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Let T ∈ N with T > 5. Let T := {1, . . . , T}. We study the Fučik spectrum Σ of the discrete problem
Δ2u(t − 1) + λu+(t) − μu−(t) = 0, t ∈ T, u(0) = u(T + 1) = 0, where u+(t) = max{u(t), 0}, u−(t) =
max{−u(t), 0}. We give an expression of Σ via the matching-extension method. We also use such
discrete spectrum theory to study nonlinear boundary value problems of difference equations at
resonance.

1. Introduction

Let T ∈ N with T > 5. Let T := {1, . . . , T} and ̂T := {0, 1, . . . , T, T + 1}. For u : T → R, we define
u+, u− : T → R by

u+(t) = max{u(t), 0}, u−(t) = max{−u(t), 0}. (1.1)

The Fučik spectrum of the problem

Δ2u(t − 1) + λu+(t) − μu−(t) = 0, t ∈ T,

u(0) = u(T + 1) = 0
(1.2)

is defined as the set Σ of those (λ, μ) such that (1.2) has nontrivial solutions.
In the past thirty years, the Fučik spectrum of two-point boundary value problems of

ordinary differential equations has been extensively studied, see Fučik [1, 2], Ruf [3], and
Rynne [4] and references therein. A typical result is the following.
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Theorem 1.1. The problem

u′′(x) + λu+(x) − μu−(x) = 0, x ∈ (0, 1),

u(0) = u(1) = 0
(1.3)

has a nontrivial solution for (λ, μ) ∈ R
2 if and only if (λ, μ) satisfies

(i) for k ≥ 1 odd, either

k + 1
2

1√
λ
+
k − 1
2

1√
μ
= 1, (1.4)

or

k − 1
2

1√
λ
+
k + 1
2

1√
μ
= 1, (1.5)

(ii) for k ≥ 2 even

k

2
1√
λ
+
k

2
1√
μ
= 1. (1.6)

Of course, the natural question is whether a similar result can be established for the
discrete analogue (1.2). The purpose of this paper is to study the structure of Fučik spectrum
Σ for (1.2). We give an expression of Σ via the matching-extension method in Sections 2 and
3. In Sections 4 and 5, we also show that Σ contains a curve Σ ∩ proj

R2S+
2 (for the definition

of proj
R2S+

2 , see Definition 5.1 below), which is continuous, strictly decreasing, symmetric
with respect to the diagonal, and for each (λ, μ) ∈ Σ ∩ proj

R2S+
2 , u has exactly one simple

generalized zero in the interval (1, T). Finally, in Section 6, we apply our Fučik spectrum of
(1.2) to study the solvability of nonlinear problem

Δ2u(t − 1) + λ1u(t) + g(t, u(t)) = f(t), t ∈ T,

u(0) = u(T + 1) = 0,
(1.7)

where g : T×R → R is continuous, f : T → R, λ1 is the first eigenvalue of the linear problem

Δ2u(t − 1) + λu(t) = 0, t ∈ T,

u(0) = u(T + 1) = 0.
(1.8)
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2. Matching Continuation

For r ∈ (0,∞), we denote the integer part of r by [r].
Denote

N
∗ = {0} ∪ N. (2.1)

Lemma 2.1. For fixed λ, μ ∈ R, the initial value problem

Δ2u(t − 1) + λu+(t) − μu−(t) = 0, t ∈ N, (2.2)

u(0) = 0, u(1) = 1 (2.3)

has a unique solution w+ : N
∗ → R.

Proof. Equation (2.2) is equivalent to the recurrence

u(t + 1) = 2u(t) − u(t − 1) − λu+(t) + μu−(t), t ∈ N, (2.4)

which guarantees the existence and uniqueness of solution w+ : N
∗ → R.

Lemma 2.2. Letw+(t) be a nontrivial solution of the initial value problem (2.2), (2.3) andw+(t0) = 0
for some t0 ∈ T. Then,

w+(t0 − 1)w+(t0 + 1) < 0. (2.5)

Proof. It can be easily deduced from (2.4).

Lemma 2.3. Letw+(t, λ, μ) be the unique solution of (2.2), (2.3) for fixed λ, μ ∈ R. Then, (λ, μ) is
an eigenvalue of (1.2) if and only if

w+
(

T + 1, λ, μ
)

= 0. (2.6)

To find (λ, μ) satisfying (2.6), we consider the linear initial value problem

Δ2u(t − 1) + λu(t) = 0, t ∈ N, (2.7)

u(0) = 0, u(1) = 1. (2.8)

The characteristic equation of (2.7) is

r2 + (λ − 2)r + 1 = 0, (2.9)
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so

r =
2 − λ ±

√

(λ − 2)2 − 4

2
. (2.10)

If |λ − 2| > 2, then it can be shown that there are no eigenvalues of (1.2).
In fact, in this case,

r1 :=
2 − λ +

√

(λ − 2)2 − 4

2
, r2 :=

2 − λ −
√

(λ − 2)2 − 4

2
, (2.11)

and the general solution of (2.7) is

u(t) = Art1 + Br
t
2. (2.12)

It is easy to check that the function Arx1 + Brx2 , x ∈ R has at most one zero in R for
every A,B ∈ R with A2 + B2 /= 0.

If |λ − 2| = 2, then it can also be shown that there are no eigenvalues of (1.2).
In fact, |λ − 2| = 2 implies that

r1 = r2 :=
2 − λ
2

, (2.13)

and the general solution of (2.7) is

u(t) = Art1 + Btr
t
1. (2.14)

It is easy to check that the function Arx1 + Bxrx1 , x ∈ R has at most one zero in R for
every A,B ∈ R with A2 + B2 /= 0.

