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In order to suppress the interference of the strong fractional noise signal in discrete-time ultra-
wideband (UWB) systems, this paper presents a new UWB multi-scale Kalman filter (KF)
algorithm for the interference suppression. This approach solves the problem of the narrowband
interference (NBI) as nonstationary fractional signal in UWB communication, which does not
need to estimate any channel parameter. In this paper, the received sampled signal is transformed
throughmultiscale wavelet to obtain a state transition equation and an observation equation based
on the stationarity theory of wavelet coefficients in time domain. Then through the Kalman filter
method, fractional signal of arbitrary scale is easily figured out. Finally, fractional noise interference
is subtracted from the received signal. Performance analysis and computer simulations reveal that
this algorithm is effective to reduce the strong fractional noise when the sampling rate is low.

1. Introduction

Ultrawideband (UWB) radio is an emerging technology for future short-rang high-speed
wireless communications. In recent years, the Federal Communication Commission (FCC)
confined the working bandwidth of UWB systems in the 3.1–10.6GHz frequency band rang
and the power spectral density (PSD) in less than −41.3 dBm/MHz [1, 2]. UWB signal is
defined as any wireless signal that has a relative bandwidth more than 25% or an absolute
bandwidth in excess of 500MHz, satisfying PSD required by FCC. Compared with the
existing radio communication technologies, the spread spectrum technique of UWB systems
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bears many advantages, for instance, low power consumption, low probability of intercept,
strong ability of penetrating materials, and large space capacity.

Since a conventional UWB system transfers data by using ultrashort pulses, it
possesses considerably large bandwidths. Usually, it causes mutual interference with the
most existing electronic narrowband systems over the same frequency band inevitably, such
as radio navigation or detection system, wireless local area network and global positioning
system (GPS) [3]. Therefore, to guarantee the successful deployment of UWB, it is related
to not only the deployment of efficient multiple access technologies but also narrow-band
interference suppression technologies.

Recently a number of the narrowband interference (NBI) suppression technologies
have been published thoroughly in many references. Some NBI cancellation solutions
[4–11] have been utilized in UWB systems, for example, pulse waveform designing
technology, minimum mean square error (MMSE) rake receiver technology, template
waveform estimation technology, frequency domain technology, notch filter techniques, and
so forth. These methods all selected simple and stable model as NBI model [12, 13] and
used a large number of estimated channel parameters to eliminate interference. Moreover,
they studied less about the nonstationary narrowband interference model and the reduction
of channel parameter estimation. Hence, this paper proposes a new multi-scale Kalman
filter algorithm for strong fractional noise interference suppression in time hopping (TH)
UWB systems. As the nonstationary fractional signal is very strong and UWB signal mixed
with white noise is very weak, the received signal in this paper is modeled as narrowband
signal which concentrated mainly fractional signal energy. Then it performs the multi-scale
wavelet analysis of the received signal and establishes the state space model of Kalman
filter estimation [14–17]. The state space model includes a time domain state equation
and observation equation. They are obtained by the stationarity of fractional wavelet
coefficients. Lastly, we can estimate the fractional Brownianmotion (FBM), and a novel multi-
scale Kalman filter for UWB systems is proposed. Its performance analysis and computer
simulations are also discussed in Section 5.

This paper is organized as follows. In Section 2, the discrete-timemodel of the received
signal is defined. In Section 3, we introduce the FBM. A novel multi-scale Kalman filter
algorithm is proposed in Section 4. The performance of this multi-scale Kalman filter is
analyzed, and simulation results are given in Section 5. The conclusions are drawn in
Section 6.

2. Discrete-Time UWB System Model

Consider a multiple-access TH-UWB system with single user. The transmitted UWB signal
employing binary pulse amplitude modulation (2-PAM) is provided by

st(t) =
+∞∑

j=−∞
b�j/Ns�ω

(
t − jTf − CjTc

)
, (2.1)

where ω(t) is a single link transmitted pulse waveform. Tf is the pulse repetition period. Tc
is the TH unit time. Ns is the number of repeated pulses over one symbol period. b�j/Ns� ∈
{+1,−1} represents the user’s information during the jth frame. If a symbol period duration
is Tb = NsTf , the transmitted rate is Rs = 1/(NsTf). {Cj} is the pseudorandom TH sequence
which adds an additional time shift Tc to each pulse, and 0 ≤ Cj ≤ Nh − 1.
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Assume dn stands for the nth symbol of single user. Then, (2.1) can be expressed as

st(t) =
N0∑

n=1

bnv(t − nTb), (2.2)

where v(t) =
∑Ns−1

j=0 ω(t − jTf − CjTc).N0 is the number of transmitted symbols.
Assume the nonstationary FBM model is used as NBI model. Then, while the

transmitted UWB signal propagates through a flat channel and is corrupted by fractional
noise signal BH(t) and additive white Gaussian noise (AWGN) N(t), the observation signal
is given by

r(t) = S(t) + BH(t) +N(t), (2.3)

where S(t) = α·st(t). α is the channel gain.N(t) ∼ N(0, σ2
Nt
). S(t)+N(t) denotes the wideband

