. Then, the use of the model-
matching technique, with a free-chosen reference model, for the controller synthesis can
be used with a discrete-time controller. In such a case, the reconstruction process of the
continuous-time plant input from the discrete-time control output gives the possibility of
obtaining an inversely stable discretized plant model. Such a reconstruction has to be made
with the use of a hold device, a FROH in the most general case, combined with a multirate
with fast input rate. This multirate provides free-design parameters, related to multirate
gains, which can be adjusted so that the discretized plant model could be of stable inverse. In
this way, the model-matching technique can be used to synthesize a discrete-time controller
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to stabilize the continuous-time plant while matching a freely chosen reference model at
sampling instants. The plant input obtained from such a reconstruction method is given by

u(t) = αj
{
u(k) + β

u(k) − u(k − 1)
T

(t − kT)
}

(2.4)

for t ∈ [kT + (j − 1)T ′, kT + jT ′), j ∈ {1, 2, . . . ,N}, where β ∈ [−1, 1]∩R is the FROH correcting
gain, T is the sampling period for the state and output (slow sampling) which is uniformly
divided in N subperiods of length T ′ = T/N (fast sampling) to generate the fast sampling
plant input, u(k) denotes the value of the controller output sequence at the instant kT, for all
k ∈ Z

+
0 � Z

+ ∪ {0}, and αj ∈ R are the multirate gains. The technique of using T /= T ′ < T ,
with N exceeding some prescribed lower bound, is the key feature for always achieving a
stable discrete-time transfer function numerator even if the continuous-time plant transfer
function Gp(s) has some critically stable or unstable zero. In this sense, the FROH device
operates on the sequence {u(k)} defined at the slow sampling instants kT and then the input
u(t) is generated over each subperiod T ′ with the corresponding gain αj . Such gains have to
be suitably selected to ensure the stability of the zeros of the discretized plant model which
relates the sequences {u(k)} and {y(k)} (plant output sequence) defined over the sampling
period T.

The state-space representation corresponding to the discrete-time plant obtained from
the discretization of the continuous-time plant by applying the FROH with the multirate is
given by

x0(k + 1) = F(T)x0(k) +H1(T)u(k) +H2(T)u(k − 1), y(k) = C0x0(k) + η(k), (2.5)

where η(k) denotes the contribution of the unmodeled dynamics to the discretized plant
output, F(T) = ψN(T) = φ(T) = eA0T ∈ R

n0×n0 is the state transition matrix of the continuous-
time nominal dynamic system valued during a sampling period, and

H1(T) =
N∑
�=1

α�ψ
N−�(T)

[(
1 +

� − 1
N

β

)
Γ
(
T ′

)
+
β

T
Γ′

(
T ′

)]
= CΔ(T)g ∈ R

n0×1,

H2(T) = −β
N∑
�=1

α�ψ
N−�(T)

[
� − 1
N

Γ
(
T ′

)
+

1
T
Γ′

(
T ′

)]
= −βC′Δ(T)g ∈ R

n0×1,

(2.6)
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with

Γ
(
T ′

)
=

∫T ′

0
φ
(
T ′ − s

)
B0ds ∈ R

n0×1,

CΔ(T) =
[
ψN−1(T)Δ1(T) · · · ψ(T)ΔN−1(T) ΔN(T)

]
∈ R

n0×N,

Γ′
(
T ′

)
=

∫T ′

0
φ
(
T ′ − s

)
B0s ds ∈ R

n0×1,

C′Δ(T) =
[
ψN−1(T)Δ′1(T) · · · ψ(T)Δ′N−1(T) Δ′N(T)

]
∈ R

n0×N,

Δj(T) =
(

1 +
j − 1
N

β

)
Γ
(
T ′

)
+
β

T
Γ′

(
T ′

)
∈ R

n0×1,

Δ′j(T) =
j − 1
N

Γ
(
T ′

)
+

1
T
Γ′

(
T ′

)
∈ R

n0×1, g = [α1 · · ·αN]T .

(2.7)

2.1. Input-Output Relation for the Discretized Plant

From the output equation of (2.5), substituting the state-space equation and iterating n0 times,
it follows that

y(k)

= C0

{
Fn0x0(k − n0) +H1u(k − 1) +

n0−1∑
i=1

Fi−1(FH1 +H2)u(k − i − 1) + Fn0−1H2u(k − n0 − 1)

}

+ η(k),
(2.8)

where the argument T in F(T), H1(T), and H2(T) has been omitted for simplicity. In a similar
way, one can obtain that

y(k − �)

= C0

{
Fn0−�x0(k − n0) +H1u(k − � − 1) +

n0−1∑
i=�+1

Fi−�−1(FH1 +H2)u(k − i − 1)

+Fn0−�−1H2u(k − n0 − 1)

}
+ η(k − �)

(2.9)

for � ∈ {1, 2, . . . , n0−1}. (2.9) together with y(k−n0) = C0x0(k−n0)+η(k−n0) can be rewritten
as

Yv(k − 1) = Vx0(k − n0) + Πv(k − 1) + ΦUv(k − 2), (2.10)
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where

Yv(k − 1) =
[
y(k − n0) y(k − n0 + 1) · · · y(k − 2) y(k − 1)

]T
,

V =
[
CT

0 (C0F)T · · ·
(
C0F

n0−2)T (
C0F

n0−1)T]T ,
Πv(k − 1) =

[
η(k − n0) η(k − n0 + 1) · · · η(k − 2) η(k − 1)

]T
,

Uv(k − 2) = [u(k − n0 − 1) u(k − n0) · · · u(k − 3) u(k − 2)]T ,

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0

C0H2 C0H1 · · · 0 0

C0FH2 C0(FH1 +H2) · · · 0 0

...
...

. . .
...

...