Assume that |λ − 2| < 2 and set

2 − λ = 2 cos θ. (2.15)

Then,

r = cos θ ± i sin θ = e±iθ. (2.16)

Hence, a general solution of (2.7) is

u(t) = A cos θt + B sin θt. (2.17)

From (2.8), it follows that u(0) = A = 0 and

B =
1

sin θ
. (2.18)
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Since |λ − 2| < 2, it follows from (2.15) that θ /= kπ . Thus, B is well defined and

u(t) =
1

sin θ
sin θt, t ∈ N

∗. (2.19)

Lemma 2.4. The first eigenvalue of the problem (1.8) is

λ1 = 2 − 2 cos
π

T + 1
, (2.20)

which is simple and the eigenfunction corresponding to λ1 is

ϕ1(t) = sin
π

T + 1
t, t ∈ T. (2.21)

Proof. Applying the same method used in [5, Example 7.1], with obvious changes, we can get
the desired result.

Lemma 2.5. (i) The line {λ1} × R and the set R × {λ1} are contained in Σ.
(ii) Σ is symmetric with respect to the straight line λ = μ.

Proof. (i) From the definition of λ1 and ϕ1 in (2.20) and (2.21), it follows that for any μ ∈ R,

Δ2ϕ1(t − 1) + λ1
(

ϕ1
)+(t) − μ(ϕ1

)−(t) = 0, t ∈ T,

ϕ1(0) = ϕ1(T + 1) = 0.
(2.22)

This implies that {λ1} × R ⊂ Σ. Similarly, R × {λ1} ⊂ Σ.
(ii) Let (λ, μ) ∈ Σ and y be the corresponding eigenfunction. Then,

Δ2y(t − 1) + λy+(t) − μy−(t) = 0, t ∈ T,

y(0) = y(T + 1) = 0.
(2.23)

Let z(t) = −y(t) for t ∈ ̂T. Then,

Δ2z(t − 1) + μz+(t) − λz−(t) = 0, t ∈ T,

z(0) = z(T + 1) = 0,
(2.24)

which means that (μ, λ) ∈ Σ.

In order to construct a nontrivial solution of (2.2), (2.3), we extend u to the following
function defined on real interval [0,∞):

ũ(x) =
1

sin θ
sin θx, x ∈ [0,∞). (2.25)
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Let β1 be the first positive zero of ũ, then

ũ
(

β1
)

= 0, ũ(x) > 0, x ∈ (

0, β1
)

, (2.26)

ũ(x) = B1 sin
π

β1
x, (2.27)

with B1 := (sin(π/β1))
−1. From (2.27) and (2.15), we have that

λ = 2 − 2 cos
π

β1
, (2.28)

that is,

β1 =
π

arccos((2 − λ)/2) . (2.29)

Moreover, ũ(x) satisfies that

Δ2ũ(t − 1) + λũ(t) = 0, t ∈ {

1, 2, . . . ,
[

β1
]}

,

ũ(0) = 0, ũ
(

β1
)

= 0,

ũ(t) > 0, t ∈ {

1, . . . ,
[

β1 − 1
]}

,

ũ
([

β1
])

> 0, if β1 >
[

β1
]

,

ũ
([

β1
])

= 0, if β1 =
[

β1
]

,

ũ
([

β1
]

+ 1
)

< 0,

(2.30)

where [r] denotes the integer part of r.

Definition 2.6. Suppose that a function y : ̂T → R. If y(t) = 0, then t is a zero of y. If y(t) = 0
and y(t− 1)y(t+ 1) < 0, then t is a simple zero of y. If y(t− 1)y(t) < 0, then we say that y has a
node at the point s = t. The nodes and simple zeros of y are called the simple generalized zeros
of y.

Lemma 2.7. Let

˜Σ = Σ \ (({λ1} × R) ∪ (R × {λ1})). (2.31)

Then, (λ, μ) ∈ ˜Σ implies that

2 − 2 cos
π

T
< λ < 4, 2 − 2 cos

π

T
< μ < 4. (2.32)
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Proof. From (2.20) and (2.28), we see that (λ, μ) ∈ ˜Σ if and only if the eigenfunction
corresponding to (λ, μ) has at least simple generalized zero in the open interval (1, T). This
means that 1 < β1 < T , which implies

2 − 2 cos
π

T
< λ < 4. (2.33)

Similarly, we have that 2 − 2 cos(π/T) < μ < 4.

Now, let (λ, μ) satisfy

(H) 2 − 2 cos(π/T) < λ < 4, 2 − 2 cos(π/T) < μ < 4.

Let us consider the sequence {u(t, λ, μ)} induced by (2.4), (2.3), and let β1 be the first
positive zero of ũ (see (2.27) for the definition of ũ). Then, we see from (2.4) that

u
([

β1
]

+ 1
)

= 2u
([

β1
]) − u([β1

] − 1
) − λu([β1

])

, (2.34)

which means that u([β1] + 1) is uniquely determined by u([β1]), u([β1] − 1) and λ, and is
independent of μ.

Now, let v(t) be the unique solution of the initial value problem

Δ2v(t − 1) + μv(t) = 0, t ∈ {[

β1
] − 1,

[

β1
]

,
[

β1
]

+ 1, . . .
}

, (2.35)

v
([

β1
])

= u
([

β1
])

, v
([

β1
]

+ 1
)

= u
([

β1
]

+ 1
)

. (2.36)

By a similar method to get ũ and β1, we get the following lemma.

Lemma 2.8. Let (H) hold, and let b satisfy

μ = 2 − 2 cos
π

b
. (2.37)

Then, 1 < b < T .

