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A class of optimal control problems for infinite dimensional impulsive antiperiodic boundary
value problem is considered. Using exponential stabilizability and discussing the impulsive
evolution operators, without compactness and exponential stability of the semigroup governed
by original principle operator, we present the existence of optimal controls. At last, an example is
given for demonstration.

1. Introduction

Antiperiodic and periodic motions arise naturally in the mathematical modeling of a variety
of physical process. Many authors including us pay great attention to various classes of
antiperiodic and periodic systems [1–6]. On the other hand, in order to describe dynamics
of populations subject to abrupt changes as well as other phenomena such as harvesting,
diseases and, some authors have used impulsive differential systems to describe the model
since the last century. For the basic theory on impulsive differential equations on finite
dimensional spaces, the reader can refer to Lakshmikantham’s book (see [7]).

Recently, we have begun to investigate impulsive periodic system on infinite dimen-
sional spaces. The suitable impulsive evolution operator corresponding to homogenous
impulsive periodic system was introduced and its properties (boundedness, periodicity,
compactness, and exponential stability) were given. Some results including the existence of
the periodic PC-mild solutions and alternative theorem, criteria of Massera type, asymp-
totical stability, and robustness by perturbation for linear impulsive periodic system were
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established. For semilinear impulsive periodic system and intergrodifferential impulsive
periodic system, some fixed point theorems such as Horn fixed point theorem and Leary-
Schauder fixed point theorem were applied to obtain the existence of the periodic PC-mild
solutions, respectively. In order to do it, we had to construct Poincaré operator, discuss its
properties, and derive some generalized Gronwall inequalities with impulse for the estimate
of the PC-mild solutions [8–11].

However, to our knowledge, optimal control problems arising in systems governed
by impulsive antiperiodic system on infinite dimensional spaces have not been extensively
investigated. Herein, we study the following optimal control problem (P1):

Minimize L(x, u) : L(x, u) =
∫T0

0

(
g(x(t)) + h(u(t))

)
dt (1.1)

subject to impulsive antiperiodic boundary problem

ẋ(t) = Ax(t) + Bu(t), t ∈ [0, T0] \ D̃,

Δx(τk) = Ckx(τk), k = 1, 2, . . . , δ,

x(0) = −x(T0), u ∈ L2(0, T0;U).

(1.2)

on real Hilbert spaces H and U, where Δx(τk) = x(τ+
k
) − x(τ−

k
), τk+δ = τk + T0, D̃ =

{τ1, τ2, . . . , τδ} ⊂ (0, T0), T0 is a fixed positive number, and δ ∈ N denoted the number
of impulsive points between 0 and T0. The operator A is the infinitesimal generator of
a C0- semigroup {T(t), t ≥ 0} on H. Operator B belongs to £b(U,H) and Ck+δ = Ck ∈
H. x denotes the T0-antiperiodic PC-mild solution of system (1.2) corresponding to the
control u ∈ L2([0, T0];U). We have the functions g : H → R and h : U → R =
] − ∞,+∞]. In this paper, using exponential stabilizability and discussing the impulsive
evolution operators, without compactness and exponential stability of semigroup generated
by original principle operatorA, we present the existence of antiperiodic optimal controls for
problem (P1).

In order to study impulsive antiperiodic system on infinite dimensional spaces, we
constructed the impulsive evolution operator {S(·, ·)} associated with A and {Ck; τk}∞k=1
which is very important in sequel. It can be seen from the discussion on linear impulsive
antiperiodic system that the invertibility of [I + S(T0, 0)] is the key of the existence
of antiperiodic PC-mild solution of system (1.2). For the invertibility of [I + S(T0, 0)],
compactness or exponential stability of {T(t), t ≥ 0} generated by A is needed. By virtue
of concept of exponential stabilizibility, which is introduced by Barbu and Pavel in [12] to
weaken the assumptions on the existence of antiperiodic PC-mild solutions, we replace the
problem (P1) by problem (P2):

Minimize L̃(x, v) : L̃(x, v) =
∫T0

0

(
g(x(t)) + h(v(t) + Fx(t))