C0F
n0−3H2 C0F

n0−4(FH1 +H2) · · · C0H1 0

C0F
n0−2H2 C0F

n0−3(FH1 +H2) · · · C0(FH1 +H2) C0H1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.11)

with V being the observability matrix for the discretized plant nominal model. By
substituting the expression for x0(k − n0), obtained from (2.10), in (2.8) it follows that

y(k) = −
n0∑
i=1

aiy(k − i) +
nd∑
i=1

biu(k − i) + Ω(k) = −
n0∑
i=1

aiy(k − i) +
nd∑
i=1

N∑
j=1

αjbi,ju(k − i) + Ω(k)

(2.12)

where nd = n0 if β = 0 or nd = n0 + 1 if β /= 0, and

ai = −
[
C0F

n0V −1
]
n0−i+1

,

bi =
N∑
j=1

αjbi,j = C0F
i−2(FH1 +H2) −

[
C0F

n0V −1Φ
]
n0−i+2

for i ∈ {2, 3, . . . , n0},

b1 =
N∑
j=1

αjb1,j = C0H1, bn0+1 =
N∑
j=1

αjbn0+1,j = C0F
n0−1H2 −

[
C0F

n0V −1Φ
]

1
,

Ω(k) = η(k) −
n0∑
i=1

[
C0F

n0V −1
]
n0−i+1

η(k − i)

(2.13)

with [v]i denoting the ith component of the vector v and having into account the expressions
(2.6) for H1(T) and H2(T). Note that Ω(k) contains the contribution of the unmodeled
dynamics to the discretized plant model output.

Remark 2.2. (i) The observability of the pair (A0, C0) implies the nonsingularity of V
whenever T ≥ T0 > 0, for some sufficiently small real T0, and conversely. Note that V tends
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to be singular as the sampling period T tends to zero since F(T) would tend to the identity
matrix.

(ii) The modeled part of the discretized plant (2.12) can be expressed equivalently as
the discrete transfer function

Gd(z) =
Bd(z)
Ad(z)

, (2.14)

where Ad(z) = zn0+1 +
∑n0

i=1 aiz
n0−i+1 and Bd(z) =

∑n0+1
i=1 biz

n0−i+1 with z being the Z-transform
argument used in discrete-time transfer functions [23]. In the particular case that β = 0 it
follows from (2.6) that H2(T) = 0, then bn0+1 = 0 since the first column of Φ is zero and then
the transfer function Gd(z) possesses a zero-pole cancellation at z = 0; that is, its order is
n0 instead of n0 + 1. In the rest of the paper, nd ∈ Z

+ is used to denote the order of such a
transfer function being nd = n0 if β = 0 (i.e., a ZOH is used in the discretization process) or
nd = n0 + 1 if β /= 0. The parameter nd allows a unified definition of polynomials and discrete
transfer functions for different degrees associated with β = 0 and β /= 0.

Note that the coefficients bi, for i ∈ {1, 2, . . . , nd}, of the polynomial Bd(z) depend on
the multirate gains αj , for j ∈ {1, . . . ,N}, included in H1(T) and H2(T); that is,

v =Mg, (2.15)

where v = [b1 b2 · · · bnd]
T and M = [bi,j] ∈ R

nd×N . The components bi,j depend on the
sampling period T , the correcting gain β ∈ [−1, 1] of the FROH, and the matricesA0,B0 andC0

which define the plant nominal model. In this context, if the multirate gain vector is suitably
chosen, one may fix the coefficients bi at desired values and, in this way, one may place the
zeros of the discretized plant nominal model at desired locations, namely, within the stability
domain. This is the strategy to get the stabilization of the closed-loop system by means of a
model-matching controller.

Assumption 2. The correcting gain β of the FROH and the sampling period T are chosen such
that M is a full-rank matrix.

Remark 2.3. In the non-adaptive case (known plant parameters), Assumption 2 is crucial to
calculate the multirate parameterization g from (2.15) provided that N ≥ nd. If N = nd,
g = M−1v is the unique solution for the multirate gains which places the discretized plant
zeros at prefixed locations, those linked to the roots of the polynomial whose coefficients are
the components of v. In this way, if the zeros of such a polynomial are within the stability
domain, then the discretized plant transfer function is inversely stable. On the contrary, if
N > nd, different solutions can be obtained for g. However, in the adaptive case, such an
assumption can be relaxed if the parameters estimation algorithm guarantees that the rank of
the matrix M̂(k), composed with the estimates of bi,j (namely, b̂i,j), is nd for all k ∈ Z

+
0 .

The discretized plant model (2.12) can be written as

y(k) = θTaϕy(k − 1) +
nd∑
i=1

θTb,iu(k − i) + Ω(k) = θTϕ(k − 1) + Ω(k), (2.16)
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where

θ =
[
θTa θTb,1 θTb,2 · · · θTb,nd

]T
, θa = [−a1 − a2 · · · − an0]

T ,

θb,i = [bi,1 bi,2 · · · bi,N]T ,

ϕ(k − 1) =
[
ϕTy(k − 1) uT (k − 1) uT (k − 2) · · · uT (k − nd)

]T
,

ϕy(k − 1) =
[
y(k − 1) y(k − 2) · · · y(k − n0)

]T
,

u(k − i) = [α1u(k − i) α2u(k − i) · · · αNu(k − i)]T

(2.17)

for i ∈ {1, 2, . . . , nd} and j ∈ {1, . . . ,N}. In the following, the case N = nd is considered.

3. Adaptive Control Design

The control objective is the adaptive stabilization of the continuous-time plant while
matching, with a bounded tracking-error, a stable discrete-time free-design reference model
Gm(z) = Bm(z)/Am(z) at the sampling instants. The perfect tracking is not achievable due
to the presence of unknown unmodeled dynamics. A self-tuning regulator scheme is used to
meet the control objective [2, 15]. The control law structure is firstly presented for the non-
adaptive case, that is, when the plant to be controlled is known. Then, an extension to the
adaptive case is developed, which is the main interest of the paper. In such a case, a recursive
algorithm of least-squares type with an adaptation dead-zone is used to obtain an estimation
of the unknown parameters included in the vector θ of (2.17) at each sampling instant. Then,
the multirate gains are updated in order to guarantee the inverse stability of the transfer-
like function associated to the discretized plant estimated model. Such a model is used to
parameterize the adaptive controller.