Proof. From (2.37) and (H), it follows that

2 − 2 cos
π

T
< 2 − 2 cos

π

b
< 4. (2.38)

This is

cos
π

T
> cos

π

b
> cos

π

1
, (2.39)

which implies 1 < b < T .
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Lemma 2.9. Let (H) hold. Then, (2.35), (2.36) has a solution of the form

v(t) = B2 sin
π(t − α2)

b
, (2.40)

where α2 is the unique solution of

B1 sin

(

π
[

β1
]

β1

)

= B2 sin
π
([

β1
] − α2

)

b
,

B1 sin

(

π
([

β1
]

+ 1
)

β1

)

= B2 sin
π
([

β1
]

+ 1 − α2
)

b
,

(2.41)

in ([β1], [β1 + 1]) if β1 > [β1], and α2 = β1 if β1 = [β1]; B2 is a negative constant satisfying

B2 sin
π
([

β1
]

+ 1 − α2
)

b
= 2B1 sin

π
([

β1
])

β1
− B1 sin

π
([

β1
] − 1

)

β1
− λB1 sin

π
([

β1
])

β1
. (2.42)

Proof. The relation (2.40) can be deduced by the similar method to get (2.27).
If β1 > [β1], then we define a function F : [[β1], [β1 + 1]] → R by

F(α) = sin
π

β1

([

β1
])

sin
π
([

β1
]

+ 1 − α)

b
− sin

π
([

β1
] − α)

b
sin

π
([

β1
]

+ 1
)

β1
. (2.43)

It is easy to check that

F
([

β1 + 1
])

= − sin
π
([

β1
] − [

β1 + 1
])

b
sin

π

β1

([

β1 + 1
])

< 0,

F
([

β1
])

= sin
π

β1

([

β1
])

sin
π
([

β1 + 1
] − [

β1
])

b
> 0.

(2.44)

Moreover, for α ∈ ([β1], [β1 + 1]),

∂F

∂α
(α) = −π

b
sin

π

β1

([

β1
])

cos
π
([

β1 + 1
] − α)

b

+
π

b
cos

π
([

β1
] − α)

b
sin

π

β1

([

β1 + 1
])

< 0,

(2.45)

(here, we use the fact that b > 1, see Lemma 2.8). So, there is a unique α2 ∈ ([β1], [β1 + 1]),
such that F(α2) = 0.
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If β1 = [β1], then v(β1) = 0. This together with (2.4) imply that

v
(

β1 + 1
)

= −v(β1 − 1
)

, (2.46)

that is,

B2 sin
π
(

β1 + 1 − α2
)

b
= −B2 sin

π
(

β1 − 1 − α2
)

b
. (2.47)

So, we may take that

α2 = β1. (2.48)

Finally, it follows from (2.4) and the fact u([β1] + 1) = v([β1] + 1) (see (2.36)) that B2

satisfies (2.42).

Now, for x ∈ R, let

ṽ(x) := B2 sin
π(x − α2)

b
, (2.49)

which is an extension of the function v : (N∗ ∩ [ [β1 − 1],∞)) → R defined in (2.40).
Denote

β2 := α2 + b, (2.50)

Then ṽ(x) satisfies

Δ2ṽ(t − 1) + μṽ(t) = 0, t ∈ {[

β1 + 1
]

, . . . ,
[

β2
]}

,

ṽ
([

β1
])

= ũ
([

β1
])

, ṽ
([

β1 + 1
])

= ũ
([

β1 + 1
])

, ṽ
(

β2
)

= 0,

ṽ(t) < 0, t ∈ {[

β1 + 1
]

, . . . ,
[

β2 − 1
]}

,

ṽ
([

β2
])

< 0, if β2 >
[

β2
]

, ṽ
([

β2
])

= 0, if β2 =
[

β2
]

,

ṽ
([

β2
]

+ 1
)

> 0.

(2.51)

Definition 2.10. We say that α2 defined in Lemma 2.8 is the feasible initial phase of the family of
functions sin(π(x−α)/b). If α2 is the feasible initial phase of the family of functions sin(π(x−
α)/b), then we say that ṽ(x)

ṽ(t) := B2 sin
π(t − α2)

b
, t ∈ [[

β1
]

,
[

β2 + 1
]]

(2.52)

is the matching extension of ũ(x), x ∈ [0, [β1 + 1]].
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Remark 2.11. Notice that ṽ(x)/≡ ũ(x) for x ∈ [[β1], [β1 + 1]] in general. However, ṽ(t) ≡ ũ(t)
for t ∈ {[β1], [β1 + 1]}.

Obviously, we may repeat the above process to “extend” ũ(t) to a sequence defined
on N in a unique manner. Moreover, this sequence coincides with the sequence w+(t) in
Lemma 2.1.

Let α1 := 0. Recall that β1 is defined by (2.29)

β1 =
π

arccos((2 − λ)/2) , (2.53)

and α2 = β1 if β1 = [β1], and α2 is the unique solution of

sin
π

β1

([

β1
])

sin
π
([

β1
]

+ 1 − α)

b
− sin

π
([

β1
] − α)

b
sin

π
([

β1
]

+ 1
)

β1
= 0. (2.54)

Recall

β2 := α2 + b, (2.55)

with

b =
π

arccos
((

2 − μ)/2) , (2.56)

Repeating the above process, we may take αk = βk−1 if βk−1 = [βk−1], and αk is the unique
solution of

Fk(α) = 0, (2.57)

where

Fk(α) := sin
π
([

βk−1
] − αk−1

)

βk−1 − αk−1 sin
π
([

βk−1 + 1
] − α)

βk − αk

− sin
π
([

βk−1
] − α)

βk − αk sin
π
([

βk−1 + 1
] − αk−1

)

βk−1 − αk−1 .

(2.58)

Put

βk =

⎧

⎨

⎩

αk + β1 if k is odd,

αk + b if k is even.
(2.59)
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Recall

B1 :=
(

sin
π

β1

)−1
, (2.60)

and define

Bk sin
π
([

βk−1
]

+ 1 − αk
)

βk − αk

= 2Bk−1 sin
π
([

βk−1
])

βk−1 − αk−1 − Bk−1 sin
π
([

βk−1
] − 1

)

βk−1 − αk−1 − νBk−1 sin
π
([

βk−1
])

βk−1 − αk−1 .
(2.61)

with

ν =

⎧

⎨

⎩

μ if k is odd,

λ if k is even.
(2.62)

Finally, it is easy to check that

Fk
([

βk−1
])

> 0, Fk
([

βk−1 + 1
])

< 0,

∂Fk
∂α

(α) = − π

βk − αk sin
π
([

βk−1
] − αk−1

)

βk−1 − αk−1 cos
π
([

βk−1 + 1
] − α)

βk − αk

+
π

βk − αk cos
π
([

βk−1
] − α)

βk − αk sin
π
([

βk−1 + 1
] − αk−1

)

βk−1 − αk−1
< 0.