)
dt (1.3)
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subject to

ẋ(t) = AFx(t) + Bv(t), t ∈ [0, T0] \ D̃,

Δx(τk) = Ckx(τk), k = 1, 2, . . . , δ,

x(0) = −x(T0), v ∈ L2(0, T0;U),

(1.4)

where AF = A + BF, F ∈ £b(H,U) such that AF generates an exponentially stable semigroup.
Discussing the impulsive evolution operator {SF(·, ·)} associated with operator AF and
{Ck; τk}∞k=1 and giving some sufficient conditions for invertibility of [I + SF(T0, 0)], we prove
that every antiperiodic PC-mild solution of (1.2) is an antiperiodic PC-mild solution of (1.4)
with v = u−Fx and vice versa. Therefore, the equivalence between problem (P1) and problem
(P2) is shown. Utilizing some techniques of semigroup theory and functional analysis, we
present the existence of antiperiodic optimal controls for problem (P2), which implies the
existence of solutions for problem (P1).

Themain result of this paper is the existence of optimal control for problem (P1) (given
by Theorem 4.1). However, the novelty of this paper over other related results in literature
consists in the fact that the invertibility of [I + S(T0, 0)] is replaced by weaker condition. In
addition some sufficient conditions for invertibility of [I + SF(T0, 0)] are presented.

This paper is organized as follows. In Section 2, impulsive evolution operator {SF(·, ·)}
and its exponential stability are studied and some sufficient conditions guaranteeing
[I + SF(T0, 0)]

−1 ∈ £b(H) are given. Section 3 is devoted to the equivalence of (P1) and (P2). In
Section 4, the existence of optimal antiperiodic arcs for (P2) is presented. Hence, the existence
of optimal controls for (P1) is obtained. At last, an example is given to demonstrate the
applicability of our results.

2. Invertibility of [I + S(T0, 0)]

LetH be a Hilbert space. £(H) denotes the space of linear operators inH; £b(H) denotes the
space of bounded linear operators inH. £b(H) is the Hilbert space with the usual supremum
norm. Define D̃ = {τ1, . . . , τδ} ⊂ [0, T0]. We introduce PC([0, T0];H) ≡ {x : [0, T0] → H | x is
continuous at t ∈ [0, T0] \ D̃, x is continuous from left and has right hand limits at t ∈ D̃} and
PC1([0, T0];H) ≡ {x ∈ PC([0, T0];H) | ẋ ∈ PC([0, T0];H}. Set

‖x‖PC = max

{
sup

t∈[0,T0]
‖x(t + 0)‖, sup

t∈[0,T0]
‖x(t − 0)‖

}
, ‖x‖PC1 = ‖x‖PC + ‖ẋ‖PC. (2.1)

It can be seen that endowed with the norm ‖ · ‖PC(‖ · ‖PC1), PC([0, T0];H)(PC1([0, T0];H))
is a Hilbert space.

The basic hypotheses are the following Assumption [H1].

[H1.1] A is the infinitesimal generator of a C0-semigroup {T(t), t ≥ 0} in H with domain
D(A).

[H1.2] There exists δ such that τk+δ = τk + T0.

[H1.3] For each k ∈ Z
+
0 , Ck ∈ £b(X) and Ck+δ = Ck.
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Under Assumption [H1], we consider the Cauchy problem

ẋ(t) = Ax(t), t ∈ [0, T0] \ D̃,

Δx(τk) = Ckx(τk), k = 1, 2, . . . , δ,

x(0) = x0.

(2.2)

For Cauchy problem (2.2), if x0 ∈ D(A) andD(A) is an invariant subspace of Ck, using ([13],
Theorem 5.2.2, page 144), step by step, one can verify that the Cauchy problem (2.2) has a
unique classical solution x ∈ PC1([0, T0];H) represented by x(t) = S(t, 0)x0 where

S(·, ·) : Δ = {(t, θ) ∈ [0, T0] × [0, T0] | 0 ≤ θ ≤ t ≤ T0} −→ £(H) (2.3)

given by

S(t, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(t − θ), τk−1 ≤ θ ≤ t ≤ τk,

T
(
t − τ+k

)
(I + Ck)T(τk − θ), τk−1 ≤ θ < τk < t ≤ τk+1,

T
(
t − τ+

k

)
⎡
⎣∏

θ<τj<t

(
I + Cj

)
T
(
τj − τ+j−1

)⎤⎦(I + Ci)T(τi − θ),

τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1.