3.1. Known Plant

The proposed control law is obtained from

R(z)u(k) = T(z)c(k) − S(z)y(k) (3.1)

for all k ∈ Z
+
0 where {c(k)} is the reference input sequence. The reconstruction of the plant

input u(t) is made by using (2.4), with the control sequence {u(k)} obtained from (3.1) and
the multirate gains αj , for all j ∈ {1, . . . ,N}, obtained from (2.15) with an appropriate choice
of v to guarantee the inverse stability of the discretized plant nominal model; that is, such
gains fix the numerator Bd(z) of (2.14) to a prefixed one B′(z), whose coefficients are the
components of v, with the roots within the stability domain. An important mathematical issue in
the current context is that the proposed method allows the stabilization of the numerator polynomial of
the discretized transfer function by an appropriate choice of the multirate gains even if its continuous-
time counterpart is unstable or critically stable.
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The discrete-time transfer function of the closed-loop system obtained from the
application of the control law (3.1) to the discretized plant model of transfer function (2.14)
is given by

Y (z)
C(z)

=
B′(z)T(z)

A(z)R(z) + B′(z)S(z)
=

T(z)
A(z) + S(z)

(3.2)

if R(z) = B′(z) is chosen. In this way, the polynomial B′(z) is cancelled in the closed-loop
system so that it does not generate discrete plant zeros. It should be stable (i.e., with zeros in
|z| < 1) to cancel it if the usual methods without multirate techniques are used, [12, 14, 22].
Otherwise, it cannot be cancelled by the controller and it has then to be transmitted as a
factor of the numerator of the closed-loop discrete transfer function (3.2). If it is transmitted,
then the reference model is not of complete free choice since it has to contain this polynomial
factor. The method proposed in this manuscript allows the stabilization of the discretized
plant zeros. As a result, the reference model transfer function is always freely chosen with no
zero transmission constraints by using the multirate technique with appropriate choice of the
multirate gains. The control polynomials T(z) and S(z) to meet the model-matching objective
are obtained from

T(z) = Bm(z)As(z) A(z) + S(z) = Am(z)As(z) (3.3)

with the following degree constraints, required for controller realizability, in the controller
synthesis:

Deg[Am(z)] = Deg[A(z)] −Deg[As(z)],

Deg[S(z)] = Deg[A(z)] − 1 = nd − 1 =N − 1,

Deg[T(z)] = Deg[Bm(z)] + Deg[As(z)] ≤N − 1,

(3.4)

where As(z) is a stable monic polynomial of zero-pole cancellations of the closed-loop
system. In this way, the nominal closed-loop system matches the reference model at the
sampling instants, but not the true closed-loop system due to the presence of unmodeled
dynamics. However, the tracking-error is guaranteed to be bounded at all sampling times
subject to Assumption 1(ii).

3.2. Unknown Plant

If the continuous-time plant parameters are unknown, then the vector θ in (2.17), which
is composed of the discretized plant model parameters, is also unknown. However, all of
the above control design in Section 3.1 remains valid if such a parameter vector is updated
by an estimation algorithm. Such an algorithm provides an adaptation of each parameter
bi,j , namely, b̂i,j(k), for i, j ∈ {1, . . . ,N} and all k ∈ Z

+
0 . Then, the multirate gains αj , now

their estimates being α̂j(k), are calculated from an equation similar to (2.15) by replacing
the matrix M by its estimated M̂(k). In this way, the numerator of the corresponding
discretized plant estimated model is fixed to B′(z). Note that such a numerator is time
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Figure 1: Continuous-time dynamic system and reference model measured signals.
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Figure 2: Continuous-time dynamic system control signal.

invariant although the estimates θ̂b,i(k), for i ∈ {1, . . . ,N}, are time varying. Furthermore,
the controller parameterization can be obtained from R(z) = B′(z) and equations similar to
(3.3) by replacing the discretized plant polynomial A(z) by its corresponding estimated one
at the current sampling instant, namely, Â(z, k) [2]. In this context, the polynomials T(z) and
R(z) have to be calculated once for all since Bm(z), As(z) and B′(z), are time invariant. On
the contrary, S(z), now being Ŝ(z, k), is updated at each running sampling instant since the
polynomial Â(z, k) is time varying.
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Figure 3: Estimates of the parameters a1 and a2.
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Figure 4: Estimates of the parameters b1,1, b1,2 and b1,3.
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Figure 7: Multirate gains evolution.
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Figure 8: Continuous-time dynamic system measured signal without dead-zone in the parameters
estimation algorithm.
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The time-varying multirate gains α̂j(k) are used to calculate the plant input within the
inter sample period via (2.4). Then, a time-varying input-output relation for the discretized
plant is derived by following similar steps to those in Section 2.1. In this sense, one obtains

y(k − �)

= C0

{
Fn0−�x0(k − n0) + Ĥ1(k − � − 1)u(k − � − 1) +

n0−1∑
i=�+1

Fi−�−1
(
FĤ1(k − i − 1) + Ĥ2(k − i)

)

×u(k − i − 1) + Fn0−�−1Ĥ2(k − n0)u(k − n0 − 1)

}
+ η(k − �)

(3.5)

for � ∈ {0, 1, . . . , n0 − 1}, where Ĥ1(i) and Ĥ2(i) are obtained from equations similar to those
in (2.6) by replacing αj by α̂j(i), for i ∈ {k − 1, . . . , k − n0} and j ∈ {1, . . . ,N}. Then

Yv(k − 1) = Vx0(k − n0) + Πv(k − 1) + Φ̂(k − 2, . . . , k − n0)Uv(k − 2), (3.6)

where Yv(k − 1), V , Πv(k − 1), and Uv(k − 2) are defined in (2.11) while

Φ̂(k − 2, . . . , k − n0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0

Φ̂2,1 Φ̂2,2 · · · 0 0

Φ̂3,1 Φ̂3,2 · · · 0 0

...
...

. . .
...

...

