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We study the global asymptotic stability of the equilibrium point for the fractional difference
equation xn+1 = (axn−lxn−k)/(α + bxn−s + cxn−t), n = 0, 1, . . ., where the initial conditions
x−r , x−r+1, . . . , x1, x0 are arbitrary positive real numbers of the interval (0, α/2a), l, k, s, t are
nonnegative integers, r = max{l, k, s, t} and α, a, b, c are positive constants. Moreover, some
numerical simulations are given to illustrate our results.

1. Introduction

Difference equations appear naturally as discrete analogues and as numerical solutions
of differential and delay differential equations having applications in biology, ecology,
physics, and so forth [1]. The study of nonlinear difference equations is of paramount
importance not only in their own field but in understanding the behavior of their differential
counterparts. There has been a lot of work concerning the global asymptotic behavior of
solutions of rational difference equations [2–6]. In particular, Ladas [7] put forward the idea
of investigating the global asymptotic stability of the following difference equation:

xn+1 =
xn + xn−1xn−2

xnxn−1 + xn−2
, n = 0, 1, . . . , (1.1)

where the initial values x−2, x−1, x0 ∈ (0,+∞).
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In [8], Nesemann utilized the strong negative feedback property of [2] to study the
following difference equation:

xn+1 =
xn−1 + xnxn−2

xn−1xn + xn−2
, n = 0, 1, . . . , (1.2)

where the initial values x−2, x−1, x0 ∈ (0,+∞).
By using semicycle analysis methods, the authors of [9] got a sufficient condition

which guarantees the global asymptotic stability of the following difference equation:

xn+1 =
xbn−1 + xnx

b
n−2 + a

xbn−1xn + x
b
n−2 + a

, n = 0, 1, . . . , (1.3)

where a, b ∈ [0,+∞) and the initial values x−2, x−1, x0 ∈ (0,+∞).
Yang et al. [10] investigated the invariant intervals, the global attractivity of

equilibrium points, and the asymptotic behavior of the solutions of the recursive sequence

xn+1 =
axn−1 + bxn−2

c + dxn−1xn−2
, n = 0, 1, . . . . (1.4)

Berenhaut et al. [11] generalized the result reported in [12] to the following rational equation

xn =
yn−k + yn−m
1 + yn−kyn−m

, n = 0, 1, . . . . (1.5)

This work is motivated from [13–15]. For more similar work, one can refer to [12, 16–20] and
references therein.

The purpose of this paper is to investigate the global attractivity of the equilibrium
point, and the asymptotic behavior of the solutions of the difference equation:

xn+1 =
axn−lxn−k

α + bxn−s + cxn−t
, n = 0, 1, . . . , (1.6)

where the initial conditions x−r , x−r+1, . . . , x1, x0 are arbitrary positive real numbers of the
interval (0, α/2a), l, k, s, t is nonnegative integer, and r = max{l, k, s, t} and α, a, b, c are
positive constants. Moreover, some numerical simulations to the special case of (1.6) are given
to illustrate our results.

This paper is arranged as follows: in Section 2, we give some definitions and
preliminary results. The main results and their proofs are given in Section 3. Finally, some
numerical simulations are given to illustrate our theoretical analysis.

2. Some Preliminary Results

To prove the main results in this paper, we first give some definitions and preliminary results
[21, 22] which are basically used throughout this paper.
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Lemma 2.1. Let I be some interval of real numbers and let

f : Ik+1 −→ I (2.1)

be a continuously differentiable function. Then for every set of initial conditions x−k, x−k+1, . . . , x0 ∈ I,
the difference equation

xn+1 = f(xn, xn−1, . . . , xn−k), n = 0, 1, . . . , (2.2)

has a unique solution {xn}+∞n=−k.

Definition 2.2. A point x ∈ I is called an equilibrium point of (2.2), if

x = f(x, x, . . . , x). (2.3)

That is, xn = x for n ≥ 0 is a solution of (2.2), or equivalently, x is a fixed point of f .

Definition 2.3. Let p, q be two nonnegative integers such that p + q = n. Splitting x =
(x1, x2, . . . , xn) into x = ([x]p, [x]q), where [x]σ denotes a vector with σ-components of x,
we say that the function f(x1, x2, . . . , xn) possesses a mixed monotone property in subsets In

of Rn if f([x]p, [x]q) is monotone nondecreasing in each component of [x]p and is monotone
nonincreasing in each component of [x]q for x ∈ In. In particular, if q = 0, then it is said to be
monotone nondecreasing in In.

Definition 2.4. Let x be an equilibrium point of (2.2).

(i) x is stable if for every ε > 0, there exists δ > 0 such that for any initial conditions
(x−k, x−k+1, . . . , x0) ∈ Ik+1 with |x−k−x|+ |x−k+1−x|+ · · ·+ |x0−x| < δ, |xn−x| < εholds
for n = 1, 2, . . . .