(2.4)

Definition 2.1. The operator {S(t, θ), (t, θ) ∈ Δ} given by (2.4) is called the impulsive
evolution operator associated with operator A and {Ck; τk}∞k=1.

Lemma 2.2. Impulsive evolution operator {S(t, θ), (t, θ) ∈ Δ} has the following properties.

(1) For 0 ≤ θ ≤ t ≤ T0, there exists a constant MT0 > 0 such that sup0≤θ≤t≤T0‖S(t, θ)‖ ≤ MT0 .

(2) For 0 ≤ θ < r < t ≤ T0, r /= τk, S(t, θ) = S(t, r)S(r, θ).

(3) For 0 ≤ θ ≤ t ≤ T0 and N ∈ Z
+
0 , S(t +NT0, θ +NT0) = S(t, θ).

(4) For 0 ≤ t ≤ T0 and N ∈ Z
+
0 , S(NT0 + t, 0) = S(t, 0)[S(T0, 0)]

N .

(5) For 0 ≤ θ < t, there exitsM ≥ 1, ω ∈ R such that

‖S(t, θ)‖ ≤ M exp

{
ω(t − θ) +

∑
θ≤τk<t

ln(M‖I + Ck‖)
}
. (2.5)

It is well known that if there exist constantsM0 ≥ 0 andω0 > 0 such that the semigroup
{T(t), t ≥ 0} generated by A satisfies ‖T(t)‖ ≤ M0e

−ω0t, t > 0, the semigroup {T(t), t ≥ 0} is
said to be exponential stable. In general, a semigroup may not be exponential stable.



Discrete Dynamics in Nature and Society 5

Let B ∈ £b(U,H). The pair (A,B) is said to be exponentially stabilizable, if there
exists F ∈ £b(H,U) such that AF = A + BF generates an exponentially stable C0-semigroup
{TF(t), t ≥ 0}; that is, there exist KF ≥ 0 and νF > 0 such that

‖TF(t)‖ ≤ KFe
−νFt, t > 0. (2.6)

Remark 2.3. By [13, Theorem 5.4], the following inequality

∫∞

0
‖TF(t)ξ‖pdt < ∞, for every ξ ∈ X, t > 0, 1 ≤ p < ∞ (2.7)

implies that the exponential stability of {TF(t), t ≥ 0}.

Impulsive evolution operator S(·, ·) plays an important role in the sequel. Here,
we need to discuss the exponential stability and exponential stabilizability of impulsive
evolution operator.

Definition 2.4. {S(t, θ), t ≥ θ ≥ 0} is called exponential stability if there exist K ≥ 0 and ν > 0
such that

‖S(t, θ)‖ ≤ Ke−ν(t−θ), t > θ ≥ 0. (2.8)

Consider the Cauchy problem

ẋ(t) = (A + BF)x(t), t ∈ [0, T0] \ D̃,

Δx(τk) = Ckx(τk), k = 1, 2, . . . , δ,

x(0) = x0.

(2.9)

The impulsive evolution operator SF(·, ·) : Δ = {(t, θ) ∈ [0, T0] × [0, T0] | 0 ≤ θ ≤ t ≤ T0} →
£(H) associated with operator AF = A + BF and {Ck; τk}∞k=1 can be given by

SF(t, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TF(t − θ), τk−1 ≤ θ ≤ t ≤ τk,

TF
(
t − τ+k

)
(I + Ck)TF(τk − θ), τk−1 ≤ θ < τk < t ≤ τk+1,

TF
(
t − τ+k

)
⎡
⎣∏

θ<τj<t

(
I + Cj

)
TF
(
τj − τ+j−1

)⎤⎦(I + Ci)TF(τi − θ),

τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1.

(2.10)

It is not difficult to verify that {SF(t, θ), (t, θ) ∈ Δ} also satisfies the similar properties in
Lemma 2.2.
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Assumption [H2]: The pair (A,B) is exponentially stabilizable.
Under Assumptions [H1] and [H2], by [14, Lemmas 2.4 and 2.5], we can give some

sufficient conditions guaranteeing exponential stability of {SF(·, ·)} immediately.