Φ̂n0−1,1 Φ̂n0−1,2 · · · Φ̂n0−1,n0−1 0

Φ̂n0,1 Φ̂n0,2 · · · Φ̂n0,n0−1 Φ̂n0,n0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.7)

with Φ̂i,j = C0F
i−j−1(FĤ1(k − n0 + j − 2) + Ĥ2(k − n0 + j − 1)), Φ̂i,i = C0Ĥ1(k − n0 + i − 2), and

Φ̂i,1 = C0F
i−2Ĥ2(k−n0) for i, j ∈ {2, 3, . . . , n0} and i > j. By substituting in (3.5) the expression

for x0(k − n0), obtained from (3.6), for � = 0 it follows that

y(k) = −
n0∑
i=1

aiy(k − i) + C0Ĥ1(k − 1)u(k − 1)

+
n0−1∑
i=1

{
C0F

i−1
(
FĤ1(k − i − 1) + Ĥ2(k − i)

)
−

[
C0F

n0V −1Φ̂(k − 2, . . . , k − n0)
]
n0−i+1

}

× u(k − i − 1) +
(
C0F

n0−1Ĥ2(k − n0) −
[
C0F

n0V −1Φ̂(k − 2, . . . , k − n0)
]

1

)
u(k − n0 − 1)

+
n0∑
i=1

aiη(k − i) + η(k),

(3.8)
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or

y(k) = −
n0∑
i=1

aiy(k − i) + C0Ĥ1(k − 1)u(k − 1)

+
n0−1∑
i=1

{
C0F

i−1
(
FĤ1(k − 1) + Ĥ2(k − 1)

)
−

[
C0F

n0V −1Φ̂(k − 1)
]
n0−i+1

}
u(k − i − 1)

+
(
C0F

n0−1Ĥ2(k − 1) −
[
C0F

n0V −1Φ̂(k − 1)
]

1

)
u(k − n0 − 1) +

n0∑
i=1

aiη(k − i)

+ η(k) + Λα(k − 1),
(3.9)

where

Λα(k − 1)

=
n0−1∑
i=1

{
C0F

i−1
(
FΔĤ1(k − i − 1) + ΔĤ2(k − i)

)
−

[
C0F

n0V −1ΔΦ̂
]
n0−i+1

}
u(k − i − 1)

+
(
C0F

n0−1ΔĤ2(k − n0) −
[
C0F

n0V −1ΔΦ̂
]

1

)
u(k − n0 − 1)

(3.10)

with ΔĤ�(k−i−1) = Ĥ�(k−i−1)−Ĥ�(k−1), for � = 1, 2, and ΔΦ̂ = Φ̂(k−2, . . . , k−n0)−Φ̂(k−1).
Note that Ω(k) =

∑n0
i=1 aiη(k−i)+η(k) arises from the unmodeled dynamics of the continuous-

time plant while Λα(k − 1) comes from the fact that the multirate gains are time varying. Both
terms constitute the unmodeled dynamics for the discretized plant model. On one hand, the
latter tends to zero if the multirate gains converge to constant values. On the other hand, the
former is such that

|Ω(k)| ≤ Ω(k) = μ1ρ(k) + μ2 (3.11)

for some known real constants μ1 ≥ 0 and μ2 ≥ 0, where

ρ(k) = Sup
0≤k′≤k

{∣∣∣wTx
(
k′

)∣∣∣σk−k′} (3.12)

for all k ∈ Z
+
0 , some known constant vector w, and some known real constant σ ∈ (0, 1) with

x(k) =
[
y(k − 1) · · · y(k − n0) u(k − 1) · · · u(k −N)

]T (3.13)
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in view of Assumption 1(ii) [14]. Finally, one can express the discretized plant model as

y(k) = −
n0∑
i=1

aiy(k − i) +
nd∑
i=1

bi(k − 1)u(k − i) + Ω(k) + Λα(k − 1)

= −
n0∑
i=1

aiy(k − i) +
nd∑
i=1

N∑
j=1

bi,j α̂j(k − 1)u(k − i) + Ω(k) + Λα(k − 1)

= θT ϕ̂(k − 1) + Ω(k) + Λα(k − 1),

(3.14)

where ϕ̂(k − 1) is built like ϕ(k − 1) in (2.17) by replacing the components of u(k − i), namely,
αju(k − i), by the corresponding α̂j(k − 1)u(k − i), for i, j ∈ {1, . . . ,N}.

The algorithm used to obtain an on-line adaptation θ̂(k) of the unknown parameters
vector θ is described below.

3.2.1. Estimation Algorithm

An “a priori” estimated parameters vector is obtained by using a recursive least-squares
algorithm defined by

θ̂0(k) = θ̂0(k − 1) +
s(k)P(k − 1)ϕ̂n(k − 1)e0

n(k)

γ(k) + s(k)ϕ̂Tn(k − 1)P(k − 1)ϕ̂n(k − 1)
,

P(k) = P(k − 1) −
s(k)P(k − 1)ϕ̂n(k − 1)ϕ̂Tn(k − 1)P(k − 1)

γ(k) + s(k)ϕ̂Tn(k − 1)P(k − 1)ϕ̂n(k − 1)

(3.15)

for all k ∈ Z
+, where ϕ̂n(k − 1) = ϕ̂(k − 1)/(1 + ‖ϕ̂(k − 1)‖), P(k − 1) is initialized such that

P(0) = PT (0) > 0 (denoting positive definiteness), γ(k) > 0, e0
n(k) = e0(k)/(1 + ‖ϕ̂(k − 1)‖)

with

e0(k) = −θ̃0T (k − 1)ϕ̂(k − 1) + Ω(k) + Λα(k − 1) (3.16)

being the “a priori” estimation error as well as θ̃0(k − 1) = θ̂0(k − 1) − θ the “a priori”
parametrical error, and s(k) is a relative adaptation dead-zone defined as

s(k) =

⎧⎪⎪⎨
⎪⎪⎩

0 if e0
an(k) ≤ μηan(k),

f(k)

e0
an(k)

otherwise
(3.17)

for some μ > 1, where e0
an(k) = ((e0

n(k))
2 + ϕ̂Tn(k − 1)P 2(k − 1)ϕ̂n(k − 1))

1/2
is an augmented

normalized error, ηan(k) = (1 + γ−1(k)ϕ̂Tn(k − 1)P(k − 1)ϕ̂n(k − 1))1/2
ηTn(k) with ηTn(k) =
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ηT (k)/(1 + ‖ϕ(k − 1)‖) and ηT (k) being an upper bound for |ηT (k)| = |Ω(k) + Λα(k − 1)|,
and

f(k) =

⎧⎨
⎩

0 if e0
an(k) ≤ μηan(k),

e0
an(k) − μηan(k) otherwise.

