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We study the normality of families of meromorphic functions related to a Hayman conjecture.
We consider whether a family of meromorphic functions F is normal in D if, for every pair of
functions f and g in F, f ′ − afn and g ′ − agn share the value b for n = 1, 2, and 3, where a and
b /= 0 are two finite complex numbers. Some examples show that the conditions in our results are
the best possible.

1. Introduction and Main Results

Let f(z) and g(z) be two nonconstant meromorphic functions in a domain D ⊆ C, and let a
be a finite complex value. We say that f and g share a CM (or IM) in D provided that f − a
and g − a have the same zeros counting (or ignoring) multiplicity in D. When a = ∞ the
zeros of f − a mean the poles of f (see [1]). It is assumed that the reader is familiar with the
standard notations and the basic results of Nevanlinna’s value-distribution theory ([2–4] or
[1]).

Bloch’s principle [5] states that every condition which reduces a meromorphic
function in the plane C to be a constant forces a family of meromorphic functions in a domain
D normal. Although the principle is false in general (see [6]), many authors proved the
normality criterion for families of meromorphic functions corresponding to Liouville-Picard-
type theorem (see [7] or [4]).

It is also more interesting to find normality criteria from the point of view of
shared values. In this area, Schwick [8] first proved an interesting result that a family of
meromorphic functions in a domain is normal if it in every function in it shares three distinct
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finite complex numbers with its first derivative. Later, more results about normality criteria
concerning shared values can be found, for instance, see [9–11] and so on. In recent years,
this subject has attracted the attention of many researchers worldwide.

We now first introduce a normality criterion related to a Hayman normal conjecture
[12].

Theorem 1.1. Let F be a family of holomorphic (meromorphic) functions defined in a domain D,
n ∈ N, a /= 0, b ∈ C. If f ′(z) + afn(z) − b /= 0 for each function f(z) ∈ F and n ≥ 2 (n ≥ 3), then F is
normal in D.

The results for the holomorphic case are due to Drasin [7] for n ≥ 3, Pang [13] for n = 3,
and Chen and Fang [14] for n = 2, Ye [15] for n = 2, and Chen and Gu [16] for the generalized
result with a and b replaced by meromorphic functions. The results for the meromorphic case
are due to Li [17], Li [18], and Langley [19] for n ≥ 5, Pang [13] for n = 4, Chen and Fang [14]
for n = 3, and Zalcman [20] for n = 3, obtained independently.

When n = 2 andF is meromorphic, Theorem 1.1 is not valid in general. Fang and Yuan
[21] gave an example to this, and moreover a result added other conditions below.

Example 1.2. The family of meromorphic functions F = {fj(z) = jz/(
√
jz − 1)2 : j = 1, 2, . . . , }

is not normal in D = {z : |z| < 1}. This is deduced by f#
j (0) = j → ∞, as j → ∞, and Marty’s

criterion [2], although, for any fj(z) ∈ F, f ′
j + f

2
j = j(

√
jz − 1)−4 /= 0.

Here f#(ξ) denotes the spherical derivative

f#(ξ) =

∣∣f ′(ξ)
∣∣

1 +
∣∣f(ξ)

∣∣2
. (1.1)

Theorem 1.3. Let F be a family of meromorphic functions in a domainD and a/= 0, b ∈ C. If f ′(z) +
a(f(z))2 − b /= 0 and the poles of f(z) are of multiplicity ≥ 3 for each f(z) ∈ F, then F is normal in
D.

In 2008, by the ideas of shared values, Zhang [11] proved the following.

Theorem 1.4. Let F be a family of meromorphic (holomorphic) functions in D, n a positive integer,
and a, b two finite complex numbers such that a/= 0. If n ≥ 4(n ≥ 2) and, for every pair of functions
f and g in F, f ′ − afn and g ′ − agn share the value b, then F is normal in D.

Example 1.5 (see [11]). The family of meromorphic functions F = {fj(z) = 1/(
√
j(z−1/j) ) :

j = 1, 2, . . . , } is not normal in D = {z : |z| < 1}. Obviously f ′
j − f3

j = −z/(√j(z − 1/j)3). So,
for each pairm, j, f ′

j − f3
j and f ′

m − f3
m share the value 0 in D, but F is not normal at the point

z = 0 since f#
j (0) = 2(

√
j)3/1 + j → ∞, as j → ∞.