(2.63)

So, there exists a unique αk ∈ ([βk−1], [βk−1 + 1])which satisfies (2.57).
To sum up, we may define

Γk(x) := Bk sin
π(x − αk)
βk − αk , x ∈ [[

βk−1
]

,
[

βk + 1
]]

, (2.64)

which can be thought as the “matching extension” of Γk−1. Notice that αk is the left zero of Γk
on [[βk−1], [βk + 1]], and βk is the right zero of Γk on [[βk−1], [βk + 1]].

Clearly, we may start the discuss from the IVP

Δ2u(t − 1) + λu(t) = 0, t ∈ T,

u(0) = 0, u(1) = −1
(2.65)

which has unique solution w−(t, λ, μ). Then, we may uniquely determine the kth segmental
arc ̂Γk on [[δk−1], [δk + 1]] and the feasible initial phase γk via matching extension method,
and accordingly, we get the left zero γk and the right zero δk of ̂Γk on [[δk−1], [δk + 1]].
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3. The Main Result

The main result of this paper is the following discrete analogue of Theorem 1.1.

Theorem 3.1. (λ, μ) ∈ R
2 is an eigenvalue of (1.2) if and only if (λ, μ) satisfies

(i) for k ≥ 2 even

k

2
π

arccos((2 − λ)/2) +
k

2
π

arccos
((

2 − μ)/2) +
k−1
∑

j=1

(

αj+1 − βj
)

= T + 1 (3.1)

(ii) for k ≥ 1 odd, either

k + 1
2

π

arccos((2 − λ)/2) +
k − 1
2

π

arccos
((

2 − μ)/2) +
k−1
∑

j=1

(

αj+1 − βj
)

= T + 1 (3.2)

or

k − 1
2

π

arccos((2 − λ)/2) +
k + 1
2

π

arccos
((

2 − μ)/2) +
k−1
∑

j=1

(

γj+1 − δj
)

= T + 1. (3.3)

Proof. (i) Let k ≥ 1 be even. Let

Γm :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{(

x, B1 sin
π

β1
(x − αm)

)

| x = [αm], . . . ,
[

βm + 1
]

}

, m = 2j − 1, j ∈
{

1, . . . ,
k

2

}

,

{(

x, B2 sin
π

b
(x − αm)

)

| x = [αm], . . . ,
[

βm + 1
]

}

, m = 2j, j ∈
{

1, . . . ,
k − 2
2

}

,

{(

x, B2 sin
π

b
(x − αm)

)

| x = [αm], . . . ,
[

βm
]

}

, m = k.

(3.4)

Here,

β1 =
π

arccos((2 − λ)/2) , b =
π

arccos
((

2 − μ)/2) . (3.5)

Then, a nontrivial solution of (1.2) can be constructed via matching extension method to Γ1
and Γ2, . . ., Γk−1 and Γk, respectively. Moreover,

T + 1 =
k

2
π

arccos((2 − λ)/2) +
k

2
π

arccos
((

2 − μ)/2) +
k−1
∑

j=1

(

αj+1 − βj
)

. (3.6)

(ii) The case that k is odd can be treated by the similar way.
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Example 3.2. We may use Mathematica 5.0 to give a numerical example for Theorem 3.1.
Take k = 2, T = 3.
Take β1 = 2.2, then λ .= 1.7153703202231987.
Take b = 1.8198598, then μ .= 2.3097214213167683.
Using the relation

sin
π

β1

([

β1
])

sin
π
([

β1 + 1
] − α)

b
= sin

π
([

β1
] − α)

b
sin

π

β1

([

β1 + 1
])

, (3.7)

we may find

α2
.= 2.1801402269418726. (3.8)

Since

2.2 + 1.8198598 + (2.1801402269418726 − 2.2) .= 4, (3.9)

we may think that (1.7153703202231987, 2.3097214213167683) is an eigenvalue of the
problem

Δ2u(t − 1) + λu+(t) − μu−(t) = 0, t ∈ {1, 2, 3},
u(0) = u(4) = 0.

(3.10)

Now, by the recurrence relation

u(t + 1) = 2u(t) − u(t − 1) − 1.7153703202231987u+(t) + 2.309739789282126u−(t),

u(0) = 0, u(1) = 1,
(3.11)

it is easily to compute that

u(4) .= −4.6600427960896695 × 10−8 ≈ 0. (3.12)

This is a desired numerical result.

4. Some Properties of α2

Proposition 4.1. If λ = μ and βi = [βi], then βj = αj+1 for j = 1, 2, . . . .

Proof. In fact, if λ = μ and βi = [βi], then

β1 = b =
π

arccos((2 − λ)/2) , (4.1)
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which implies that

αm, βm ∈ N
∗. (4.2)

Proposition 4.2. Let (H) hold. Assume that λ is such that

β1 =
[

β1
]

+
1
2
. (4.3)

Then, for every μ > 1, we have that

α2 =
[

β1
]

+
1
2
. (4.4)

Proof. By β1 = [β1] + 1/2, it follows that

sin
π
[

β1
]

β1
= − sin

π
([

β1
]

+ 1
)

β1
. (4.5)

This together with F(α2) = 0 imply that

sin
π
([

β1
] − α2

)

β2 − α2 = − sin
π
([

β1
]

+ 1 − α2
)

β2 − α2 , (4.6)

and accordingly,

sin
π
([

β1
] − α2

)

β2 − α2 + sin
π
([

β1
]

+ 1 − α2
)

β2 − α2 = 2 sin
π
([

β1
]

+ 1/2 − α2
)

β2 − α2 cos
π/2
β2 − α2 = 0. (4.7)

By (H), we have that β2 − α2 > 1. Therefore,

[

β1
]

+
1
2
− α2 = 0. (4.8)

Proposition 4.3. Let (H) hold. Then,

(i) β1 > [β1] + 1/2 implies [β1] + 1/2 < α2 < β1,

(ii) β1 < [β1] + 1/2 implies [β1] + 1/2 > α2 > β1.