(3.18)

This algorithm provides an estimation θ̂0(k) of the parameters vector. Then, an “a posteriori”
estimates vector is obtained as follows.

Estimates Modification

This algorithm consists of three main steps as follows.

Step 1. Build the matrix M̂0(k) = [b̂0
i,j(k)] ∈ R

N×N , for i, j ∈ {1, 2, . . . ,N}, from the “a priori”

estimates θ̂0
b,i
(k), included in θ̂0(k), of the corresponding θb,i defined in (2.17).

Step 2. M̂(k) = M̂0(k) :

If |Det(M̂(k))| ≥ δ0 then θ̂b,i(k) = θ̂0
b,i
(k)

else while |Det(M̂(k))| < δ0

M̂(k) = M̂(k) + δIN

end;

for i = 1 to N

θ̂b,i(k) = M̂i(k)

end,

end.

Step 3. θ̂(k) = [θ̂0T
a (k) θ̂Tb,1(k) θ̂Tb,2(k) · · · θ̂Tb,N(k)]

T
,

for some positive real constants δ 	 1 and δ0 	 1, and where M̂i(k) denotes the i-th row of
M̂(k) and IN the identity matrix of dimension N ×N.

Once the estimated parameters are updated, the multirate gains vector ĝ(k) =
[α̂1(k) · · · α̂N(k)]T is calculated from an equation similar to (2.15) by replacing the matrix
M by M̂(k) = [b̂i,j(k)] ∈ R

N×N .

Remark 3.1. (i) The proposed estimates modification process avoids that the time-varying
matrix M̂(k) be close to a singular one. In this way, a bounded vector of multirate gains is
obtained at all sampling instants.

(ii) Note that the estimate θ̂0
a(k) corresponding to the parameters of θa is not affected

by the modification algorithm. In fact, such a modification only affects the entries in the main
diagonal of M̂0(k). Also, note that the instruction while of the second step is executed a
finite number of times since there exists a finite integer number � such that |Det[M̂(k)]| =
|Det[M̂0(k)+�δIN]| = |(�δ)N +f0(δ, θ̂0

b,i
(k))| ≥ δ0 for i ∈ {1, . . . ,N} and some function f0(·, ·).
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(iii) From (3.10) to (3.13) and the construction of ϕ̂(k − 1), there exist some real
constants υi ≥ 0, for i ∈ {1, 2, 3, 4} such that the sequences {η1(k)}, with η1(k) = υ1‖ϕ̂(k −
1)‖ + υ2, and {η2(k)}, with η2(k) = υ3‖x(k − 1)‖ + υ4, are both upper bounds for {|ηT (k)|}.

The estimation algorithm together with such a multirate gains adaptation possesses
the following properties.

Lemma 3.2 (main properties of the estimation algorithm). (i) P(k) is uniformly bounded for all
k ∈ Z

+
0 , and it asymptotically converges to a finite, at least semidefinite positive, limit as k → ∞.
(ii) θ̂0(k) and θ̂(k) are uniformly bounded for all samples and converge to finite limits.
(iii) f(k) <∞ for all k ∈ Z

+
0 and limk→∞f(k) = 0.

(iv) The vector ĝ(k) is bounded for all samples and converges to a finite limit.

The proof is made in Appendix A.

4. Stability Analysis

The plant discretized model can be written as follows:

y(k) = ŷ(k) + e(k) = θ̂T (k − 1)ϕ̂(k − 1) + e(k)

= −
n0∑
i=1

âi(k − 1)y(k − i) +
N∑
i=1

N∑
j=1

b̂i,j(k − 1)α̂j(k − 1)u(k − i) + e(k)

= −
n0∑
i=1

âi(k − 1)y(k − i) +
N∑
i=1

b′iu(k − i) + e(k)

(4.1)

and the adaptive control law (3.1), replacing S(z) by Ŝ(k, z), as

u(k) =
1
b′1

{
N−1∑
i=1

(ŝ1(k − 1)âi(k − 1) − ŝi+1(k − 1))y(k − i)

+ σ
(
β
)
ŝ1(k − 1)âN(k − 1)y(k −N) −

N−1∑
i=1

(
ŝ1(k − 1)b′i + b

′
i+1

)
u(k − i)

−ŝ1(k − 1)b′Nu(k −N) +
N∑
i=1

tic(k − i + 1) − ŝ1(k − 1)e(k)

}
,

(4.2)

where Ŝ(z, k − 1) =
∑N

i=1 ŝi(k − 1)zN−i, T(z) =
∑N

i=1 tiz
N−i, R(z) = B′(z) =

∑N
i=1 b

′
iz
N−i, and the

binary-valued function

σ
(
β
)
=

⎧⎨
⎩

1 if β = 0,

0 otherwise
(4.3)
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have been used. By combining (4.1) and (4.2), the discrete-time closed-loop system can be
written as

x(k) = Λ(k − 1)x(k − 1) + Ψ1(k − 1)e(k) +
1
b′1

Ψ2

N∑
i=1

tic(k − i + 1), (4.4)

where

x(k) =
[
y(k) y(k − 1) · · · y(k − n0 + 1) u(k) u(k − 1) · · · u(k −N + 1)

]T
,

Ψ1(k − 1) =

⎡
⎢⎢⎣1 0 · · · 0 −ŝ1(k − 1)/b′1︸ ︷︷ ︸

n0+1

0 · · · 0

⎤
⎥⎥⎦
T

∈ R
(n0+N)×1,

Ψ2 =

⎡
⎢⎣0 0 · · · 0 1︸︷︷︸

n0+1

0 · · · 0

⎤
⎥⎦
T

∈ R
(n0+N)×1,

Λ(k − 1)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−â1(k − 1) −â2(k − 1) · · · −ân0−1(k − 1) −ân0 (k − 1) b′1 b′2 · · · b′N−1 b′N

