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Synchronization of coupled nonidentical fractional-order hyperchaotic systems is addressed by the
active sliding mode method. By designing an active sliding mode controller and choosing proper
control parameters, the master and slave systems are synchronized. Furthermore, synchronizing
fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system is
performed to show the effectiveness of the proposed controller.

1. Introduction

Fractional calculus has been known since the development of the regular calculus, with the
first reference probably being associated with Leibniz and L’Hôspital in 1695. Although it
is a mathematical topic with more than 300 years old history, the applications of fractional
calculus to physics and engineering are just a recent focus of interest [1, 2]. Nowadays, by
utilizing fractional calculus technique, many investigations were devoted to the chaotic and
hyperchaotic behaviors of fractional-order systems, such as fractional-order Chua circuit [3],
fractional-order Lorenz system [4], fractional-order Rössler system [5], fractional-order Chen
system [6], and fractional-order conjugate Lorenz system [7].

Over the last two decades, synchronization of chaotic systems has become more and
more interesting to researchers in different fields. Since the synchronization of fractional-
order chaotic systems was firstly investigated in [8], it has recently attracted increasing
attention due to its potential applications in secure communication and control processing [9–
13]. Moreover, many theoretical analysis and numerical simulation results about the synchro-
nization of fractional-order chaotic systems are obtained [14–19]. Such synchronization may
be safer than those of the classical chaotic systems in secure communications. This can be seen
from two aspects: (i) the order of fractional derivatives can be regarded as a parameter and
(ii) the fractional derivatives are nonlocal thusmore complicated than the regular derivatives.



2 Discrete Dynamics in Nature and Society

This paper focuses on synchronization of coupled fractional-order hyperchaotic
nonidentical systems. The active sliding mode synchronization method is chosen to achieve
this goal. The active sliding mode synchronization technique is a discontinuous control
strategy, which relies on two stages of design. The first stage is to select an appropriate active
controller to facilitate the design of the sequent sliding mode controller. The second stage is
to design a sliding mode controller to achieve the synchronization. This process is verified
when active sliding mode synchronization method is used to synchronize fractional-order
hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system.

This paper is organized as follows. In Section 2, basic definitions in fractional calculus
are briefly presented. In Section 3, design of active sliding mode controller is proposed to
synchronize coupled nonidentical fractional-order hyperchaotic systems. The application of
the proposed method on fractional-order hyperchaotic Lorenz system and fractional-order
hyperchaotic Chen system is numerically investigated in Section 4. Finally, conclusions in
Section 5 close the paper.

2. Basic Definitions

There are some definitions for fractional derivatives [20]. Three most commonly used
definitions are Grünwald-Letnikov, Riemann-Liouville, and Caputo definitions.

Definition 2.1. The fractional derivative of Grünwald-Letnikov definition is given by

Dα
t f(t) =

dαf(t)
dtα

= lim
N→∞

[
t

N

]−αN−1∑
j=0

(−1)j
(
α

j

)
f

(
t − j

[
t

N

])
. (2.1)

Definition 2.2. Letm− 1 < α < m,m ∈ N, the Riemann-Liouville fractional derivative of order
α of any function f(t) is defined as follows:

Dα
t f(t) =

1
Γ(m − α)

dm

dtm

∫ t

0
(t − τ)m−α−1f(τ)dτ. (2.2)

Definition 2.3. Let f ∈ Cm
−1,m ∈ N, the Caputo fractional derivative of f(t) is defined by

Dα
t f(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
Γ(m − α)

∫ t

0
(t − τ)m−α−1d

mf(τ)
dτm

dτ, if m − 1 < α < m,

dmf(t)
dtm

, if α = m ∈ N.

(2.3)

Note that the main advantage of Caputo approach is that the initial conditions for
fractional differential equations with Caputo derivatives take on the same form as for integer-
order differential equations. Therefore, in the rest of this paper, the notation Dα

t indicates the
Caputo fractional derivative.
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3. Active Sliding Mode Controller Design and Analysis

Consider a fractional-order hyperchaotic system of order α(0 < α < 1), described by

Dα
t x = Ax + f(x), (3.1)

where x ∈ R4 denotes the system’s 4-dimensional state vector, A ∈ R4 × R4 represents the
linear part of the system, and f : R4 → R4 is the nonlinear part of the system. The system
(3.1) represents the master system. The controller u(t) ∈ R4 is added into the slave system,
given by

Dα
t y = By + g

(
y
)
+ u(t), (3.2)

where y, B and g imply the same roles as x, A, and f in the master system.
To synchronize the master system (3.1) and the slave system (3.2), the synchronization

errors dynamics is designed as follows:

Dα
t e = By + g

(
y
) −Ax − f(x) + u(t) = Be +G

(
x, y
)
+ u(t), (3.3)

where e = y − x and G(x, y) = (B − A)x + g(y) − f(x). The aim is to design the controller
u(t) ∈ R4 such that

lim
t→∞

‖e(t)‖ = 0. (3.4)

3.1. Designing the Active Controller

According to the active control design procedure [21–23], the nonlinear part of the error
system is eliminated by the following choice of the input vector:

u(t) = H(t) −G
(
x, y
)
. (3.5)

Then the error system (3.3) is rewritten as

Dα
t e = Be +H(t). (3.6)

On the other hand, based on a sliding mode control law,H(t) is designed as

H(t) = Kw(t), (3.7)

where K = [k1, k2, k3, k4]
T denotes a constant vector and w(t) ∈ R is the control input that

satisfies

w(t) =

⎧⎨
⎩
w+(t), s(e) ≥ 0,

w−(t), s(e) < 0,
(3.8)
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where s = s(e) is a switching surface which prescribes the desired dynamics. Therefore, the
error system becomes

Dα
t e = Be +Kw(t). (3.9)

3.2. Designing the Sliding Surface

The sliding surface can be defined by

s(e) = Pe, (3.10)

in which P = [p1, p2, p3, p4] is a constant vector. The equivalent control is found by the fact that
ṡ(e) = 0 is a necessary condition for the state trajectory to stay on the switching surface s(e) =
0. Hence, when in sliding mode, the controlled system satisfies the following conditions:

s(e) = 0, ṡ(e) = 0. (3.11)

From (3.9)–(3.11), it follows

ṡ(e) =
∂s(e)
∂e

ė =
∂s(e)
∂e

D1−α
t

(
Dα

t e
)
= PD1−α

t (Be +Kw(t)). (3.12)

Hence,

D1−α
t w(t) = −(PK)−1PBD1−α

t e(t). (3.13)

The equivalent control weq(t) is a solution of (3.13):

weq(t) = −(PK)−1PBe(t), (3.14)

which is realizable whenever PK assumes nonzero value.
Replacing w(t) in (3.9) by weq(t) in (3.14), the error dynamics on the sliding surface

are determined by the following relation:

Dα
t e =

(
I −K(PK)−1P

)
Be(t). (3.15)

3.3. Designing the Sliding Mode Controller

Based on the constant plus proportional rate reaching law [24–27], the reaching law is chosen
as

Dα
t s = −p sgn(s) − rs, (3.16)

where sgn(·) denotes the sign function. p > 0 and r > 0 are determined such that the sliding
condition is satisfied and the sliding mode motion occurs.
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Based on(3.9) and (3.10), it follows

Dα
t s = PDα

t e = PBe + PKw(t). (3.17)

Therefore, the control input is determined as

w(t) = −(PK)−1
[
P(rI + B)e(t) + p sgn(s)

]
. (3.18)

3.4. Stability Analysis

First, two stability theorems on fractional order systems are introduced.

Theorem 3.1 (see [28]). The following autonomous system:

Dα
t x = Ax, x(0) = x0, (3.19)

with 0 < α < 1, x ∈ Rn, and A ∈ Rn×n, is asymptotically stable if and only if | arg(λ)| > απ/2 is
satisfied for all eigenvalues of matrix A. Also, this system is stable if and only if | arg(λ)| ≥ απ/2 is
satisfied for all eigenvalues of matrix A with those critical eigenvalues satisfying | arg(λ)| = απ/2
having geometric multiplicity of one. The geometric multiplicity of an eigenvalue λ of the matrix A is
the dimension of the subspace of vectors v for which Av = λv.

Theorem 3.2 (see [28]). Consider a system given by the following linear state space form with inner
dimension n

Dα
t x = Ax + Bu

y = Cx,
x(0) = x0, (3.20)

with 0 < α < 1, x ∈ Rn, and A ∈ Rn×n. Also, assume that the triplet (A,B,C) is minimal. System
(3.20) is bounded-input bounded-output stable if and only if | arg(λ)| > απ/2. When system (3.20)
is externally stable, each component of its impulse response behaves like t−1−α at infinity.

According to Theorem 3.2, the sliding surface s = s(e) is bounded since the dynamic
of the sliding surface s = s(e) is linear with bounded input (−p for s ≥ 0 and p for s < 0).