Proof. (i) By the definition of F, (see (2.43)), we have that

F
(

β1
)

= sin
π

β1

([

β1
])

sin
π
([

β1 + 1
] − β1

)

b
− sin

π
([

β1
] − β1

)

b
sin

π
([

β1 + 1
])

β1
. (4.9)
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Since β1 > [β1] + 1/2, we have that

sin
(

π

β1

[

β1
]

)

> − sin
(

π

β1

[

β1 + 1
]

)

, (4.10)

which together with (4.9) implies that

F
(

β1
) ≤ sin

π

β1

([

β1
])

[

sin
π
([

β1 + 1
] − β1

)

b
+ sin

π
([

β1
] − β1

)

b

]

< 0. (4.11)

Since [β1 + 1] − β1 < β1 − [β1]. Thus,

F
(

β1
)

< F(α2) = 0. (4.12)

From the fact that F is decreasing on ([β1], [β1] + 1), it follows that β1 > α2.
On the other hand, we have from (2.43) that

F

(

[

β1
]

+
1
2

)

= sin
π

β1

([

β1
])

sin
π

2b
+ sin

π

2b
sin

π

β1

([

β1 + 1
])

. (4.13)

Combining this with the fact that [β1 + 1] − β1 < β1 − [β1], it concludes that F([β1] + 1/2) > 0.
So, [β1] + 1/2 < α2.

(ii) β1 < [β1] + 1/2 yields that

sin

(

π
[

β1
]

β1

)

< − sin

(

π
[

β1 + 1
]

β1

)

, (4.14)

which together with (4.9) and the fact that [β1 + 1] − β1 > β1 − [β1] imply that

F
(

β1
) ≥ sin

π

β1

([

β1
])

[

sin
π
([

β1 + 1
] − β1

)

b
+ sin

π
([

β1
] − β1

)

b

]

> 0. (4.15)

Since F is decreasing on ([β1], [β1] + 1), it follow that β1 < α2.
Finally, we may use (4.13) and the fact [β1 + 1] − β1 > β1 − [β1] to deduce that

F

(

[

β1
]

+
1
2

)

< F(α2) = 0, (4.16)

which implies that [β1] + 1/2 > α2.
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5. Some Properties of Σ ∩ proj
R2S+

2

Definition 5.1. For k ∈ N and ν ∈ {+,−}, let Sνk denote the set of functions u : ̂T → R satisfying

(1) u has only simple generalized zeros in [1, T];

(2) u has exactly k − 1 simple generalized zeros in [1, T];

(3) νu(1) > 0.

Let

S+
2 := R

2 × S+
2 . (5.1)

An immediate consequence of Lemma 2.2 is the following.

Lemma 5.2. If u of a nontrivial solution of (1.2), then u ∈ Sν
k
for some k ∈ N and ν ∈ {+,−}.

In the rest of this section, one will pay one’s attention to the study of Σ ∩ S+
2 .

Let (H) hold and define a function G : (1, T) × ([β1], [β1] + 1) → R by

G(b, α) = sin
π

β1

([

β1
])

sin
π
([

β1 + 1
] − α)

b
− sin

π
([

β1
] − α)

b
sin

π

β1

([

β1 + 1
])

. (5.2)

Then, from Lemma 2.8, one has that for each b ∈ (π/arccos((2 − μ)/2), T), there exists a
unique α2(b) ∈ ([β1], [β1 + 1]) such that

G(b, α2(b)) = 0. (5.3)

Lemma 5.3. Let (H) hold. Then,

(i) α2(b) is continuous on (π/arccos((2 − μ)/2), T),
(ii) |dα2/db| < 1/b.

Proof. (i) From (5.2), we see that G(b, α) is continuous and

∂G

∂α
= −π

b
sin

(

π

β1

[

β1
]

)

cos
π
([

β1 + 1
] − α)

b

+
π

b
cos

π
([

β1
] − α)

b
sin

(

π

β1

[

β1 + 1
]

)

.

(5.4)

This together with the facts that α ∈ ([β1], [β1 + 1]) and b > 1 imply that ∂G/∂α2 < 0. So, the
implicit function theorem yields that α2(b) is continuous on (π/arccos((2 − μ)/2), T).

(ii) From (5.2),

∂G

∂b
= −π

([

β1 + 1
] − α)

b2
sin

(

π

β1

[

β1
]

)

cos
π
([

β1 + 1
] − α)

b

+
π
([

β1
] − α)

b2
cos

π
([

β1
] − α)

b
sin

(

π

β1

[

β1 + 1
]

)

.

(5.5)
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Denote

A(b, α2) = sin
(

π

β1

[

β1
]

)

cos
π
([

β1 + 1
] − α2

)

b
,

B(b, α2) = cos
π
([

β1
] − α2

)

b
sin

(

π

β1

[

β1 + 1
]

)

.

(5.6)

Then,

A(b, α2) > 0, B(b, α2) < 0, (5.7)

and subsequently,

∣

∣

∣

∣

dα2
db

(b)
∣

∣

∣

∣

=
∣

∣

∣

∣

− ∂G(b, α2)/∂b
∂G(b, α2)/∂α2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−−
(

π
([

β1 + 1
] − α2

)

/b2
)

A(b, α2) +
(

π
([

β1
] − α2

)

/b2
)

B(b, α2)
−(π/b)A(b, α2) + (π/b)B(b, α2)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

π
([

β1 + 1
] − α2

)

/b2
)

A(b, α2) +
(

π
([

β1
] − α2

)

/b2
)

(−B(b, α2))
−(π/b)A(b, α2) − (π/b)(−B(b, α2))

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

(

π
([

β1 + 1
] − α2

)

/b2
)

A(b, α2) −
(

π
([

β1
] − α2

)

/b2
)

(−B(b, α2))
−(π/b)A(b, α2) − (π/b)(−B(b, α2))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

π
([

β1 + 1
] − α2

)

/b2
)

A(b, α2) +
(

π
(−[β1

]

+ α2
)

/b2
)

(−B(b, α2))
−(π/b)A(b, α2) − (π/b)(−B(b, α2))

∣

∣

∣

∣

∣

≤ 1
b
,

(5.8)

since max{π([β1 + 1] − α2)/b2, π(−[β1] + α2)/b2} ≤ π/b2.

