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The main purpose of this paper is to present a systemic study of some families of higher-order
g-Euler numbers and polynomials with weight a. In particular, by using the fermionic p-adic g-
integral on Z,, we give a new concept of g-Euler numbers and polynomials with weight a.

1. Introduction

Let p be a fixed odd prime. Throughout this paper Z,, Q,, C, and C,, will, respectively, denote
the ring of p-adic rational integers, the field, of p-adic rational numbers, the complex number
field and the completion of algebraic closure of Q,. Let N be the set of natural numbers and
Z. = N U {0}. Let v, be the normalized exponential valuation of C, with [p|, = p™®) = p~!
(see [1-14]). When one speaks of g-extension, g can be regarded as an indeterminate, complex
number g € C, or p-adic number g € C,; it is always clear from context. If g € C, we assume
lgl < 1.1If g € C,, then we assume [1 - qlp <1 (see [1-14]).
In this paper, we use the notation of g-number as follows:

[x], = (1.1)

(see [1-14]). Note that lim, 1 [x], = x for any x with |x|p < 1in the p-adic case.
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Let C(Z,) be the space of continuous functions on Z,. For f € C(Z,), the fermionic
p-adic g-integral on Z,, is defined by

ol .
Ly(f) = f FOpy) = Jim = 5 (-a)"
(1.2)
21,7 .
= Jim =+ 2, S (-a)
(see [4-7]).
From (1.2), we note that
al4(f1) + I4(f) = [2],£(0), (1.3)
where fi(x) = f(x +1).
It is well known that the ordinary Euler polynomials are defined by
d+ﬁ”=JW=Z¥Am£, (1.4)

with the usual convention of replacing E"(x) by E, (x).
In the special case, x = 0 and E, (0) = E, are called the nth Euler numbers (see [1-14]).
By (1.5), we get the following recurrence relation as follows:

2, ifn=0,
Ey=1, (E+1)"+E= (1.5)
0, ifn>0.
Recently, (h, q)-Euler numbers are defined by
2 n 2, ifn= 0,
Eny = 1+ a0 q" (th(ah) * 1) +EJ” = . (16)
+q 0, ifn>0,

with the usual convention about replacing (E;h))n by E,(ffq) (see [1-12]).
Note that limqﬂlEf,}fq) =E,.
For a € N, the weight g-Euler numbers are also defined by

2], ifn=0
F@ 5@, 1)y g _ | Pl '
EW=1,  q(q¢"E® +1)"+ B - (17)
" (B 1)+ B {a if n>0,

with the usual convention about replacing (E,(f))n by Effg (see [4]).
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The purpose of this paper is to present a systemic study of some families of higher-
order g-Euler numbers and polynomials with weight a. In particular, by using the fermionic

p-adic g-integral on Z,, we give a new concept of g-Euler numbers and polynomials with
weight a.

2. Higher-Order g-Euler Numbers and Polynomials with Weight o

For h € Z, ¢,k € N, and n € Z,, let us consider the expansion of higher-order g-Euler
polynomials with weight a as follows:

EW (h,k | x)

= I f o1+ -+ i+ X DT () - dpg (x). (2.1)
Z, Z,

k-times

From (1.2) and (2.1), we note that:

- 215 & /n g
Eng(hk|x) = —"5 (1)’ . (22)
q (1-g)"4&\1 (1 + ot - (1 + gat+h-k+1)

In the special case, x = 0, E% (h,k|0) = Eﬁ[’g (h, k) are called the higher-order g-Euler numbers
with weight a.
By (2.1), we get

EW (hk) = (q° - 1)Eflﬁ)1lq(h —a,k) + ES) (h— a, k). (2.3)

From (2.1) and (2.2), we have
Eg) (ma, k +1)

= j f qzﬁll(m“‘f)xfdy_q(xl)---dy_q(xkﬂ)

Z, 7,

m m x 1 1 —Z’FH]IX‘
=Z (q _1) [x1+...+xk+1]qaq j=1 ]dlft—q(xl)"'d,u—q(xk+l)
=0 \ [ z, Jz,

"V (g - 1'ED 0,k + 1)

i q Lg \*/

21"

g (g (T gy

(2.4)