Lemma 2.5. Assumptions [H1] and [H2] hold. There exists 0 < λ < νF such that

(
δ∏

k=1

KF‖I + Ck‖
)
e−λT0 < 1. (2.11)

Then {SF(t, θ), t ≥ θ ≥ 0} is exponentially stable.

Lemma 2.6. Assumptions [H1] and [H2] hold. Suppose

0 < μ1 = inf
k=1,2,...,δ

(τk − τk−1) ≤ sup
k=1,2,...,δ

(τk − τk−1) = μ2 < ∞. (2.12)

If there exists γ > 0 such that

−νF +
1
μ
ln(KF‖I + Ck‖) ≤ −γ < 0, k = 1, 2, . . . , δ, (2.13)

where

μ =

⎧⎨
⎩
μ1, γ − νF < 0,

μ2, γ − νF ≥ 0,
(2.14)

then {SF(t, θ), t ≥ θ ≥ 0} is exponentially stable.

Corollary 2.7. Let Assumption [H1] and (2.12) hold. There existM ≥ 1, ω ∈ R such that ‖TF(t)‖ ≤
Me(ω+‖BF‖)t, t ≥ 0. If there exists γ > 0 such that

(ω + ‖BF‖) + 1
μ
ln(M‖I + Ck‖) ≤ −γ < 0, k = 1, 2, . . . , δ, (2.15)

where

μ =

⎧⎨
⎩
μ1, γ +ω + ‖BF‖ < 0,

μ2, γ +ω + ‖BF‖ ≥ 0,
(2.16)

then {SF(t, θ), t > θ ≥ 0} is exponential stable.

Now some sufficient conditions for the existence of inversion of [I + SF(T0, 0)] can be
given.
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Theorem 2.8. Under the assumptions of Lemma 2.5 (or Lemma 2.6), the operator I + SF(T0, 0) is
inverse and [I + SF(T0, 0)]

−1 ∈ £b(H).

Proof. Consider the Q =
∑∞

n=0 [−SF(T0, 0)]
n. Under the assumptions of Lemma 2.5, {SF(·, ·)}

is exponential stable. It comes from the periodicity of {SF(·, ·)} that

∥∥[−SF(T0, 0)]n
∥∥ ≤ ‖SF(nT0, 0)‖ ≤ Ke−νnT0 −→ 0, as n −→ ∞. (2.17)

Thus, we obtain

‖Q‖ ≤
∞∑
n=0

∥∥[−SF(T0, 0)]n
∥∥ ≤

∞∑
n=0

Ke−νnT0 . (2.18)

Obviously, the series
∑∞

n=0 Ke−νnT0 is convergent, thus operator Q ∈ £b(H). It comes from

[I + SF(T0, 0)]Q = Q[I + SF(T0, 0)] = I (2.19)

that Q = [I + SF(T0, 0)]
−1 ∈ £b(H).

Further, we give a little big stronger condition which will guarantee exponential
stability of {SF(·, ·)}. However, it is more easy to be demonstrated.

Corollary 2.9. Assumptions [H1] and [H2] hold. If

νF >

∑δ
k=1 ln‖I + Ck‖ + (δ + 1) lnKF

T0
, (2.20)

then the impulsive evolution operator SF(nT0, 0) is strongly convergent to zero at infinity (i.e.,
SF(nT0, 0) → 0 as n → ∞). Further, the operator I + SF(T0, 0) is inverse and [I + SF(T0, 0)]

−1 ∈
£b(H).

Remark 2.10. If ‖SF(T0, 0)‖ = LF < 1, then SF(nT0, 0) → 0 as n → ∞ and the operator
I + SF(T0, 0) is inverse and [I + SF(T0, 0)]

−1 ∈ £b(H).

3. Optimal Control Problem of Impulsive Antiperiodic System

We study the following optimal control problem (P1):

(P1) : Minimize L(x, u) : L(x, u) =
∫T0

0

(
g(x(t)) + h(u(t))

)
dt (3.1)
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subject to

ẋ(t) = Ax(t) + Bu(t), t ∈ [0, T0] \ D̃, x ∈ PC([0, T0];H),

Δx(τk) = Ckx(τk), k = 1, 2, . . . , δ,

x(0) = −x(T0), u ∈ L2(0, T0;U).