(ii) x is a local attractor if there exists γ > 0 such that xn → x holds for any initial
conditions (x−k, x−k+1, . . . , x0) ∈ Ik+1 with |x−k − x| + |x−k+1 − x| + · · · + |x0 − x| < γ .

(iii) x is locally asymptotically stable if it is stable and is a local attractor.

(iv) x is a global attractor if xn → x holds for any initial conditions (x−k, x−k+1, . . . , x0) ∈
Ik+1.

(v) x is globally asymptotically stable if it is stable and is a global attractor.

(vi) x is unstable if it is not locally stable.

The linearized equation of (2.2) about the equilibrium x is the linear difference
equation

yn+1 =
k∑

i=1

∂f(x, x, . . . , x)
∂xn−i

yn−i. (2.4)

Now assume that the characteristic equation associated with (2.4) is

P(λ) = P0λ
k + P1λ

k−1 + · · · + Pk−1λ + Pk = 0, (2.5)

where Pi = ∂f(x, x, . . . , x)/∂xn−i.
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Lemma 2.5. Assume that P1, P2, . . . , Pk ∈ R and k ∈ {0, 1, 2, . . .}. Then

|P1| + |P2| + · · · + |Pk| < 1 (2.6)

is a sufficient condition for the local asymptotically stability of the difference equation

xn+k + P1xn+k−1 + · · · + Pkxn = 0, n = 0, 1, . . . . (2.7)

Lemma 2.6. Assume that f is a C1 function and let x be an equilibrium of (2.2). Then the following
statements are true.

(a) If all roots of the polynomial equation (2.5) lie in the open unite disk |λ| < 1, then the
equilibrium point x of (2.2) is locally asymptotically stable.

(b) If at least one root of (2.2) has absolute value greater than one, then the equilibrium point
x of (2.2) is unstable.

Remark 2.7. The condition (2.6) implies that all the roots of the polynomial equation (2.5) lie
in the open unite disk |λ| < 1.

3. The Main Results and Their Proofs

In this section, we investigate the global asymptotic stability of the equilibrium point of (1.6).
Let f : (0,∞)4 → (0,∞) be a function defined by

f(u, v,w, s) =
auv

α + bw + cs
, (3.1)

then it follows that

fu(u, v,w, s) =
av

α + bw + cs
, fv(u, v,w, s) =

au

α + bw + cs
,

fw(u, v,w, s) = −
abuv

(α + bw + cs)2
, fs(u, v,w, s) = −

acuv

(α + bw + cs)2
.

(3.2)

Let x, x be the equilibrium points of (1.6), then we have

x = 0, x =
α

a − (b + c) , (3.3)

where a/= b + c. If a = b + c, then x = 0 is a unique equilibrium point.
Moreover,

fu(x, x, x, x) = fv(x, x, x, x) = fw(x, x, x, x) = fs(x, x, x, x) = 0,

fu
(
x, x, x, x

)
= fv

(
x, x, x, x

)
= 1, fw

(
x, x, x, x

)
= −b

a
, fs

(
x, x, x, x

)
= − c

a
.

(3.4)
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Thus, the linearized equations of (1.6) about equilibrium points x and x are, respectively,

zn+1 = 0, (3.5)

zn+1 = zn−k + zn−l −
b

a
zn−s −

c

a
zn−t, (3.6)

where l, k, s, t are nonnegative different integers.
The characteristic equation associated with (3.6) is

P(λ) = λr−k + λr−l − b
a
λr−s − c

a
λr−t = 0, (3.7)

where r = max{l, k, s, t}.
By Lemmas 2.5 and 2.6, we have the following result.

Theorem 3.1. The equilibrium point x = 0 of (1.6) is locally asymptotically stable. Moreover, we
have the following.

(a) If all roots of the characteristic equation (3.7) lie in the open unite disk |λ| < 1, then the
equilibrium point x of (1.6) is locally asymptotically stable.

(b) If at least one root of (3.7) has absolute value greater than one, then the equilibrium point
x of (1.6) is unstable.

Theorem 3.2. Let [γ, δ] be an interval of real numbers and assume that f : [γ, δ]k+1 → R is a
continuous function satisfying the mixed monotone property. If there exists

m0 ≤ min{x−k, x−k+1, . . . , x−1, x0} ≤ max{x−k, x−k+1, . . . , x−1, x0} ≤M0 (3.8)

such that

m0 ≤ f
(
[m0]p, [M0]q

)
≤ f

(
[M0]p, [m0]q

)
≤M0, (3.9)

then there exist (m,M) ∈ [m0,M0]
2 satisfying

M = f
(
[M]p, [m]q

)
, m = f

(
[m]p, [M]q

)
. (3.10)

Moreover, if m = M, then (2.2) has a unique equilibrium point x ∈ [m0,M0] and every solution of
(2.2) converges to x.