Remark 1.6. Example 1.5 shows that Theorem 1.4 is not valid when n = 3, and the condition
n = 4 is the best possible for the meromorphic case.

It is natural to ask under what conditions Theorem 1.4 holds for n ≤ 3. In this paper,
we answer the above question and prove the following results.
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Theorem 1.7. Let F be a family of meromorphic functions in D and a and b two finite complex
numbers such that a/= 0. Suppose that each f(z) ∈ F has no simple pole. If f ′ − af3 and g ′ − ag3

share the value b for every pair of functions f and g in F, then F is normal in D.

Remark 1.8. Example 1.5 shows that the condition added in Theorem 1.7 about the
multiplicity of poles of f(z) is the best possible.

Theorem 1.9. Let F be a family of meromorphic functions in D and a and b two finite complex
numbers such that a/= 0. Suppose that f(z) admits the zeros of multiple and the poles of multiplicity
≥ 3 for each f(z) ∈ F. If f ′ − af2 and g ′ − ag2 share the value b for every pair of functions f and g
in F, then F is normal in D.

Remark 1.10. Example 1.2 shows that the condition added in Theorem 1.9 about the
multiplicity of poles and zeros of f(z) is the best possible.

Theorem 1.11. Let F be a family of meromorphic functions in D and a and b two nonzero finite
complex numbers. Suppose that f(z)/= 0 and that its poles are multiple for each f(z) ∈ F. If f ′ − af
and g ′ − ag share the value b for every pair of functions f and g in F, then F is normal in D.

Corollary 1.12. Let F be a family of holomorphic functions in D and a and b two finite complex
numbers such that b /= 0. Suppose that f(z)/= 0 for each f(z) ∈ F. If f ′ − af and g ′ − ag share the
value b for every pair of functions f and g in F, then F is normal in D.

Example 1.13. The family of holomorphic functionsF = {fj(z) = jzez−jez+j−b : j = 1, 2, . . . , }
is not normal inD = {z : |z| < 1}. Obviously f ′

j −fj = j(ez − 1) + b. So, for each pairm, j, f ′
j −fj

and f ′
m−fm share the value b inD. On the other hand, fj(0) = −b, fj(1/

√
j) =

√
j(1+(1/

√
j)+

o(1)) → ∞, as j → ∞. This implies that the family F fails to be equicontinuous at 0, and
thus F is not normal at 0.

Theorem 1.14. Let F be a family of meromorphic functions in D and a and b two finite complex
numbers such that b /= 0. Suppose that f(z)/= 0 and f ′(z) − af(z)/= b for each f(z) ∈ F. Then F is
normal in D.

Example 1.15. The family of holomorphic functions F = {fj(z) = j(z + 1) − 1 : j = 1, 2, . . . , }
is normal in D = {z : |z| < 1}. Obviously fj(z)/= 0 and f ′

j − fj = −jz + 1. So, for each pair
m, j, f ′

j − fj and f ′
m − fm share the value 1 in D. Corollary 1.12 implies that the family F is

normal in D.

Example 1.16. The family of meromorphic functions F = {fj(z) = (z/j) − 1 : j = 1, 2, . . . , }
is normal in D = {z : |z| < 1}. The reason is that the conditions of Theorem 1.14 hold that
fj(z)/= 0 and f ′

j − fj = ((1 − z)/j) + 1/= 1 in D = {z : |z| < 1}.

Remark 1.17. Example 1.13 shows that Theorem 1.4 is not valid when n = 1 and in the
holomorphic case and the condition f(z)/= 0 is necessary in Theorem 1.11, Corollary 1.12.
Both Examples 1.15 and 1.16 tell us that Corollary 1.12 and Theorem 1.14 occur.

2. Preliminary Lemmas
In order to prove our result, we need the following lemmas. The first one extends a famous
result by Zalcman [22] concerning normal families.
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Lemma 2.1 (see [23]). LetF be a family of meromorphic functions on the unit disc satisfying all zeros
of functions in Fwhich have multiplicity ≥ p and all poles of functions in Fwhich have multiplicity
≥ q. Let α be a real number satisfying −q < α < p. Then F is not normal at 0 if and only if there exist

(a) a number 0 < r < 1,

(b) points zn with |zn| < r,
(c) functions fn ∈ F,
(d) positive numbers ρn → 0

such that gn(ζ) := ρ−αfn(zn + ρnζ) converges spherically uniformly on each compact subset of C to
a nonconstant meromorphic function g(ζ), whose all zeros have multiplicity ≥ p and all poles have
multiplicity ≥ q and order is at most 2.