(3.2)

Definition 3.1. A function x ∈ PC([0, T0];H) is said to be a T0-antiperiodic PC-mild solution
of the controlled system (3.2) if x satisfies

x(t) = S(t, 0)x(0) +
∫ t

0
S(t, θ)Bu(θ)dθ, for t ∈ [0, T0]; x(0) = −x(T0). (3.3)

If system (3.2) has a T0-antiperiodic PC-mild solution corresponding to u, (x, u) ∈
PC([0, T0];H) × L2(0, T0;U) is said to be an admissible pair. Set

Uad = {(x, u) | (x, u) is admissible} (3.4)

which is called admissible set. Problem (P1) can be rewritten as follows.
Find (x∗, u∗) ∈ Uad such that

L(x∗, u∗) ≤ L(x, u) ∀(x, u) ∈ Uad. (3.5)

In fact, if the condition

[I + S(T0, 0)]−1 ∈ £b(H) (3.6)

is satisfied, then for every u ∈ L2(0, T0;U) the T0-antiperiodic PC-mild solution of system
(3.2) can be given by

x(t) = S(t, 0)x0 +
∫ t

0
S(t, θ)Bu(θ)dθ, ∀t ∈ [0, T0], (3.7)

where

x0 = −[I + S(T0, 0)]−1
∫T0

0
S(T0, θ)Bu(θ)dθ. (3.8)

If the condition (3.6) fails, then system (3.2) has no solutions for every u ∈ L2(0, T0;U).
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Under Assumptions [H1] and [H2], we can write system (3.2) formally in the form

ẋ(t) = AFx(t) + B(u(t) − Fx(t)), t ∈ [0, T0] \ D̃, x ∈ PC([0, T0];H),

Δx(τk) = Ckx(τk), k = 1, 2, . . . , δ,

x(0) = −x(T0), u ∈ L2(0, T0;U)

(3.9)

and substitute u − Fx = v so u = v + Fx. Therefore, we led to the problem (P2):

Minimize L̃(x, v) : L̃(x, v) =
∫T0

0

(
g(x(t)) + h(v(t) + Fx(t))

)
dt (3.10)

subject to

ẋ(t) = AFx(t) + Bv(t), t ∈ [0, T0] \ D̃, x ∈ PC([0, T0];H),

Δx(τk) = Ckx(τk), k = 1, 2, . . . , δ,

x(0) = −x(T0), v ∈ L2(0, T0;U).

(3.11)

It can be seen from the proof of Theorem 2.8 that if {SF(·, ·)} is exponentially stable,
then [I + SF(T0, 0)]

−1 exists and [I + SF(T0, 0)]
−1 ∈ £b(H). Set

x(0) = −[I + SF(T0, 0)]−1
∫T0

0
SF(T0, θ)Bv(θ)dθ; (3.12)

then x ∈ PC([0, T0];H) given by

x(t) = SF(t, 0)x(0) +
∫ t

0
SF(t, θ)Bv(θ)dθ (3.13)

is the antiperiodic PC-mild solution of (3.11).
By Theorem 2.8, we have the following existence result immediately.

Theorem 3.2. For every v ∈ L2(0, T0;U), system (3.11) has a unique T0-antiperiodic PC-mild
solution provided that assumptions of Lemma 2.2 (or Lemma 2.5) are satisfied.

In order to show the equivalence of problem (P1) and problem (P2), we have to prove
that every PC-mild solution of (3.2) is a PC-mild solution of (3.11) with v = u − Fx and vice
versa. It is not obvious for PC-mild solution. Here is the equivalence.