component of the received signal.
However, in practical situation, the received signal must be discrete. Suppose r(t) is

sampled at the rate of 1/Ts and an output r(n) = r(t)|t=nTs is received in discrete-time form.
Then, the following received signal becomes

r(n) = BH(t) + S(n) +N(n), (2.4)

where S(n) = α · ∑N0
m=1 bnv(n − mM). M is the number of sampling points in every symbol

period.
Thus, in the nth symbol period, (2.4) can be changed into

rn = Bn + Sn +Nn, (2.5)

where Sn = X · η and X = [v(0), v(1), . . . , v(M − 1)]T . Here η = αbn is a constant.
In this paper, the estimated scheme is proposed to stress against the fractional

narrowband interferer. The whole basic idea is to realize the prediction of FBM signal, so that
it can be removed from the received signal to reduce the fractional interference. In theory,
this paper preforms an analysis of FBM. However, in practice, the estimation of the pure
FBM is difficult to achieve because the FBM is often unknown. And as the narrowband
signal occupies most of the received signal energy, the prediction of r(t) is used to replace the
estimation of FBM. On the other hand, the error signal r(t)−r̂(t), where r̂(t) is an estimation of
r(t), is very important to eliminate the FBM. Kalman filter technique is also cited to estimate
the FBM in this paper. It is shown in Figure 1.

3. Fractional Brownian Motion

Brownian motion is a kind of random, irregular motion. In the 1960s, a new theory of
fractional Brownian motion, commonly referred to as the FBM, is advanced by Mandelbrot
and Van Ness [18].

Denote

BH(t) =
1

Γ(H + 1/2)
·
{∫ t

0
(t − λ)H−1/2dB(λ) +

∫0

−∞
(t − λ)H−1/2 − (−λ)H−1/2dB(λ)

}
, (3.1)
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Figure 1: Estimated scheme of fractional noise suppression in UWB systems.

where Γ(·) is Gamma function andH (0 < H < 1) is a Hurst index. For the general Brownian
motion, when H = 1/2, it is a standard Brownian motion. Obviously, FBM, in a continuous
Gaussian process with a zero mean, has the nonstationarity, self-similarity, and so forth [18,
19].

Certainly, there are many methods of generating Brownian motion. For example,
Weierstrass-Mandelbrot random function method, under certain conditions, emerges FBM
through an almost everywhere nondifferentiable continuous function; in fractional Gaussian
noise method, it is that the fractional Gaussian noise is represented as the incremental
derivative of FBM; in covariance matrix transform method, Gaussian white noise is turned
into a sequence with the covariance matrix through the Cholesky decomposition technology
to get FBM; wavelet transform method, that is to say, in terms of adjacent times frequency
conversion rate, makes Gaussian white noise into FBM by the inverse wavelet transform.
However, this paper uses Weierstrass-Mandelbrot random function to obtain FBM.

4. Multiscale Kalman Filter Algorithm on Fractional Noise Model

With the purpose of NBI suppression to be successfully realized, we consider the discrete
orthogonal wavelet decomposition of BH(t). Then, (3.1) can be expressed in the following
form:

BH(t) =
+∞∑

n=−∞
cJ[n]ΦJ,n(t) +

+∞∑

j=−∞

+∞∑

n=−∞
dj[n]Ψj,n(t), (4.1)

where aJ[n] = 2−J/2
∫∞
−∞ I(t)Φ(2−J t − n)dt, dj[n] = 2−j/2

∫∞
−∞ I(t)Φ(2−j t − n)dt. ΦJ,n(t) =

2−J/2Φ(2−J t − n) is a scale function of the wavelet transform, and the wavelet function is
written by ΨJ,n(t) = 2−j/2Ψ(2−j t − n) [20, 21].

If (2.4) is converted applying the wavelet decomposition theory, we have the following
equation:

rj[n] = Sj[n] + dj[n] +Nj[n] = dj[n] + uj[n], (4.2)

where j = 1, 2, . . . , J . uj[n] = Sj[n]+Nj[n] has the mean μj = Sj[n] and variance Var(uj[n]) =
σ2
uj
. {dj[n]} is stable [22]. Then, due to the stationarity of wavelet coefficients {dj[n]}, this

AR(p) model can be found in this study:

dj[m] =
p∑

i=1

aidj[m − i] + εj[m], (4.3)



Discrete Dynamics in Nature and Society 5

where εj[m] with a zero mean and variance σ2
εj , independent of S[m] and BH[m], is AWGN.

ai, i = 1, 2, . . . , p are parameter coefficients.
Define

Fj =

[
O(M/2j−1)×1 EM/2j−1

O1×(M/2j−p) BT
j

]
,

Bj =
[
ap, ap−1, . . . , a1]

T , G =
[
O1×(M/2j−1) 1

]]T
,

d
(M/2j )
j,m =

[
dj

[
m − M

2j
+ 1

]
, . . . , dj[m − 1], dj[m]

]T
.