Remark 2.2. If F is a family of holomorphic functions on the unit disc in Lemma 2.1, then g(ζ)
is a nonconstant entire function whose order is at most 1.

The order of g is defined by using Nevanlinna’s characteristic function T(r, g):

ρ
(
g
)
= lim

r→∞
sup

log T
(
r, g

)

log r
. (2.1)

Lemma 2.3 (see [24] or [25]). Let f(z) be a meromorphic function and c ∈ C \ {0}. If f(z) has
neither simple zero nor simple pole and f ′(z)/= c, then f(z) is constant.

Lemma 2.4 (see [26]). Let f(z) be a transcendental meromorphic function of finite order in C, with
no simple zero; then f ′(z) assumes every nonzero finite value infinitely often.

Lemma 2.5 (see [3]). Let f(z) be a meromorphic function in C; then

T
(
r, f

) ≤
(
2 +

1
k

)
N

(
r,

1
f

)
+
(
2 +

2
k

)
N

(

r,
1

f (k) − 1

)

+ S
(
r, f

)
, (2.2)

T
(
r, f

) ≤N(
r, f

)
+N

(
r,

1
f

)
+N

(

r,
1

f (k) − 1

)

+ S
(
r, f

)
. (2.3)

Remark 2.6. Both (2.2) and (2.3) are called the Hayman inequality and Milloux inequality,
respectively.

3. Proof of the Results

Proof of Theorem 1.7. Suppose that F is not normal inD. Then there exists at least one point z0
such that F is not normal at the point z0. Without loss of generality we assume that z0 = 0. By
Lemma 2.1, there exist points zj → 0, positive numbers ρj → 0, and functions fj ∈ F such
that

gj(ξ) = ρ
1/2
j fj

(
zj + ρjξ

)
=⇒ g(ξ) (3.1)
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locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic
function in C. Moreover, the order of g is no greater than 2 and the poles of g are of
multiplicity ≥ 2.

From (3.1) we know that

g ′
j(ξ) = ρ

3/2
j f ′

j

(
zj + ρjξ

)
=⇒ g ′(ξ), (3.2)

ρ3/2j

(
f ′
j

(
zj + ρjξ

) − af3
j

(
zj + ρjξ

) − b
)
= g ′

j(ξ) − ag3
j (ξ) − ρ3/2j b =⇒ g ′(ξ) − ag3(ξ) (3.3)

in C \ S locally uniformly with respect to the spherical metric, where S is the set of all poles
of g(ξ).

If g ′ −ag3 ≡ 0, then −(1/2)(1/g2) ≡ aξ + c, where c is a constant. This contradicts with
the idea that the poles of g are of multiplicity ≥ 2. So g ′ − ag3 /≡ 0.

If g ′ −ag3 /= 0, then g ′/g3 /=a. Set g = 1/ϕ; then ϕϕ′ /= −a. By Lemma 2.3, ϕ is a constant,
so g is also a constant which is a contradiction with g being a nonconstant. Hence, g ′ − ag3 is
a nonconstant meromorphic function and has at least one zero.

Next we prove that g ′ − ag3 has just a unique zero. By contraries, let ξ0 and ξ∗0 be two
distinct zeros of g ′ − ag3, and choose δ (> 0) small enough such that D(ξ0, δ) ∩D(ξ∗0, δ) = φ,
where D(ξ0, δ) = {ξ : |ξ − ξ0| < δ} and D(ξ∗0, δ) = {ξ : |ξ − ξ∗0| < δ}. From (3.3), by Hurwitz

′
s

theorem, there exist points ξj ∈ D(ξ0, δ), ξ∗j ∈ D(ξ∗0, δ) such that for sufficiently large j

f ′
j

(
zj + ρjξj

) − af3
j

(
zj + ρjξj

) − b = 0,

f ′
j

(
zj + ρjξ∗j

)
− af3

j

(
zj + ρjξ∗j

)
− b = 0.