Theorem 3.3. Under Assumptions [H1] and [H2], if {SF(·, ·)} is exponentially stable, then every
PC-mild solution of (3.2) is a PC-mild solution of (3.11) with v = u − Fx and vice versa. Therefore,
the problem (P1) is equivalent to problem (P2).
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Proof. It is obvious that every strong solution of system (3.2) is a strong solution of system
(3.11). We prove only that (3.3) implies

x(t) = SF(t, 0)x(0) +
∫ t

0
SF(t, θ)Bv(θ)dθ, (3.14)

x(0) = −[I + SF(T0, 0)]−1
∫T0

0
SF(T0, θ)Bv(θ)dθ, (3.15)

as the inverse statement will have the same proof. Therefore, let x satisfy (3.3) and denote the
Yosida approximation of A by Aλ. Let xλ be the strong solution of

ẋλ(t) = Aλxλ(t) + Bu(t), t ∈ [0, T0] \ D̃, xλ ∈ PC([0, T0];H),

Δxλ(τk) = Ckxλ(τk), k = 1, 2, . . . , δ,

xλ(0) = x(0), u ∈ L2(0, T0;U).

(3.16)

Taking into account that

Tλ(t)x(0) −→ T(t)x(0) as λ −→ 0, uniformly in t ∈ [0, T0], (3.17)

it follows that for each t ∈ [0, T0] but fixed,

Sλ(t, θ)x(0) −→ S(t, θ)x(0) as λ −→ 0, uniformly in θ ∈ [0, t], (3.18)

where the operator {Sλ(t, θ), (t, θ) ∈ Δ} is the impulsive evolution operator associated with
Aλ and {Ck; τk}∞k=1.

In fact, for τk−1 ≤ θ ≤ t ≤ τk,

Sλ(t, θ)x(0) = Tλ(t − θ)x(0) −→ T(t − θ)x(0)

= S(t, θ)x(0) as λ −→ 0, uniformly in θ ∈ [0, t].
(3.19)

For τk−1 ≤ θ < τk < t ≤ τk+1, Sλ(t, θ)x(0) = Tλ(t − τ+k )(I + Ck)Tλ(τk − θ)x(0).
Since Tλ(τk − θ)x(0) → T(τk − θ)x(0) as λ → 0,uniformly in θ ∈ [0, τk],

(I + Ck)Tλ(τk − θ)x(0) −→ (I + Ck)T(τk − θ)x(0) as λ −→ 0, uniformly in θ ∈ [0, τk].
(3.20)

Further,

Sλ(t, θ)x(0) −→ S(t, θ)x(0) as λ −→ 0, uniformly in θ ∈ [0, t], (3.21)
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For τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1, step by step,

⎡
⎣∏

θ<τj<t

(
I + Cj

)
Tλ
(
τj − τ+j−1

)⎤⎦(I + Ci)Tλ(τi − θ)x(0)

−→
⎡
⎣∏

θ<τj<t

(
I + Cj

)
T
(
τj − τ+j−1

)⎤⎦(I + Ci)T(τi − θ)x(0)

(3.22)

as λ → 0, uniformly in θ ∈ [0, τk]. Of course, we have

Sλ(t, θ)x(0) −→ S(t, θ)x(0) as λ −→ 0, uniformly in θ ∈ [0, t]. (3.23)

On the other hand, define

qλ(θ) = Sλ(t, θ)Bu(θ) − S(t, θ)Bu(θ), (3.24)

then

∥∥∥qλ(θ)
∥∥∥ = ‖(Sλ(t, θ) − S(t, θ))Bu(θ)‖ ≤ 2MT0‖B‖‖u‖L2(U;H) ∈ L1(0, T0;H). (3.25)

Since qλ(θ) → 0 a.e. θ ∈ [0, t] as λ → 0, by virtue of Majorized Convergence
theorem, we obtain

∫ t

0
qλ(θ)dθ −→ 0 as λ −→ 0. (3.26)

This implies that xλ → x in PC([0, T0];H) as λ → 0.
However, (3.16) can be written as

ẋλ(t) = (Aλ + BF)xλ(t) + Bvλ(t), t ∈ [0, T0] \ D̃, xλ ∈ PC([0, T0];H),

Δxλ(τk) = Ckxλ(τk), k = 1, 2, . . . , δ,

xλ(0) = x(0), u ∈ L2(0, T0;U)

(3.27)

with vλ = u − Fxλ.
Similarly, one can obtain that xλ in (3.27) is also convergent to the solution of (3.14)

with v = u − Fx.
At the same time, it is easy to see that Uad /= ∅ and problem (P1) is equivalent to

problem (P2).



12 Discrete Dynamics in Nature and Society

4. Existence of Optimal Controls

In this section, we present the existence of optimal controls for problem (P1) which is the
main result of this paper.