Mz

1

il
(=)
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From (2.1), we can derive the following equation:

i

i ' n-i+j —a—k)x
<]_> ("-1) J; ...JZ 1+ + 2] e H g(ha=Dxpe+(h-ak) “dp_g(x1) - dp—g(xx)
0 p p

j=

= J‘ e J‘ [xg +--+ xk]Z;iq(h—l)xl+...+(h—k)x1<qa(X1+~~~+xk)(i—1)dl/l_q (x1) -+ d‘u_q(xk) (2.5)

S i1 2w
=S (g°-1) ]_ EV, (k).

j=0

By (2.1), (2.2), (2.3), and (2.4), we see that

i /i il
%(Q"‘—l)]C) B\ (h—ak) = Z(q 1)f<1]_ > EV, (k). (2.6)

Therefore, we obtain the following theorem.

Theorem 2.1. For a, k € Nand n,i € Z,, one has

i /i . i-1 [i-
Z <;> (qa - 1)]E;(:i)i+i,q(h -a,k) = Z (qa - 1)] <l j 1> Efla)l‘*']q(h’ k). (2.7)
j=0

j=0

By simple calculation, we easily see that

m m [z]k
1 ]E(a) 0 k q ' 28
.Z < ] > ) ( ) (1 + q“m)(l + qam—l) .. (1 + qum_k+1) ( )

j=0

3. Polynomials Ef{f‘;(O, k| x)

We now consider the polynomials E;, (“) 4(0,k | x) (in g*) by

0,k | x) = f f [ +x1 + - + X ], g () - dpg (). (3.1)

k-times

By (3.1), we get

a n 7= (a) c alx n -1 1
(q _1) Ex (0 k |X Z( > ( (1+qal)...(1+qal—k+1)' (32)

1=0
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From (3.1) and (3.2), we can derive the following equation:

. n n
I . qZ};l(anf])x/-Jranxd‘u_q(xl) e dﬂ—q(xk) = Z <]> (q 1)]E(lx)(0 k|x),
Z

P Zp j=0
(3.3)
) z]kthnx
e Z;":l (an—])xj+anxd _(xq1)---du_.(x — [ 9
[ ] ) ) =
Therefore, by (3.2) and (3.3), we obtain the following theorem.
Theorem 3.1. For « € Nand n, k € Z,, one has
~ [2]¥ no/n 1
EnOk|x) = ———— (D™
! [a];(1-q) zzo: ! (=g 1 q),
(3.4)
n anx [2]
= (a)
- D EDOK )= —
lg(; < > (=g *+1 1 q),
where (a: q),=1and (a:q), =(1-a)(1-aq)---(1-ag"™?).
Letd e Nwithd =1 (mod2). Then we have
X n
f I [x+Zx]] q_zﬁzljxidl/l,q(xl)"'dlflfq(xk)
Zy Zy j=1 N
q
no4o
e 5 oS (35)
[d]—q al,...,ak:O
X+ Z?:l aj & ’ A3k jx;
><J‘ J. T+Zx] q ]:1] ]d#—qd(xl)“'d/’l—qd(xk)‘
Zp Zp j=1 ad
q
Thus, by (3.5), we obtain the following theorem.
Theorem 3.2. For d € Nwithd =1 (mod 2), one has
~(a) d n”‘ o >k (-1)a; Sk a ma) X+ay+---+ag
E, (0 k|x)= Z q == i(=1)% /En,qd <O,k | f) (3.6)

—q 25y uk:O
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Moreover,

[dly 4

E®(0,k | dx) =
[d] qu ay,...,ax=0

By (3.1), we get

Eﬁ:z(o,k I x) = Z( > n -1 ule(lZ)(O k)

where E\0(0,k | 0) = E\0(0, k).
Thus, we note that

n

EQO,k|x+y) = Z<7> 15 ™ E? 0,k | x).

1=0

4. Polynomials E\)(h,1 | x)

Let us define polynomials EW q(h, 1] x) as follows:

E,(f;(h, 1]x)= f [x + xl];l“qxl(hfl)d#—q(xl).
z

P

From (4.1), we have

(2] " 1
=(a) q Z _1\! jalx
Eraliol 1) = (1-g%)" <l>( VT gy

1=0

By the calculation of the fermionic p-adic g-integral on Z,, we see that

ax

q [ + 21 15 " Vdp g (x1)

Zp

— (qa _1) IZ [x+xl];;rlqm(h—a—l)dﬂ_q(xl) +f [x+xl];taqxl(h—a—l)d#_q(xl)_
4

Zp

Thus, by (4.3), we obtain the following theorem.