Theorem 5.4. Let (H) hold. Then, for each μ ∈ (2 − 2 cos(π/T), 4), there exists at most one λ ∈
(2 − 2 cos(π/T), 4) such that

π

arccos((2 − λ)/2) +
π

arccos
((

2 − μ)/2) +
(

α2 − β1
)

= T + 1. (5.9)

Proof. Set

g(b) := b +
(

α2(b) − β1
)

. (5.10)

Then, by Lemma 5.3,

g ′(b) = 1 + α′2(b) > 1 − 1
b
> 0, (5.11)
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which implies that g is strictly increasing in b, and accordingly, the function

ĝ
(

μ
)

:=
π

arccos
((

2 − μ)/2) +

(

α2

(

π

arccos
((

2 − μ)/2)
)

− β1
)

(5.12)

is strictly decreasing and continuous in μ. Therefore, the function

λ = 2 − 2 cos

(

π

T + 1 − ĝ(μ)
)

(5.13)

is strictly decreasing and continuous in μ.

Remark 5.5. Let λ2 be the second eigenvalue of (2.18), (2.19). Then, (λ2, λ2) ∈ Σ ∩ proj
R2S+

2 .

Since

{

π

arccos
((

2 − μ)/2) | μ ∈
(

2 − 2 cos
π

T
, 4
)

}

= (1, T), (5.14)

there exists an open interval I ⊂ (2 − 2 cos(π/T), 4) such that

{

π

arccos
((

2 − μ)/2) | μ ∈ I
}

= (2, T − 1). (5.15)

Theorem 5.6. For every μ ∈ I, there exists a unique λ ∈ (2 − 2 cos(π/T), 4), such that (5.9) holds.

Proof. Using the fact that −1 < α2 − β1 < 1, it concludes that for μ ∈ I,

1 <
π

arccos
((

2 − μ)/2) +

(

α2

(

π

arccos
((

2 − μ)/2)
)

− β1
)

< T, μ ∈ I, (5.16)

which implies that

T > (T + 1) −
{

π

arccos
((

2 − μ)/2) +

(

α2

(

π

arccos
((

2 − μ)/2)
)

− β1
)}

> 1, μ ∈ I. (5.17)

Combining this with the fact that

{

π

arccos((2 − λ)/2) | λ ∈
(

2 − 2 cos
π

T
, 4
)

}

= (1, T), (5.18)

it follows that (5.9) has at least one solution for every μ ∈ I. The uniqueness can be deduced
from Theorem 5.4.
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Remark 5.7. Espinoza [6] proved that the discrete analogue of Fučik spectrum of the Laplacian
with Dirichlet boundary condition contains a curve which is continuous, strictly decreasing,
and symmetric with respect to the diagonal. However, Espinoza [6] gave no information
about the construction of the Fučik spectrum. Our main results, Theorems 5.4 and 3.1, are
established for ordinary difference equation only. However, much more information about
the construction of the Fučik spectrum is contained in these theorems.

6. Applications to Nonlinear Problems

Let λ1 be the first eigenvalue of (1.8). Then,

λ1 = 2 − 2 cos
π

T + 1
. (6.1)

The eigenfunction corresponding to λ1 is sin(πt/(T + 1)).
Let us consider the nonlinear problem

Δ2u(t − 1) + λ1u(t) + g(t, u(t)) = f(t), t ∈ T,

u(0) = u(T + 1) = 0,
(6.2)

where g and f satisfy

(A1) f : T → R;

(A2) g : T × R → R is continuous, and there exist a function p : T → R and a constant
q > 0, such that

∣

∣g(t, s)
∣

∣ ≤ p(t) + q|s|, s ∈ R, t ∈ T, (6.3)

(A3) there exist a function functions a,A : T → R and constants r < 0 < R, such that

g(t, s) ≥ A(t), s ≥ R, t ∈ T,

g(t, s) ≤ a(t), s ≤ r, t ∈ T.
(6.4)

Obviously, (A3) implies

lim inf
s→±∞

g(t, s)s ≥ 0. (6.5)

Denote

g+∞(t) := lim inf
s→+∞

g(t, s), g−∞(t) := lim sup
s→−∞

g(t, s). (6.6)
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Lemma 6.1 (Sturm separation theorem; [7, Theorem 6.5]). Two linearly independent solutions of

Δ2y(t − 1) + q(t)y(t) = 0, t ∈ T (6.7)

cannot have a common zero. If a nontrivial solution of (6.7) has a zero at t1 and a generalized zeros at
t2 > t1, then any second linear independent solution has a generalized zero in (t1, t2]. If a nontrivial
solution of (6.7) has a generalized zero at t1 and a generalized zero at t2 > t1, then any second linearly
independent solution has a generalized zero in [t1, t2].

Definition 6.2 (see [7, Definition 6.3]). Let q : T → R. We say that (6.7) is disconjugate on ̂T

provided that no nontrivial solution of (6.7) has two or more generalized zeros on ̂T.

Lemma 6.3 (Sturm comparison theorem; [7, Theorem 8.12]). Assume that q1(t) ≥ q2(t) on T. If
Δ2y(t−1)+q1(t)y(t) = 0 is disconjugate on ̂T, thenΔ2y(t−1)+q2(t)y(t) = 0 is disconjugate on ̂T.