We make the following assumptions.

[H3] The function h : U → R is convex and lower semicontinuous; IntD(h)/= ∅, where
D(h) = {u ∈ U;h(u) < +∞}. Moreover, h : U → [0,+∞) has the the following
growth properties:

lim
‖u‖U →∞

h(u)
‖u‖U

= +∞. (4.1)

[H4] The function g : H → R is convex and lower semicontinuous; for arbitrary x ∈ H,


‖x‖ + C ≤ g(x) < +∞, (4.2)

for some 
 > 0 and C ≥ 0.

Theorem 4.1. In addition to assumptions of Theorem 3.3, Assumptions [H3] and [H4] hold. Then
problem (P1) has at least one optimal control pair (x∗, u∗).

Proof. By virtue of Theorem 3.3, it is sufficient to show the existence of optimal controls for
problem (P2). Set

inf
{
L̃(x, v) | L̃(x, v), overall (x, v) as in (3.14)

}
= d. (4.3)

If d = +∞, there is nothing to prove. By Assumptions [H3] and [H4], we know d ≥ 0.
Let (xn, vn) with xn ∈ PC([0, T0];H) and vn ∈ L2(0, T0;U) be a minimizing sequence

for problem (P2). This means

d ≤
∫T0

0

(
g(xn(t)) + h(vn(t) + Fxn(t))

)
dt ≤ d +

1
n
, n = 1, 2, . . . . (4.4)

Set

un(t) = vn(t) + Fxn(t). (4.5)

It is obvious that (4.4) implies that

∫T0

0
h(un(t))dt ≤ d + 1. (4.6)
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Let E be any measurable subset of [0, T0] and σ > 0. Clearly, E = E1 ∪ E2 with E1 =
E ∩ {t; ‖un(t)‖U < σ} and E2 = E ∩ {t; ‖un(t)‖U ≥ σ}.

It can be seen from Assumption [H3] that there exists φ(·) such that

h(u) ≥ φ(σ)‖u‖U, ∀‖u‖U ≥ σ, (4.7)

where

lim
σ→∞

φ(σ) = +∞. (4.8)

By standard argument, we have
∫
E

‖un(t)‖Udt

=
∫
E1

‖un(t)‖Udt +
∫
E2

‖un(t)‖Udt ≤ σm(E1) +
1

φ(σ)

∫T0

0
h(un(t))dt ≤ σm(E) +

d + 1
φ(σ)

.

(4.9)

This implies that the set {un} is uniformly integrable on [0, T0]. In view of the Dunford-Petties
theorem, (4.9) implies that {un} is sequentially weakly compact in L1(0, T0;U). Say un → u∗

weakly in L1(0, T0;U).
Moreover, (4.2) and (4.4) imply

∫T0

0
‖xn(t)‖dt ≤ 1




∫T0

0

(
g(xn(t)) + h(un(t))

)
dt ≤ d + 1



. (4.10)

Taking into account that the pair (xn, vn) satisfies

xn(t) = SF(t, 0)xn(0) +
∫ t

0
SF(t, θ)Bvn(θ)dθ,

xn(0) = −[I + SF(T0, 0)]−1
∫T0

0
SF(T0, θ)Bvn(θ)dθ.

(4.11)

It comes from (4.11) and (4.10) that

‖xn(t)‖ ≤ ‖SF(t, 0)xn(0)‖ +
∫ t

0
‖SF(t, θ)Bvn(θ)‖dθ

≤ MT0‖xn(0)‖ +MT0

∫ t

0
‖Bvn(θ)‖dθ

≤ MT0

∥∥∥[I + SF(T0, 0)]−1
∥∥∥MT0

∫T0

0
‖Bvn(θ)dθ‖ +MT0

∫ t

0
‖Bvn(θ)‖dθ

≤ MT0

(
MT0

∥∥∥[I + SF(T0, 0)]−1
∥∥∥ + 1

)
‖B‖£b(U,H)

(∫T0

0
‖vn(θ)‖2dθ

)1/2

≤ MT0(MT0‖Q‖ + 1)‖B‖£b(U,H)‖vn‖L2(0,T0;U),

(4.12)
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which deduce that there existsM > 0 such that

‖xn(t)‖ ≤ M, for t ∈ [0, T0], (4.13)

that is, {xn} is bounded in Banach space (L1(0, T0;H))∗ = L∞(0, T0;H). By Alaoglu theorem,
we have xn → x∗ weakly star convergent in L∞(0, T0;H).