(3.4)

By the hypothesis that, for each pair of functions f and g in F, f ′ − af3 and g ′ − ag3

share b in D, we know that, for any positive integerm

f ′
m

(
zj + ρjξj

) − af3
m

(
zj + ρjξj

) − b = 0,

f ′
m

(
zj + ρjξ∗j

)
− af3

m

(
zj + ρjξ∗j

)
− b = 0.

(3.5)

Fixm, take j → ∞, and note that zj+ρjξj → 0, zj+ρjξ∗j → 0; then f ′
m(0)−af3

m(0)−b = 0.
Since the zeros of f ′

m − af3
m − b have no accumulation point,

zj + ρjξj = 0, zj + ρjξ∗j = 0. (3.6)

Hence, ξj = −(zj/ρj), ξ∗j = −(zj/ρj). This contradicts with ξj ∈ D(ξ0, δ), ξ∗j ∈ D(ξ∗0, δ), and
D(ξ0, δ) ∩D(ξ∗0, δ) = φ. So g

′ − ag3 has just a unique zero, which can be denoted by ξ0.
Set g = 1/ϕ again; then g ′ − ag3 = −(ϕ′ϕ + a)/ϕ3 . So(ϕ′ϕ + a)/ϕ3 has only a unique

zero ξ0. Therefore, ξ0 is a multiple pole of ϕ, or else a zero of ϕ′ϕ + a. If ξ0 is a multiple pole of
ϕ, since (ϕ′ϕ+a)/ϕ3 has only one zero ξ0, then ϕ′ϕ+a/= 0. By Lemma 2.3 again, ϕ is a constant
which contradicts with the idea that g is a nonconstant.

So ϕ has no multiple pole and ϕ′ϕ + a has just a unique zero ξ0. By Lemma 2.3, ϕ is not
any transcendental function.
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If ϕ is a nonconstant polynomial, then ϕ′ϕ + a = A(ξ − ξ0)l, where A is a nonzero
constant and l is a positive integer because the poles of g are of multiplicity ≥ 2. So the zeros
of ϕ are of multiplicity ≥ 2, and thus, l ≥ 3. Set ψ = (1/2)ϕ2; then ψ ′ = A(ξ − ξ0)l − a and
ψ ′′ = Al(ξ − ξ0)l−1. Note that the zeros of ψ are of multiplicity ≥ 4. But ψ ′′ has only one zero
ξ0, and so ψ has only the same zero ξ0. Hence ψ ′(ξ0) = 0 which contradicts with ψ ′(ξ0) = a/= 0.
Therefore ϕ and ψ are rational functions which are not polynomials and ψ ′ + a has just a
unique zero ξ0.

Next we prove that there exists no rational function such as ψ. Noting that ψ = (1/2)ϕ2,
ϕ has no multiple pole, and the zeros of ϕ are of multiplicity ≥ 2, we can set

ψ(ξ) = A
(ξ − ξ1)m1(ξ − ξ2)m2 · · · (ξ − ξs)ms

(
ξ − η1

)2(
ξ − η2

)2 · · · (ξ − ηt
)2 , (3.7)

where A is a nonzero constant, s ≥ 1, t ≥ 1, and mi ≥ 4 (i = 1, 2, . . . , s). For stating briefly,
denote

m = m1 +m2 + · · · +ms ≥ 4s. (3.8)

From (3.7),

ψ ′(ξ) =
A(ξ − ξ1)m1−1(ξ − ξ2)m2−1 · · · (ξ − ξs)ms−1h(ξ)

(
ξ − η1

)3(
ξ − η2

)3 · · · (ξ − ηt
)3 =

p1(ξ)
q1(ξ)

, (3.9)

where

h(ξ) = (m − 2t)ξs+t−1 + as+t−2ξs+t−2 + · · · + a0,

p1(ξ) = A(ξ − ξ1)m1−1(ξ − ξ2)m2−1 · · · (ξ − ξs)ms−1h(ξ),

q1(ξ) =
(
ξ − η1

)3(
ξ − η2

)3 · · · (ξ − ηt
)3

(3.10)

are polynomials. Since ψ ′(ξ) + a has only a unique zero ξ0, set

ψ ′(ξ) + a =
B(ξ − ξ0)l

(
ξ − η1

)3(
ξ − η2

)3 · · · (ξ − ηt
)3 , (3.11)

where B is a nonzero constant, and so

ψ ′′(ξ) =
(ξ − ξ0)l−1p2(ξ)