Proof. Using m0 and M0 as a couple of initial iteration, we construct two sequences {mi} and
{Mi} (i = 1, 2, . . .) from the equation

mi = f
(
[mi−1]p, [Mi−1]q

)
, Mi = f

(
[Mi−1]p, [mi−1]q

)
. (3.11)
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It is obvious from the mixed monotone property of f that the sequences {mi} and {Mi}
possess the following monotone property

m0 ≤ m1 ≤ · · · ≤ mi ≤ · · · ≤Mi ≤ · · · ≤M1 ≤M0, (3.12)

where i = 0, 1, 2, . . ., and

mi ≤ xl ≤Mi for l ≥ (k + 1)i + 1. (3.13)

Set

m = lim
i→∞

mi, M = lim
i→∞

Mi, (3.14)

then

m ≤ lim
i→∞

infxi ≤ lim
i→∞

supxi ≤M. (3.15)

By the continuity of f , we have

M = f
(
[M]p, [m]q

)
, m = f

(
[m]p, [M]q

)
. (3.16)

Moreover, if m =M, then m =M = limi→∞ xi = x, and then the proof is complete.

Theorem 3.3. The equilibrium point x = 0 of (1.6) is a global attractor for any initial conditions

(x−r , x−r+1, . . . , x1, x0) ∈
(

0,
α

2a

)r+1
. (3.17)

Proof. Let f : (0,∞)4 → (0,∞) be a function defined by

f(u, v,w, s) =
auv

α + bw + cs
. (3.18)

We can easily see that the function f(u, v,w, s) is increasing in u, v and decreasing in w, s.
Let

M0 = max{x−r , x−r+1, . . . , x−1, x0},
aM0 − α
b + c

< m0 < 0; (3.19)

we have

m0 ≤
am2

0

α + bM0 + cM0
≤

aM2
0

α + bm0 + cm0
≤M0. (3.20)
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Then from (1.6) and Theorem 3.2, there exist m,M ∈ [m0,M0] satisfying

m =
am2

α + bM + cM
, M =

aM2

α + bm + cm
, (3.21)

thus

[α − a(m +M)](m −M) = 0. (3.22)

In view of 2aM0 < α, we have

α − a(m +M) > 0. (3.23)

Then

M = m. (3.24)

It follows by Theorem 3.2 that the equilibrium point x = 0 of (1.6) is a global attractor. The
proof is therefore complete.

Theorem 3.4. The equilibrium point x = 0 of (1.6) is a global asymptotic stability for any initial
conditions

(x−r , x−r+1, . . . , x1, x0) ∈
(

0,
α

2a

)r+1
. (3.25)

Proof. The result follows from Theorems 3.1 and 3.3.

4. Numerical Simulations

In this section, we give numerical simulations to support our theoretical analysis via the
software package Matlab7.0. As an example, we consider the following difference equations

xn+1 =
xnxn−1

5 + 2xn + xn−1
, n = 0, 1, . . . , (4.1)

xn+1 =
xnxn−1

5 + 2xn−2 + xn−3
, n = 0, 1, . . . , (4.2)

where the initial conditions x−3, x−2, x−1, x0 ∈ (0, 2.5). Let m0 = −0.5, M0 = 2.5; it is obvious
that (4.1) and (4.2) satisfy the conditions of Theorems 3.2 and 3.3.

By employing the software package MATLAB7.0, we can solve the numerical solutions
of (4.1) and (4.2) which are shown, respectively, in Figures 1 and 2. More precisely, Figure 1
shows the numerical solution of (4.1) with x−1 = 1.2, x0 = 1.8, and the relations that mi ≤
xl ≤ Mi when l ≥ (k + 1)i + 1, i = 0, 1, 2, . . ., and Figure 2 shows the numerical solutions of
(4.2) with x−3 = 1.5, x−2 = 1.8, x−1 = 1.3, x0 = 1.4, and the relations that mi ≤ xl ≤Mi when
l ≥ (k + 1)i + 1, i = 0, 1, 2, . . . .
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Figure 1: Chart of (4.1) with x(−1) = 1.2, x(0) = 1.8.
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Figure 2: Chart of (4.2) with x(−3) = 1.5, x(−2) = 1.8, x(−1) = 1.3, x(0) = 1.4.

5. Conclusions

This paper presents the use of a variational iteration method for systems of nonlinear
difference equations. This technique is a powerful tool for solving various difference
equations and can also be applied to other nonlinear differential equations in mathematical
physics. The numerical simulations show that this method is an effective and convenient
one. The variational iteration method provides an efficient method to handle the nonlinear
structure. Computations are performed using the software package MATLAB7.0.

We have dealt with the problem of global asymptotic stability analysis for a class
of nonlinear difference equations. The general sufficient conditions have been obtained to
ensure the existence, uniqueness, and global asymptotic stability of the equilibrium point for
the nonlinear difference equation. These criteria generalize and improve some known results.
In particular, an illustrate example is given to show the effectiveness of the obtained results. In
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addition, the sufficient conditions that we obtained are very simple, which provide flexibility
for the application and analysis of nonlinear difference equations.
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