Set vn = un − Fxn and F ∈ £b(H,U), then

vn −→ u∗ − Fx∗ = v∗ weakly in L1(0, T0;U). (4.14)

There exists a function x̃(·) : [0, T0] → H such that

x̃(t) = SF(t, 0)x̃(0) +
∫ t

0
SF(t, θ)Bv∗(θ)dθ (4.15)

with

x̃(0) = −[I + SF(T0, 0)]−1
∫T0

0
SF(T0, θ)Bv∗(θ)dθ. (4.16)

Clearly,

xn(t) −→ x̃(t) weakly convergent in H, for each t ∈ [0, T0]. (4.17)

One can verify xn → x̃ weakly convergent in L1(0, T0;H). This implies that x̃ = x∗. Hence
x∗ is the T0-antiperiod PC-mild solution of system (3.11) corresponding to the control v ∈
L2(0, T ;U) given by

x∗(t) = SF(t, 0)x∗(0) +
∫ t

0
SF(t, θ)Bv∗(θ)dθ (4.18)

with

x∗(0) = −[I + SF(T0, 0)]−1
∫T0

0
SF(T0, θ)Bv∗(θ)dθ. (4.19)

Letting n → ∞ in (4.4), using Assumptions [H3] and [H4] again, by [15, Theorem
2.1], we can obtain

d = lim
n→∞

∫T0

0

(
g(xn(t)) + h(vn(t) + Fxn(t))

)
dt ≥

∫T0

0

(
g(x∗(t)) + h(v∗(t) + Fx∗(t))

)
dt ≥ d.

(4.20)

Thus, we can conclude that d = L̃(x∗, v∗). In fact, let u∗ = v∗+Fx∗; (x∗, u∗) ∈ Uad is the optimal
pair for problem (P1).
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5. An Example

Let H = L2(0, 1) and let φn(x), n = 1, 2, . . ., be an orthogonal basis for L2(0, 1).
Minimize

∫T0

0

∫1

0
g0
(
y, x
)
dy dt +

∫T0

0
h(u(t))dt (5.1)

subject to

u ∈ L2((0, 1) × (0, T0)), x ∈ PC([0, T0];H), (5.2)

related by the following antiperiodic boundary value problem with impulse:

∂

∂t
x
(
t, y
)
= Ax

(
t, y
)
+ 2Iu

(
t, y
)
, y ∈ (0, 1), t > 0, t ∈ [0, 2π] \ D̃ =

{
π

2
, π,

3π
2

}
,

x(t, 0) = x(t, 1) = 0, t > 0,

Δx
(
t, y
)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.05Ix
(
t, y
)
, k = 1,

−0.05Ix(t, y), k = 2,

0.05Ix
(
t, y
)
, k = 3,

y ∈ (0, 1), t > 0, τ1 =
π

2
, τ2 = π, τ3 =

3π
2
,

x
(
0, y
)
= −x(2π, y), in(0, 1).

(5.3)

Let g0 : (0, 1) × R → R and h: L2(0, 1) → R satisfy (4.1) and Assumptions [H3] and [H4].
The operator A is defined as follows:

Aφn =
(
− 1
n
+ in

)
φn, n = 1, 2, . . . . (5.4)

Then

T(t)φn = e(−(1/n)+in)tφn, (5.5)

and T(t) is asymptotically stable but not exponentially stable.
Let F = −2I, then AF = A − 2I generates the C0-semigroup {TF(t), t ≥ 0} given by

TF(t)φn = e−(2+(1/n)−in)tφn. (5.6)

Obviously, {TF(t), t ≥ 0} is exponentially stable. By Lemma 2.5, there exists a

λ >
ln
[
(1.05)2 × 0.95

]
2π

≈ 0.0075; (5.7)

then {SF(t, θ), t > θ ≥ 0} is exponential stable. By Theorem 4.1, problem (5.1) has at least one
optimal control pair (x∗, u∗).
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