1 0 · · · 0 0 0 0 · · · 0 0

0 1 · · · 0 0 0 0 . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 · · · 1 0 0 0 · · · 0 0

f̂1(k − 1) f̂2(k − 1) · · · f̂n0−1(k − 1) f̂n0 (k − 1) −ĥ1(k − 1) −ĥ2(k − 1) · · · −ĥN−1(k − 1) −ĥN(k − 1)

0 0 · · · 0 0 1 0 · · · 0 0

0 0 · · · 0 0 0 1 · · · 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 · · · 0 0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.5)

with f̂n0(k − 1) = (1/b′1)[ŝ1(k − 1)ân0(k − 1) − (1 − σ(β))ŝn0+1(k − 1)], f̂i(k − 1) = (1/b′1)[ŝ1(k −
1)âi(k − 1)− ŝi+1(k − 1)], for i ∈ {1, 2, . . . , n0 − 1}, ĥN(k − 1) = (b′N/b

′
1)ŝ1(k − 1), and ĥi(k − 1) =

(1/b′1)[ŝ1(k − 1)b′i + b
′
i+1] for i ∈ {1, 2 , . . . ,N − 1}. Note that âi(k − 1) are uniformly bounded

from Lemma 3.2. Also, ŝi(k − 1) are uniformly bounded from the resolution of an equation
similar to (3.3) by replacing the polynomials A(z) and S(z) by Â(k − 1, z) and Ŝ(k − 1, z),
respectively. The following theorem, whose proof is made in Appendix B, establishes the main
stability result of the adaptive control system.

Theorem 4.1 (main stability result). (i) The adaptive control law stabilizes the plant model (3.14)
in the sense that {u(k)} and {y(k)} are bounded for all finite initial states and any bounded reference
input sequence {c(k)} subject to Assumption 1.

(ii) The control and measured signals of the continuous-time dynamic system, u(t) and y(t),
are bounded for all t.
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5. Simulations

A continuous-time dynamic system defined by the matrices

A =

⎡
⎢⎢⎢⎢⎢⎣

0 17.5 0 0

1 1.5 0 0

0 0 −10 0

0 1 0 −15

⎤
⎥⎥⎥⎥⎥⎦, B =

⎡
⎢⎢⎢⎢⎢⎣

−1

1

0.05

0

⎤
⎥⎥⎥⎥⎥⎦, C =

[
0 1 1 0.05

]
(5.1)

in the state-space and by the transfer function

G(s) =
s − 1

(s − 5)(s + 3.5)

(
1 +

0.05
s + 15

)
+

0.05
s + 10

(5.2)

is considered. This plant is supposed unknown and the adaptive control strategy described
in the paper will be used to stabilize it. Such a strategy is based on a discretization process
using a FROH with β = 0.3 for a slow sampling time T = 0.3 and a multirate device with
N = 3 to place the zeros of the estimated discretized plant model within the stability domain.
The time-varying discrete transfer-like function corresponding to such an estimated model
is Ĝd(z, k) = (B̂d(z, k)/Âd(z, k)) = ((b̂1(k)z2 + b̂2(k)z + b̂3(k))/z(z2 + â1(k)z + â2(k))) with
b̂i(k) =

∑3
j=1 b̂ij(k)α̂j(k), for all i ∈ {1, 2, 3} and all k ∈ Z

+
0 . The estimates b̂ij(k) are provided

by the estimation algorithm described in Section 3.2.1 with γ(k) = 0.01 for all k ∈ Z
+
0 and

initialized with P(0) = 55 × I11, θ̂a(0) = [−12.079 3.92]T , θ̂b,1(0) = [0.492 0.379 0.33]T ,
θ̂b,2(0) = [−0.435 − 0.556 − 0.759]T , and θ̂b,3(0) = [0.019 0.066 0.139]T . Also, ηT (k) =
υ1‖ϕ̂(k − 1)‖ + υ2, with υ1 = 0.0055 and υ2 = 0.01, is used as upper bound for |ηT (k)| and
μ = 1.1 for the dead-zone included in such an algorithm. The values δ = δ0 = 10−6 are
taken in Step 2 of the estimates modification procedure. The gains α̂j(k), for j ∈ {1, 2, 3},
are on-line updated in order to fix B̂(z, k) to the polynomial B′(z) = z2 − 0.25. The control
objective is to match the reference model given by Gm(z) = ((z2 + 0.1z + 0.083)/(z3 +
0.3z2 − 0.09z − 0.027)). Figures 1 and 2 display, respectively, the continuous-time dynamic
system measured and control signals under a unitary step external input sequence {c(k)}.
Note that both signals are bounded for all time; that is, the stabilization of the closed-loop
system is reached. Furthermore, the plant output sequence {y(k)} converges asymptotically
to {ym(k)}. Figures 3, 4, 5, and 6 show the evolution of the estimates, included as components

of θ̂(k) = [θ̂Ta (k) θ̂T
b,1(k) θ̂T

b,2(k) θ̂T
b,3(k)]

T
, during the simulation while Figure 7 displays

the evolution of the multirate gains ĝ(k) = [α̂1(k) α̂2(k) α̂3(k)]
T . Note that therefore the

estimated parameters as the multirate gains converge to a set of constant values as t tends
to infinite. Finally, Figures 8(a) and 8(b) show the evolution of the continuous-time dynamic
system measured signal, each one in a different time interval, if the same estimation algorithm
without the dead-zone is used to stabilize the system. The behavior of the adaptive control
system is improved with the inclusion of the relative adaptation dead-zone in this particular
example as one can see by comparing the signal y(t) in Figure 1 with those displayed in
Figures 8(a) and 8(b). This conclusion cannot be generalized for all cases since one can search
examples where the inclusion of the dead-zone does not improve the performance of the
control system. However, the inclusion of the relative dead-zone guarantees the stabilization
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of the adaptive control system under the presence of unmodeled dynamics, which is what
justifies its inclusion in the parameters estimation algorithm.