(4.4)

For (4.3), we have

d
(M/2j )
j,m+1 = Fjd

(M/2j )
j,m +Gε(m + 1). (4.5)

Equation (4.5) is one-step prediction from d
(M/2j )
j,m to d

(M/2j )
j,m+1 , so there M/2j iterative

steps of dj,n from dj,n+1, namely,

dj,n+1 = FM/2j
j dj,n +GM/2j εn+1, (4.6)

where dj,n = d
(M/2j )
j,(n+1)M/2j−1, and

GM/2j =
[
F
(M/2j−1)
j G, F

(M/2j−2)
j G, . . . , FjG,G

]
,

εn+1 =
[
ε

(
(n + 1)M

2j

)
, . . . , ε

(
(n + 2)M

2j
− 1

)]T
.

(4.7)

What is more, to facilitate the study below, we need to transform formula (2.5) into an
observation equation. That is,

rj,n = dj,n + Sj,n +Nj,n. (4.8)

Thus, if (4.6) is seen as a state transition equation in a dynamic space, combined with
(4.8), we can obtain a state space model for BH(t):

dj,n+1 = FM/2j
j dj,n +GM/2j εn+1,

rj,n = dj,n + uj,n,
(4.9)

where

uj,n = Sj,n +Nj,n. (4.10)

To estimate the state space model (4.9) in the third part, the new Kalman filter
algorithm is structured as follows.
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Figure 2: Fractional noise signal generated by Weierstrass-Mandelbrot function.

(1) Initialization: at n = 0, initialize dj,0 and P0 are given.

(2) State update:

d̂−
j,n+1 = FM/2j

j · d̂j,n,

P−
j,n+1 = FM/2j

j,n · Pj,n ·
(
FM/2j
j,n

)T
+ σ2

εj ·GM/2j (GM/2j )
T ,

Kj,n+1 = P−
j,n+1

{
P−
j,n+1 + σ2

uj
(n)E(M/2j )×(M/2j )

}†
,

d̂j,n+1 = d̂−
j,n+1 +Kn+1

(
rj,n+1 − d̂−

j,n+1

)
,

Pj,n+1 =
(
I −Kj,n+1

)
P−
j,n+1.

(4.11)

Therefore, this algorithm can predict all the high-frequency coefficients of the wavelet
on any scale according to the KF iterative algorithm. It means that FBM can be calculated
through the inverse wavelet transform to receive the interference suppression in UWB
systems.

5. Simulation

In this section, the performance of our proposed NBI suppression method is surveyed. It is
simulated by theMatlab7.1 software, and the pulse waveformω(t) from the TH-UWB system
is adopted as follows:

ω(t) =

(
1 − 4π

(
t

τ

)2
)

· exp
(
−2π

(
t

τ

)2
)
, (5.1)

where τ denotes the pulse forming factor. Suppose the parameters are Tf = 8 ns, Ns = 2,
Nh = 5,M = 160, and J = 3, and the sampled time interval is 0.05 ns, which is low. Moreover,
the Hausdorff-Besicovitch (fractional) dimension of the graph of Weierstrass-Mandelbrot
random function is D = 1.5. Therefore, there are some measured results for this simulation
in the following portion. In Figure 2, the original fractional noise signal is shown. Figures 3
and 4 describe the estimated fractional signal and the noisy error signal, respectively. That is,
the proposed new algorithm can effectively estimate the strong fractional noise from these
results of Figures 1–3.
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Figure 3: The estimated fractional signal based on multiscale wavelet transform.
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Figure 4: Error signal being wideband component of the observation signal.

Generally, the signal-to-interference ratio (SINR) can detect the performance of a
algorithm very well. In order to preferably evaluate the performance of the new fractional
noise suppression algorithm from another angle, SINR is improved in this paper:

SINRimprovement =
SINRout

SINRin
=

E
{
|r(n) − S(n)|2

}

E
{
|e(n) − S(n)|2

}

=
Var(BH(n)) + σ2

N

Var(e(n)) + σ2
N

,

(5.2)

where e(n) = BH(n) − B̂H(n), which is the estimated error signal of BH(n). σ2
N is the variance

of the white noise.
Thus, 100 independent tests are done, where the lower sampling rate is 0.1 ns and

D = 1.2 is employed. From this simulation, it is indicated that the actual SINR has greatly
improved in Figure 5. On the other hand, it is shown that this new method is effective in
suppressing the nonstationary BH(t) for UWB systems, which is a strong NBI.

6. Conclusion

In this paper, the multi-scale KF solution is suggested to suppress the fractional noise
interference in discrete-time UWB systems. Particularly, after a discrete-time received signal
is modeled in the receiver and the fractional signal is transformed based on the wavelet
analysis, the fractional signal can be estimated by Kalman filter, which is supposed as a strong
nonstationary NBI process. From the simulation above, the algorithm estimates the fractional
noise signal under the weak UWB signals by combining the theory of the multi-scale wavelet
transform and the Kalman filter. So that it achieves the separation of the narrowband signal
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Figure 5: Comparison of the performance of the ideal and proposed multi-scale KF method.

and wideband signals successfully. One of the advantages of this paper is not estimating
any channel parameter. Simulation results show that this method is an effective narrowband
interference suppression method of UWB systems.
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