Substituting (3.18) into (3.9), the error system reads

Dα
t e =

[
B −K(PK)−1P(rI + B)

]
e(t) −K(PK)−1p sgn(s). (3.21)

As a linear fractional-order system with bounded input (−K(PK)−1p for s ≥ 0 andK(PK)−1p
for s < 0), the error system is stable if

∣∣∣arg(eig(B −K(PK)−1P(rI + B)
))∣∣∣ > απ

2
. (3.22)

In this case, the error system is asymptotically stable when p = 0. The error signals will not
converge to zero if p /= 0. Parameter p can be used to enhance the robustness of the controller
in the presence of noise and mismatches.
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Furthermore, it is easy to check that the eigenvalues of matrix [K(PK)−1P] are
{1, 0, 0, 0}. This means that the eigenvalues of matrix [I − K(PK)−1P] are {0, 1, 1, 1}. Then
the rank of matrix [I −K(PK)−1P(rI + B)] satisfies

rank
[
I −K(PK)−1P(rI + B)

]
< 4, (3.23)

and one of eigenvalues of matrix [I −K(PK)−1P(rI + B)] is always 0. Thus,

∃ν ∈ R4 × 1 :
[
I −K(PK)−1P(rI + B)

]
ν = 0 =⇒

[
B −K(PK)−1P(rI + B)

]
ν = −rν. (3.24)

Therefore, one of the eigenvalues of matrix [B−K(PK)−1P(rI +B)] is always −r < 0. It
can be shown that the three other eigenvalues are independent from r and determined by the
other control parameters (K and P). These three eigenvalues must satisfy condition (3.22).

Remark 3.3. Since we consider the fractional-order hyperchaotic systems (3.1) and (3.2) in the
general form, the approach in this section is generic and can also be used for other fractional-
order chaotic or hyperchaotic systems.

Remark 3.4. Since the chain rule is not valid in fractional-order systems, the expression (3.12)
is significantly different from the integer-order one. In addition, the classical Lyapunov
stability approach is difficult in checking the asymptotical stability of the error system.
To overcome this shortcoming, we utilize the obtained stability results on fractional order
systems to deduce the condition (3.22). Therefore, our aim is to find the controller such that
the condition (3.22) is satisfied.

4. Numerical Results

The hyperchaotic Lorenz system [29] was found by adding a nonlinear controller to the
classical Lorenz system [30]. It has been shown that the fractional-order hyperchaotic Lorenz
system can exhibit hyperchaotic behavior [31]. The fractional-order hyperchaotic Lorenz
system reads

Dα
t x1 = σ(x2 − x1) + x4,

Dα
t x2 = γx1 − x2 − x1x3,

Dα
t x3 = x1x2 − βx3,

Dα
t x4 = −x2x3 + δx4.

(4.1)

By adding a nonlinear controller to the Chen system [32], the authors obtained
a hyperchaotic Chen system [33], which can demonstrate hyperchaotic behavior. The
fractional-order hyperchaotic Chen system reads

Dα
t y1 = a

(
y2 − y1

)
+ y4,

Dα
t y2 = dy1 − y1y3 + cy2,

Dα
t y3 = y1y2 − by3,

Dα
t y4 = y2y3 + ky4.

(4.2)
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Figure 1: The evolvement of error system and sliding surface.

In what follows, the active sliding mode synchronization method is applied to
synchronize fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic
Chen system. In this case, matrix A and B are given as

A =

⎡
⎢⎢⎢⎢⎢⎣

−σ σ 0 1

γ −1 0 0

0 0 −β 0

0 0 0 δ

⎤
⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎣

−a a 0 1

d c 0 0

0 0 −b 0

0 0 0 k

⎤
⎥⎥⎥⎥⎥⎦
. (4.3)

Assume that order of the master and slave systems is 2.94 (α = 0.98) and system
parameters are (σ, γ, β, δ) = (10, 28, 8/3,−1) and (a, b, c, d, k) = (35, 3, 12, 7, 0.58). The control-
ler parameters are chosen asK = [−2,−2,−6,−2]T , P = [1, 1,−, 1−1], r = 5 and p = 0.3. This se-
lection of parameters results in eigenvalues (λ1, λ2, λ3, λ4) = (−5,−71.4194,−11.4542,−0.7564)
that are located in the stable region.

The numerical simulation has been carried out using MATLAB subroutines written
based on the predictor-corrector scheme [34]. The time step size employed in the
simulation is 0.001 (h = 0.001), and the initial conditions of master and slave systems are
(x10, x20, x30, x40) = (4, 1, 2,−4) and (y10, y20, y30, y40) = (−2, 3, 1, 2). The simulation results are
given in Figure 1. As one can see, the designed controller is effective to synchronize fractional-
order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system.



8 Discrete Dynamics in Nature and Society

5. Conclusions

In this paper, the active sliding mode method for synchronization of coupled nonidentical
fractional-order hyperchaotic systems is addressed. By designing the active sliding mode
controller and choosing proper control parameters (K, P , and r), the master and slave
systems are synchronized. Furthermore, the application of the proposed method on
fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system
is investigated. Numerical results show the efficiency of the proposed controller to
synchronize coupled nonidentical fractional-order hyperchaotic systems.
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