6. Conclusions

An adaptive control strategy for stabilizing linear time-invariant continuous-time dynamic
systems, being possibly of inverse nonstable, and subject to the presence of unmodeled
dynamics has been presented. The control design is based on the discrete-time model
reference adaptive (MRAC) control method. Therefore, an inversely stable discretized model
of the continuous-time dynamic system is required to achieve the stabilization objective while
matching a freely chosen discrete-time reference model. Such a requirement is guaranteed
by using a fractional-order hold (FROH) combined with a multirate device with fast
sampling input in the discretization process of the continuous-time system. In this context, an
estimation algorithm is used to on-line update the multirate gains such that the zeros of the
transfer-like function associated to the estimated model of the discretized system are within
the open-unit complex circle at all sampling instants. The parameters of such an estimated
model are used to on-line parameterize the adaptive control law. The estimation algorithm
includes a relative adaptation dead-zone for dealing with the presence of unmodeled
dynamics. The stability of the adaptive control system is proved under the assumption that
the nominal model of the continuous-time dynamic system is observable, an upper-bound of
its order is known, and the contribution of the unmodeled dynamics to the system output is
sufficiently small. Finally, the performance of the adaptive control system is shown by means
of simulation results. The stabilization of the system is manifested although the intersample
behavior of the measured signal could be improved. A future potential research may be the
use of the same control technique in a multiestimation scheme for improving such an inter-
sample behavior.

Appendices

A. Proof of Lemma 3.2

(i) Equation (32b) and the matrix inversion lemma lead to P−1(k) = P−1(k − 1) +
γ−1(k)s(k)ϕ̂n(k − 1)ϕ̂Tn(k − 1) > 0 for all k ∈ Z

+ provided that P(0) = PT (0) > 0. Then, {P(k)}
is a nonnegative and monotonic nonincreasing matrix sequence. Thus, 0 ≤ P(k) ≤ P(0) and
P(k) asymptotically converges to a finite limit as k → ∞.

(ii) By considering the nonnegative sequence V (k) = θ̃0T (k)P−1(k)θ̃0(k) + Tr{P(k)}
and using the matrix inversion lemma in (32b), it follows that

V (k) − V (k − 1) = −
s(k)

((
e0
an(k)

)2 −
(
ηan(k)

)2
)

γ(k) + s(k)ϕ̂Tn(k − 1)P(k − 1)ϕ̂n(k − 1)

≤ −
((
μ2 − 1

)
/μ2)s(k)(e0

an(k)
)2

γ(k) + s(k)ϕ̂Tn(k − 1)P(k − 1)ϕ̂n(k − 1)

≤ −
((
μ2 − 1

)
/μ2)(f(k))2

γ(k) + s(k)ϕ̂Tn(k − 1)P(k − 1)ϕ̂n(k − 1)
≤ 0,

(A.1)
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where (32a) and the definition of the “a priori” estimation error have been used. Then, V (k) ≤
V (0) < ∞ and ‖θ̃0(k)‖ ≤ (λmax{P(0)}/λmin{P(0)})‖θ̃0(0)‖ + λmax{P(0)}Tr{P(0)} < ∞ where
λmax(M) and λmin(M) denote the maximum and the minimum eigenvalues of the matrix M,
respectively. It implies that θ̃0(k) and then also θ̂0(k) are uniformly bounded. Then, θ̂(k) is
also bounded since the modification algorithm guarantees the boundedness of M̂(k) provided
that θ̂0(k) is bounded. Moreover, V (k) asymptotically converges to a finite limit as k → ∞
from its definition and the fact that such a sequence is nonnegative and monotonic non-
increasing. Then, θ̃0(k), and also θ̂0(k), converges to a finite limit as k → ∞ since P(k) also
converges as it has been proved in (i). Then, M̂(k) and θ̂(k) also converge to finite limits as
k → ∞.

(iii) From (A.1), it follows that

μ2 − 1
μ2

k∑
i=1

(
f(i)

)2

γ(i) + s(i)ϕ̂Tn(i − 1)P(i − 1)ϕ̂n(i − 1)
≤ V (0) − V (k) ≤ V (0) <∞ (A.2)

for all k ∈ Z
+. Then f(k) <∞ for all k ∈ Z

+ and also limk→∞f(k) = 0.
(iv) The boundedness and convergence of the estimation model parameters vector

together with the nonsingularity of matrix M̂(k) (guaranteed by the modification algorithm)
imply the boundedness and convergence of the vector ĝ(k) obtained by resolution of (2.15)
replacing M by M̂(k).

B. Proof of Theorem 4.1

(i) Λ(k − 1) is bounded since the estimated plant parameters âi(k − 1), for i ∈ {1, . . . , n0}, and
the controller parameters ŝj(k − 1), for j ∈ {1, . . . ,N}, are bounded thanks to θ̂(k − 1) and
ĝ(k − 1) are bounded for all k ∈ Z

+, see Lemma 3.2. The eigenvalues of Λ(k − 1) are in |z| < 1
since they are the roots of Am(z), As(z) and B′(z), which are stable. Furthermore,

k∑
k′=k0+1

∥∥Λ(
k′

)
−Λ

(
k′ − 1

)∥∥2 ≤ γ0 + γ1(k − k0) (B.1)

for all integers k > k0 ≥ 0 and some positive real constants γ0 and γ1, with γ1 being sufficiently
small by using slow enough estimation rates via a suitable P(0) in (32b). Thus, the unforced
time-varying system x(k) = Λ(k − 1)x(k − 1) is exponentially stable and its transition matrix
φ(k, k′) =