(
ξ − η1

)4(
ξ − η2

)4 · · · (ξ − ηt
)4 , (3.12)
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where p2(ξ) = B(l − 3t)ξt + bt−1ξt−1 + · · · + b0 is a polynomial. From (3.9), we also have

ψ ′′(ξ) =
(ξ − ξ1)m1−2(ξ − ξ2)m2−2 · · · (ξ − ξs)ms−2p3(ξ)

(
ξ − η1

)4(
ξ − η2

)4 · · · (ξ − ηt
)4 , (3.13)

where p3(ξ) is also a polynomial.
Let deg(p) denote the degree of a polynomial p(ξ).
From (3.9) and (3.10),

deg(h) ≤ s + t − 1, deg
(
p1
) ≤ m + t − 1, deg

(
q1
)
= 3t. (3.14)

Similarly from (3.12) and (3.13) and noting (3.14),

deg
(
p2
) ≤ t, (3.15)

deg
(
p3
) ≤ deg

(
p1
)
+ t − 1 − (m − 2s) ≤ 2t + 2s − 2. (3.16)

Note that mi ≥ 4 (i = 1, 2, . . . , s). It follows from (3.9) and (3.11) that ψ ′(ξi) = 0 (i =
1, 2, . . . , s) and ψ ′(ξ0) = a/= 0. Thus ξ0 /= ξi (i = 1, 2, . . . , s), and then (ξ − ξ0)l−1 is a factor of
p3(ξ). Hence we get that l − 1 ≤ deg(p3). Combining (3.12) and (3.13) we also have m − 2s =
deg(p2) + l − 1 − deg(p3) ≤ deg(p2). By (3.15) we obtain

m − 2s ≤ deg
(
p2
) ≤ t. (3.17)

Sincem ≥ 4s, we know by (3.17) that

2s ≤ t. (3.18)

If l ≥ 3t, by (3.16), then 3t − 1 ≤ l − 1 ≤ deg(p3) ≤ 2t + 2s − 2. Noting (3.18), we obtain
1 ≤ 0, a contradiction.

If l < 3t, from (3.9) and (3.11), deg(p1) = deg(q1). Noting that deg(p1) = m + t − i, 1 ≤
i ≤ s + t,deg(q1) = 3t, som + t − i = 3t,m = 2t + i /= 2t. From (3.10), then deg(h) = s + t − 1, and
then deg(p1) = m+ t−1. Noting that deg(q1) = 3t,m = 2t+1. By (3.17), t ≤ 2s−1. From (3.18),
we obtain 1 ≤ 0, a contradiction.

The proof of Theorem 1.7 is complete.

Proof of Theorem 1.9. Similarly with the proof of Theorem 1.7, we assume that F is not normal
at z0 = 0. Then, by Lemma 2.1, there are a sequence of complex numbers zj , zj → 0(j → ∞),
a sequence of functions fj ∈ F, and a sequence of positive numbers ρj → 0+ such that
gj(ξ) = ρjfj(zj+ρjξ) converges uniformlywith respect to the spherical metric to a nonconstant
mermorphic function g(ξ) and all zeros and poles of g(ξ) are multiple. Moreover, g(ξ) is of
order 2 at most.
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Thus

g ′
j(ξ) = ρ

2
j f

′
j

(
zj + ρjξ

)
=⇒ g ′(ξ), (3.19)

ρ2j

(
f ′
j

(
zj + ρjξ

) − af2
j

(
zj + ρjξ

) − b
)
= g ′

j(ξ) − ag2
j (ξ) − ρ2j b =⇒ g ′(ξ) − ag2(ξ) (3.20)

also locally uniformly with respect to the spherical metric.
If g ′ − ag2 ≡ 0, then −(1/g) ≡ aξ + c where c is a constant. This contradicts with the

idea that the poles of g are multiple. So g ′ − ag2 /≡ 0.
If g ′ − ag2 /= 0, then (1/g)′ /= − a. By Lemma 2.3, g is a constant which contradicts with

our conclusion. Hence, g ′ − ag2 is a nonconstant meromorphic function and has at least one
zero.

As the same argument in the proof of Theorem 1.7, we obtain that g ′ − ag2 has only
one distinct zero denoted by ξ0.