Let us denote by D the Hilbert space

D := {u : T −→ R}, (6.8)

with the inner product

〈u, v〉D :=
T
∑

t=1

u(t)v(t), u, v ∈ D, (6.9)

and the norm

‖u‖D := 〈u, v〉1/2D , u, v ∈ D. (6.10)

Let us denote by D∗ the Hilbert space

D∗ :=
{

u : ̂T −→ R | u(0) = u(T + 1) = 0
}

, (6.11)

with the inner product

〈u, v〉D∗ :=
T
∑

t=1

u(t)v(t), u, v ∈ D∗, (6.12)

and the norm

‖u‖D := 〈u, v〉1/2D∗ , u, v ∈ D. (6.13)

For u ∈ D, define j : D → D∗ by

j(u(1), u(2), . . . , u(T)) = (0, u(1), u(2), . . . , u(T), 0), (6.14)

then j is a natural isomorphism.



Discrete Dynamics in Nature and Society 21

Obviously,

〈u, v〉D =
〈

ju, jv
〉

D∗ , (u, v) ∈ D. (6.15)

So, in the rest of the paper, one will use 〈u, v〉, ‖u‖ to denote the inner product and the norm
in D (or D∗), respectively.

Let

u(t) =
T
∑

j=1

aj sin
jπt

T + 1 (6.16)

be the fourier series of u ∈ D∗. Then, one will write

u(t) = u0(t) + ũ(t), (6.17)

where

u0(t) = a1 sin
πt

T + 1
, ũ(t) =

T
∑

j=2

aj sin
jπt

T + 1
. (6.18)

Using the same method to prove [7, Lemma 1.4] with obvious changes, we obtain the
following.

Lemma 6.4. Assume that for each n ∈ N, one has 0 ≤ χn(t) for t ∈ T, and for each t ∈ T, χn(t) → 0
as n → ∞. Then, there exists a constant ρ > 0, such that for all u ∈ D∗,

T
∑

t=1

[

Δ2u(t − 1) + λ1u2(t) + χn(t)u(t)
][

u0(t) − ũ(t)
]

≥ ρ‖ũ‖2. (6.19)

Let ψ1 be such that

Δ2ψ1(t − 1) + λ�ψ+
1 (t) − μ�ψ−

1 (t) = 0, t ∈ T, (6.20)

ψ1(0) = ψ1(T + 1) = 0, (6.21)

then ψ1 > 0 on T.
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Assume that

(C1) Let χ+, χ− ∈ D be such that there exist two point (λ�, μ�) ∈ Σ∩S±
1 and (λ�, μ�) ∈ Σ∩S+

2
with

λ� ≤ χ+(t), μ� ≤ χ−(t), ∀t ∈ T, (6.22)

and the strict inequalities λ� < χ+(t), μ� < χ−(t) hold for some t ∈ T

λ� ≥ χ+(t), μ� ≥ χ−(t), ∀t ∈ T, (6.23)

and the strict inequalities λ� > χ+(t), μ� > χ−(t) hold for some t ∈ T \ {τ̂}, with τ̂ is
the unique generalized zero of ψ2 on (0, T + 1), and

Δ2ψ2(t − 1) + λ�ψ+
2 (t) − μ�ψ−

1 (t) = 0, t ∈ T,

ψ2(0) = ψ2(T + 1) = 0,
(6.24)

with ψ2(1) > 0.

Theorem 6.5. Let (A1)–(A3) hold. Assume that there existence (λ∗, μ∗) ∈ Σ ∩ S+
2 , such that

lim sup
s→+∞

g(t, s)
s

≤ λ∗ − λ1,

lim sup
s→−∞

g(t, s)
s

≤ μ∗ − λ1.
(6.25)

Suppose that the strict inequalities in (6.25) hold on some t0 ∈ T \ {τ̂}. Then, BVP (6.2) has at least
one solutions provided

T
∑

t=1

g−∞(t) sin
πt

T + 1
<

T
∑

t=1

f(t) sin
πt

T + 1
<

T
∑

t=1

g+∞(t) sin
πt

T + 1
. (6.26)

Remark 6.6. Let us consider the nonlinear boundary value problem

Δ2u(t − 1) + λ1u(t) + g(u(t)) = f(t), t ∈ {1, 2, 3},
u(0) = u(4) = 0,

(6.27)

where f : {1, 2, 3} → R is a fixed function,

g(s) =

⎧

⎨

⎩

1.1s, s ≥ 0

1.7s, s < 0.
(6.28)
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Obviously, f and g satisfy (A1)–(A3). From Example 3.2, it follows that (6.25) hold. Since
g−∞ = −∞ and g+∞ = +∞, it follows that (6.26) holds.

To prove Theorem 6.5, we need the following.

Lemma 6.7. Let (C1) holds. Then, the Dirichlet problem

Δ2u(t − 1) + χ+(t)u+(t) − χ−(t)u−(t) = 0, t ∈ T, (6.29)

u(0) = u(T + 1) = 0, (6.30)

has only the trivial solution.

Proof. Suppose on the contrary that u is a nontrivial solution of (6.29), (6.30)with

u(1) > 0. (6.31)

We claim that the number of generalized zeros of u in (0, T + 1) is 0 or 1.
Suppose on the contrary that the number of generalized zeros of u in (0, T + 1) is large

than 1. Let t1, t2 ∈ T be the first two positive generalized zeros of uwith t1 < t2.
We divide the proof into three cases.

Case 1 (t1 < τ̂). In this case, we claim that

Δ2ψ(t − 1) + λ�ψ(t) = 0 (6.32)

is disconjugate on [0, t1].
Suppose on the contrary that there exists a solution ψ∗ of (6.32) which is linearly

independent of ψ2 and has two consecutive generalized zeros in [0, t1]. Then, from
Lemma 6.1, ψ2 has a generalized zero in (0, t1]. This is impossible. Therefore, the claim is
true.

Now, from the above claim and Lemma 6.3,

Δ2u(t − 1) + χ+(t)u(t) = 0 (6.33)

is disconjugate on [0, t1]. However, this contradicts the fact that t1 is a generalized zero of u.

Case 2 (t1 > τ̂). The case can be treated by the samemethod as in Case 1with obvious changes.