Theorem 4.1. For « € N and h € Z, one has

FES (1| x) = (" -1)EY, (h—a-1,1]x)+E&(h-a-1,1]x).

n+l,q

-3k _(i-1)a; k g~ ay+---+ag
S g TR )T, (0k x+ B,

(3.7)

(3.8)

(3.9)

(4.1)

(4.2)

(4.3)

(4.4)



Discrete Dynamics in Nature and Society 7

It is easy to show that

EQ1120 = [ [+l )
Z

=

-3

l—0<
< >[x]nl ale(“)(h 1)
1=0

= (quxﬁﬁ,a)(h,l) + [x]q,,>n, forn>1,

> n 1 ale xl qxl(h Dd‘u (xl)
(4.5)

=2

with the usual convention about replacing (E, E@(h,1))" by EW 5 (h,1).
From glI_4(f1) + I-4(f) = [2],f(0), we have

q" f ) [ + 21+ 1]5g " Vdp_g(x1) + fz [x + x| q " Vdp g (x1) = [2],[x]}. (4.6)
P P
By (4.3) and (4.6), we get
G'ESy(h, 1] x+1) + Efy(h,1] x) = [2], [x]%. (4.7)

For x = 01in (4.7), we have

[2],, ifn=0,
FED M) +EDh 1) =4 " (4.8)
0, if n>0.
Therefore, by (4.8), we obtain the following theorem.
Theorem 4.2. For h € Z and n € Z.., one has
3 2], ifn=0,
q" <q”‘E,(1“) (h,1) + 1) +EQ(h1) = v (4.9)
0, ifn>0,
with the usual convention about replacing (Eff‘) (h,1))" by Eil“q) (h,1).
From the fermionic p-adic g-integral on Z,, we easily get
(2]
E(d)(h 1) qx1(h*1)d#_q(xl) — 5 q (410)

., 21,
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By (4.1), we see that

E0L 1 11-0= [ [z nlg ey (o)

ZP
n

(2] 1
_ (_1\" ,an+h-1 q _ 1\ jalx (411)
—( 1)q (1—17'1) Z<l>( ) 1+qal+h

1=0

= (-)"q " EY (b 1] ).

Therefore, by (4.11), we obtain the following theorem.

Theorem 4.3. Fora € N, h € Z,and n € 7., one has

E;; (h,1]1-x) = (-1)"g"*" 1 EW (h,1| ). (4.12)
In particular, for x = 1, one gets

ES) (h,1) = (-1)"g™" Y ES (h, 1] 1)

(4.13)
_ ( 1)11 1 _an- 1E(“)(h’1) ifn > 1.
Let d € Nwith d =1 (mod 2). Then one has
J; gD x + x1] gedp—g (x1)
P
(4.14)

71

ta " xi(h-1d
a +x1]qadq( )d[/l_qd(xl).

d-1 0 a x
Q;Jh(l) JZP[

Therefore, by (4.14), we obtain the following theorem.

Theorem 4.4 (Multiplication formula). For d € N with d =1 (mod 2), we have

EW 1] x) = { T dzl ha(-1)"E, (h,1] “‘1) (4.15)
QaO
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5. Polynomials E)(h,k | x) and k = h

In (2.1), we know that

E (kK | x)

(5.1)
= J’ e J‘ [xl +oeo+ X+ x]Zaq(h_l)x1+"'+(h_k)xkd#_q(xl) e d/’l—q(xk)
z, 7,
Thus, we get
(g~ 1)"ES k10 = 283 (") () T
ng\fts 14\ | (1+g7h) o (1 + gobrhke
qh IZ e JZ [x +1+ X1+ + xk]Zaq(h_l)x1+"'+(h_k)xkd‘u_q(xl) . dl’l—q(xk)
L (5.2)
= _I e I [x +x1 4+ + xk]Zaq(hfl)xl+~-.+(h7k)3fkd#_q(xl) - d[l_q(xk)
ZP ZP
+[2], f = f [+ 302 4 e 2 quq "B S g 0a) - - g (k)
ZP ZP
Therefore, by (2.1) and (5.2), we obtain the following theorem.
Theorem 5.1. Forh € Z, a € N, and n € Z.., one has
G"ES (k| x +1) + ES)(hk | x) = [21,Ena(h =1,k ~ 1| x). (5.3)