Set g = 1/ϕ; then g ′ − ag2 = −(ϕ′ + a)/ϕ2 . So (ϕ′ + a)/ϕ2 has only a unique zero
ξ0. Therefore ξ0 is a multiple pole of ϕ or a zero of ϕ′ + a. If ξ0 is a multiple pole of ϕ, since
(ϕ′ + a)/ϕ2 has only one zero ξ0, then ϕ′ + a/= 0. By Lemma 2.3 again, ϕ is a constant, which
is a contradiction.

Hence ϕ is an entire function with no simple zero and growth order at most 2 and
ϕ′ +a has just a unique zero ξ0. By Lemma 2.4, ϕ is not any transcendental function. Therefore
ϕ is a nonconstant polynomial and has the form that ϕ′ + a = C(ξ − ξ0)l, where C is a nonzero
constant and l is a positive integer because the poles of g are of multiplicity ≥ 3. So the zeros of
ϕ are of multiplicity ≥ 3; thus, l ≥ 2, ϕ′′ = Cl(ξ − ξ0)l−1. Note that ϕ′′ has only one zero ξ0, and
so ϕ has only the same zero ξ0 too. Hence ϕ′(ξ0) = 0 which contradicts with ϕ′(ξ0) = −a/= 0.

The proof of Theorem 1.9 is complete.

Proof of Theorem 1.11. Similarly with the proof of Theorem 1.7, we assume thatF is not normal
at z0 = 0. Then, by Lemma 2.1, there are a sequence of complex numbers zj , zj → 0(j → ∞),
a sequence of functions fj ∈ F, and a sequence of positive numbers ρj → 0+ such that gj(ξ) =
ρ−1j fj(zj + ρjξ) converges uniformly with respect to the spherical metric to a nonconstant
meromorphic function g(ξ) whose poles are multiple and g(ξ)/= 0. Moreover, g(ξ) is of order
2 at most.

Thus

g ′
j(ξ) = f

′
j

(
zj + ρjξ

)
=⇒ g ′(ξ), (3.21)

g ′
j(ξ) − aρjgj(ξ) − b = f ′

j

(
zj + ρjξ

) − afj
(
zj + ρjξ

) − b =⇒ g ′(ξ) − b (3.22)

also locally uniformly with respect to the spherical metric.
If g ′ − b ≡ 0, then g = bξ + c, where c is a constant. This contradicts with g(ξ)/= 0. So

g ′ − b /≡ 0.
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If g ′ − b /= 0, then by Milloux inequality (2.3) of Lemma 2.5 we have

T
(
r, g

) ≤N(
r, g

)
+N

(
r,

1
g

)
+N

(
r,

1
g ′ − b

)
+ S

(
r, g

)

≤ 1
2
N
(
r, g

)
+ S

(
r, g

)

≤ 1
2
T
(
r, g

)
+ S

(
r, g

)
.

(3.23)

From (3.23)we know that g is a constant which contradicts with our conclusion. Hence, g ′ −b
is a nonconstant meromorphic function and has at least one zero.

As the same argument in the proof of Theorem 1.7, we obtain that g ′ − b has only one
distinct zero denoted by ξ0. Thus the Hayman inequality (2.2) of Lemma 2.5 implies that g is
a rational function of degree 4 at most. Noting that g /= 0 and has no simple pole, we obtain
that g has at most two distinct poles. Using the Milloux inequality (2.3) of Lemma 2.5 again
we get that g has at most one distinct pole. Hence we canwrite g(ξ) = 1/(dξ + e)m, 2 ≤ m ≤ 3,
where d /= 0 and e are two finite complex numbers. Simple calculation shows that g ′ − b has at
least three distinct zeros. This is impossible.

The proof of Theorem 1.11 is complete.

Proof of Theorem 1.14. Similarly with the proof of Theorem 1.11, we have that (3.22) also holds.
Moreover, g(ξ)/= 0 and g(ξ) is of order 2 at most.

If g ′ − b ≡ 0, then g = bξ + c, where c is a constant. This contradicts with g(ξ)/= 0.
If g ′ − b /= 0, then by the Hayman inequality (2.2) of Lemma 2.5 we have

T
(
r, g

) ≤ 3N
(
r,

1
g

)
+ 4N

(
r,

1
g ′ − b

)
+ S

(
r, g

)

≤ S(r, g).
(3.24)

From (3.24) we know that g is a constant which contradicts with our conclusion.
The proof of Theorem1.8 is complete.
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