∏k−1
j=k′Λ(j) satisfies ‖φ(k, k′)‖ ≤ ρ1σ

k−k′
0 for all integer k ≥ k′ where σ0 ∈ (0, 1) is

an upper bound for the absolute value of the closed-loop stability abscissa and ρ1 is a non-
dependent constant [2]. Note that σ0 depends on the freely chosen reference model. From
(4.4),

x(k) = φ(k, k0)x(k0) +
k∑

k′=k0

φ
(
k, k′

)(
Ψ1

(
k′ − 1

)
e
(
k′

)
+

1
b′1

Ψ2

N∑
i=1

tic
(
k′ − i + 1

))
. (B.2)
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Then,

‖x(k)‖ ≤ ρ1σ
k−k0
0 ‖x(k0)‖ +

k∑
k′=k0

ρ1σ
k−k′
0

(
ρ2 + ρ3

∣∣e(k′)∣∣), (B.3)

for some positive real constants ρi, i ∈ {1, 2, 3}, since Ψ1(k) is uniformly bounded and
provided that the sequence {c(k)} is bounded. From (3.16) and (4.1), it follows that e(k) =

e0(k) + (θ̂0(k − 1) − θ̂(k − 1))
T
ϕ̂(k − 1), and then

|e(k)| ≤
∣∣∣e0(k)

∣∣∣ + �(k)δ∥∥ϕ̂(k − 1)
∥∥ (B.4)

where �(k) denotes the finite number of times that the instruction while in the Step 2 of the
estimates modification algorithm is executed at the current sampling time kT . By substituting
(B.4) in (B.3), one obtains

‖x(k)‖ ≤ ρ4 +
k∑

k′=k0

ρ5σ
k−k′
0

(∣∣∣e0(k′)∣∣∣ + �(k′)δ∥∥ϕ̂(k′ − 1
)∥∥)

, (B.5)

for some positive real constants ρ4 and ρ5 from the boundedness of x(k0). By using that ϕ̂n(k−
1) = ϕ̂(k − 1)/(1 + ‖ϕ̂(k − 1)‖) and e0

n(k) = e
0(k)/(1 + ‖ϕ̂(k − 1)‖), it follows that

‖x(k)‖ ≤ ρ4 +
k∑

k′=k0

ρ5σ
k−k′
0

(∣∣∣e0
n

(
k′

)∣∣∣ + �(k′)δ∥∥ϕ̂n(k′ − 1
)∥∥)(

1 +
∥∥ϕ̂(k′ − 1

)∥∥)

≤ ρ4 +
k∑

k′=k0

ρ6σ
k−k′
0 e0

an

(
k′

)(
1 +

∥∥ϕ̂(k′ − 1
)∥∥) (B.6)

for some positive real constant ρ6 and, also, by taking into account that (|e0
n(k)|+�(k)δ‖ϕ̂n(k−

1)‖) ≤ ρ′((e0
n(k))

2 + ϕ̂Tn(k − 1)P 2(k − 1)ϕ̂n(k − 1))
1/2

= ρ′e0
an(k) for some positive real constant

ρ′. Moreover, from (B.6),

‖x(k)‖ ≤ ρ4 +
k∑

k′=k0

ρ6σ
k−k′
0 μ

(
1 +

ϕ̂Tn(k
′ − 1)P(k′ − 1)ϕ̂n(k′ − 1)

γ(k′)

)1/2

ηT
(
k′

)

+
k∑

k′=k0

ρ6σ
k−k′
0 f

(
k′

)(
1 +

∥∥ϕ̂(k′ − 1
)∥∥) (B.7)
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where e0
an(k

′) has been split into the two additive terms f(k′) and e0
an(k

′) − f(k′) ≤ μηan(k′).
Then,

‖x(k)‖ ≤ ρ7 +
ρ6μυ3

1 − σ0
Sup
k0≤k′≤k

⎧⎨
⎩

(
1 +

ϕ̂Tn(k
′ − 1)P(k′ − 1)ϕ̂n(k′ − 1)

γ(k′)

)1/2
⎫⎬
⎭ Sup

k0≤k′≤k

{∥∥x(k′)∥∥}

+
k∑

k′=k0

ρ6σ
k−k′
0 f

(
k′

)(
1 +

∥∥ϕ̂(k′ − 1
)∥∥) (B.8)

for some positive constant ρ7 by taking into account that ηT (k) = υ3‖x(k − 1)‖ + υ4 (see
Remark 3.1(iii)). Furthermore, the right-hand side of (B.8) is monotonic nondecreasing in k.
Then, for k � k0, it follows that

‖x(k)‖ ≤ ρ8 +
k∑

k′=k0

ρ9σ
k−k′
0 f

(
k′

)(
1 +

∥∥ϕ̂(k′ − 1
)∥∥)

(B.9)

provided that υ3 < ((1 − σ0)/ρ6μ)(Supk0≤k′≤k{(1 + ϕ̂Tn(k
′ − 1)P(k′ − 1)ϕ̂n(k′ − 1)/γ(k′))1/2})

−1
,

for some positive constants ρ8 and ρ9. By taking into account that ‖ĝ(k)‖ is bounded for all
k ∈ Z

+
0 , then

∥∥ϕ̂(k − 1)
∥∥ ≤ ρ10 + ρ11 Sup

k0≤k′≤k

{∥∥x(k′ − 1
)∥∥}

(B.10)

for some positive constants ρ10 and ρ11. By substituting (B.10) in (B.9) and by taking into
account that the right-hand side of (B.9) is monotonic nondecreasing in k, it follows that,

Sup
k0≤k′≤k

{∥∥x(k′)∥∥}
≤ ρ12 +

k∑
k′=k0

ρ13f
(
k′

)
Sup

k0≤k′′≤k′

{∥∥x(k′′ − 1
)∥∥}

(B.11)

for some positive constants ρ12 and ρ13, where the boundedness of f(k) has been used, see
Lemma 3.2. The use of Gronwall’s Lemma [24] in (B.11) leads to

Sup
k0≤k′≤k

{∥∥x(k′)∥∥2
}
≤ ρ14 +

k∑
i=k0

⎛
⎝∏

i<j<k

(
1 + ρ15f

2(j))
⎞
⎠ρ14ρ15f

2(i) <∞ (B.12)

for some positive constants ρ14 and ρ15. It implies that the sequence ‖x(k)‖ is bounded for all
k ∈ Z

+ provided that the initial condition is bounded. Then, the sequences {u(k)} and {y(k)}
are also bounded.

(ii) The adaptive control algorithm ensures that there are not finite escape times, and
then the boundedness of the sequences {u(k)} and {y(k)} guarantees that of the continuous-
time signals from continuity arguments of the solutions of differential equations.
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