Note that

qax I - f [x+x1+---+ xk]Zaqhxl+(h_1)x2+"'+(h+1_k)xkd#_q(X1) L. dy_q(xk)
Zy Z,
= (qa —_ 1) J‘ cee J‘ [x + x1 4+ oo+ xk]Z;lq(h_a)xl+"'+(h+1_a_k)xkd‘l/l_q(xl) “e d#—q(xk)
Z, Z,

+ ’[ . J‘ [x + X1+t xk]Zaq(hfﬂl)X]+~-.+(h+1—a—k)xkd‘u_q(xl) . dl’l—q (xk)
z, Jz,

= (" -VEZ (h+1-ak|x)+EH(h+1-ak]|x).

(5.4)

Therefore, by (5.4), we obtain the following theorem.
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Theorem 5.2. Forn € Z., one has

G Eny(h+1,k|x) = (4" - 1)EW (h+1-ak|x)+Efy(h+1-ak|x).  (55)

Let d € Nwith d =1 (mod 2). Then we get
L2 .
I f X+ 3% g "D dp g () - dppg (x)
Zp Zp =t ]

[ ! k k . k
— Z qh Z]‘:l aj*Z;‘:z(]*l)aj (_1)Zj=1 aj (56)

x+ X% a; .
[ = Zx,] g G ) - g (x).
qad

Therefore, by (5.6), we obtain the following theorem.

Theorem 5.3. For d € N with d =1 (mod 2), one has

ES) (h,k | dx)

noog L (5.7)
[d]q Z qhz] 14— Z] > (- 1)11}( 1) / 1 u]E(R <h k | x + $>‘
[d]—qm -,ak=0 d

Let E(“) (k,k|x)= (“)(k | x). Then we get
(" = 1)"Exj(k | x),

2]

- _1\n-1 alx
IZ:< > ) (1+qal+k)...(1+qal+1)

J- e J‘ [k - X + xl + oo 4 xk]Z—aqi(kil)xlﬂ"i(kik)xkd/,l_qfl (xl) “ee d#_q,l (xk)
Z Z

(5.8)
q <k;l) B kz (_ )l alx 1
(1 q ) (1 + qal+1) - (] + qal+k)
1 n n _11 alx
- aygeg (4 LIS (e

(1 q) im0 (141 - (1+ )

= (-1 CEDF B (k| ),
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Therefore, by (5.8), we obtain the following theorem.

Theorem 5.4. For n € Z.., one has
B Gk 1k =) = (-1"g (TS B e ), (59)
Let x = k in Theorem 5.4. Then we see that
ED (k10) = (-1)"q*CCED)*ED k| k). (5.10)
From (4.6) and Theorem 5.1, we note that
GES(k | x+1) + Efy(k | x) = [2], Ex (k- 1] x). (5.11)

It is easy to show that

a_1\np@) _ (" 1\ [Z]Z
(g% - 1)"E\ (k | 0) _Z<1>( R oy e cpry (5.12)

1=0

By simple calculation, we get

En;<';><q“—1>’fz f [ 4+ + o] Lg = DNy ) - dpe g ()
1=0 P P

(5.13)
_ 2]}
(1 + qan+k) (1 + qan+k—1) .. (1 + qan+1) :

From (5.13), we note that

S [2]%
Z<l>(q - 1) E (k | 0) (1 +qan+k)(1 +qan+k—1) (1 +q"‘"*1)'

1=0
Efﬁ;(k | x) = j . f [X+2x1+---+ xk]Zaq(kfl)x1+~--+(kfk)xkdﬂ_q(xl)
z, Jz

"d/l_q(Xk) (5.14)

= Z<l> E (k | 0)[x]

= (“E" (k| 0) + [x].)" fornez.,

with the usual convention about replacing (E(a) (k | O)) by E (k | 0).
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Put x = 0in (5.11); we get

q“En(k | 1) + Ey(k | 0) = [2] Ef (k=11 0). (5.15)
Thus, we have
q <q“E,‘;‘> (k| 0)+ 1) +Ef(k10) = [21,ES (k-110), (5.16)

with the usual convention about replacing (E,;“) (k] 0)" by Eﬁf; (k| 0).
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