Case 3 (t1 = τ̂).

Subcase 3.1 (t1 = τ̂ and ψ2(τ̂) = 0). It is easy to check that

Δ2ψ(t − 1) − μ�ψ(t) = 0 (6.34)
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is disconjugate on [τ̂ , t2]. The fact and Lemma 6.3 yield

Δ2v(t − 1) − χ−(t)v(t) = 0, t ∈ {τ̂ , . . . , t2 − 1} (6.35)

is disconjugate on [τ̂ , t2], and subsequently, u cannot have two generalized zero in [τ̂ , t2]. This
is a contradiction.

Subcase 3.2 (t1 = τ̂ and ψ2(τ̂) < 0). We note that the general solution of (6.35) has the form

v(t) = c1 sin(θt + c2), t ∈ {τ̂ − 1, . . . , t2}, (6.36)

with

θ := arccos
2 − μ�

2
, μ� ∈ (0, 4). (6.37)

Denote by d(μ�) the distance between any two consecutive zeros of sin(θt + c2). Then,

d
(

μ�) =
π

θ
, (6.38)

(T + 1) − τ̂ < d(μ�) < (T + 1) − (τ̂ − 1). (6.39)

Combining (6.36) with (6.39) and using the definition of generalized zero, it follows
that v(t) has at most one generalized zero in [τ̂ − 1, t2], which implies that (6.35) is
disconjugate on [τ̂ − 1, t2].

This fact and Lemma 6.3 yield

Δ2v(t − 1) − χ−(t)v(t) = 0, t ∈ {τ̂ , . . . , t2 − 1} (6.40)

is disconjugate on [τ̂−1, t2], and subsequently, u cannot have two generalized zero in [τ̂−1, t2].
This is a contradiction.

Therefore, u has at most one generalized zero in (0, T + 1).

If the number of generalized zeros is in (0, T + 1) is 0, then

u(t) > 0, t ∈ T. (6.41)

Multiplying (6.29) by ψ1(t) and (6.20) by u(t) and subtracting, and then taking the summation
from 1 to T , it follows that

0 =
T
∑

t=1

[

χ+(t)u+(t)ψ1(t) − λ�u(t)ψ1(t)
]

=
T
∑

t=1

(

χ+(t) − λ�
)

u(t)ψ1(t) > 0, (6.42)

a contradiction.
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If u has a unique generalized zeros τu in (0, T+1), then from Lemma 6.3 and the similar
method to deal with Case 1, it follows that

τu = τ̂ . (6.43)

Thus,

Δ2u(t − 1) + χ+(t)u+(t) = 0, t ∈ {1, . . . , τ̂ − 1},

Δ2u(t − 1) − χ−(t)u−(t) = 0, t ∈ {τ̂ , . . . , T + 1}.
(6.44)

This together with the facts

Δ2ψ2(t − 1) + λ�ψ+
2 (t) = 0, t ∈ {1, . . . , τ̂ − 1},

Δ2ψ2(t − 1) − μ�ψ−
2 (t) = 0, t ∈ {τ̂ , . . . , T + 1}

(6.45)

imply that

0 =
τ̂−1
∑

t=1

[

χ+(t)u+(t)ψ+
2 (t) − λ�u+(t)ψ+

2 (t)
]

+
T
∑

t=τ̂

[

χ−(t)u−(t)ψ−
2 (t) − μ�u−(t)ψ−

2 (t)
]

< 0,

(6.46)

a contradiction.
Therefore, u(t) = 0 on T.

Proof of Theorem 6.5. The idea is the same as in the proof of [7, Theorem 1.9]. Let δ < min{λ� −
λ1, μ

� − λ1} and define the homotopy family

Δ2u(t − 1) + λ1u(t) + (1 − r)δu(t) + rg(t, u(t)) = rh(t), r ∈ [0, 1],

u(0) = u(T + 1) = 0.
(6.47)

We will show that there exists R > 0 such that (6.47), (6.29) has no solution uwith

‖u‖ = R. (6.48)

Similar to the proof of [7, Remark 1.2], we may prove that there exist two positive
constants q1 and q2, such that

g(t, s) = γ(t, s)s + h(t, s), t ∈ T, s ∈ R, (6.49)

where 0 ≤ γ(t, s) ≤ q1, |h(t, s)| ≤ q2 for all s ∈ R and t ∈ T.
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Let us define

ĝ1(t, s) =

⎧

⎨

⎩

min
{

g(t, s), 1
}

, s ≥ 1

min
{

g(t, s),−1}, s ≤ −1,

g∗(t, s) = g(t, s) − ĝ1(t, s),

γ(t, s) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

g∗(t, s)
s

, |s| ≥ 1,

g∗
(

t,
s

|s|
)

s, 0 < |s| < 1,

0, s = 0.

(6.50)

Assume to the contrary that there exists a sequence {(rn, un)} ⊆ [0, 1]×D∗ with ‖un‖ →
∞, such that

Δ2un(t − 1) + λ1un(t) + (1 − rn)δun(t) + rng(t, un(t)) = rnh(t), t ∈ T,

un(0) = un(T + 1) = 0.
(6.51)

Set

χn(t) = (1 − rn)δ + rnγ(t, un(t)). (6.52)

Then we may assume that χn → χ in D∗. Moreover, it follows from (6.5), (6.25), and (6.49)
that χ(t) ≥ 0 on t ∈ T, and

χ(t) ≤ λ� − λ1 on
{

t ∈ T | ψ2(t) < 0
}

,

χ(t) ≤ μ� − λ1 on
{

t ∈ T | ψ2(t) < 0
}

,
(6.53)

with the strict inequalities on some t0 ∈ T \ {τ̂}. Now, by the standard arguments, see the
proof of [7, Theorems 1.5 and 1.9], we may get the desired contradiction.

Remark 6.8. Theorem 6.5 improves the main results of Rodriguez [8] and R. Ma and H. Ma
[9, 10], where the nonlinearities are not jumping at infinity.
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