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Recently, the modified g-Bernoulli numbers and polynomials are introduced in (D. V. Dolgy et al.,
in press). These numbers are valuable to study the weighted g-zeta and L-functions. In this paper,
we study the weighted g-zeta functions and weighted L-functions from the modified g-Bernoulli

numbers and polynomials with weight a.

1. Introduction

Let g € C with |g| < 1. The modified g-Bernoulli numbers and polynomials with weight a are

defined by

[24 .
_ -1 _ _ — ifn=1,
By =al—, (B 1) - Bl = 4 lal,
4 logg 0 ifn>1,

with the usual convention about replacing (E;a))" by Effg (see [1, 2]).
Throughout this paper, we use the notation of g-number as

(see [1-14]).
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(1.2)
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From (1.1), we note that

(1.3)
1 u n 1 al
= T =1
(1-a)l ]q§<l> Lal]
Let IF‘;“) (t) = Z;l“;ogfgt"/n!, Then, by (1.3), we get
1 0
F(a) (t) = e/ (=gt _ am g[m]gat (1.4)
og q al, mzoq
Let us define the modified g-Bernoulli polynomials with weight a as follows:
a n-l _alx pla xap@\"
B (x) = Z( >[x] ‘g B = <[x] +q Bf,>> , (1.5)
1=0
with the usual convention about replacing (E,(f) )" by E,(f[; (see [1-13]).
From (1.5), we can derive the following equation:
09 = () ) Ve
(]. - n 1=0 [ ]
(1.6)
1 L 1 al al
- (_ ) aLx ,
K 1Z<> G,
(see [2]).
Let F* (t,x) = 32, B\ (x)t" /n!, then, by (1.6), we get
-1
F (1, x) = a0/ =gt _ p 2§ gatmen) gl (1.7)
logq [a], ,,;)q

In this paper, we consider the generalized g-Bernoulli numbers with weight a, and we
study the weighted g-zeta function and g-analogue of L-function with weight a from the
modified g-Bernoulli numbers and polynomials with weight a.

2. Weighted g-Zeta Function and Weighted g-L-Function

From (1.7), we note that

B « q-1 _ e S a(m+x) n-1
By (x) = R q)"[a]g<logq> [ >q [m+ x5 2.1)
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For n € N, we have

Er(gq)(X) a 1 n-l1 1 [24 s a(m+x n-1
o <[“]q><1—q“> <10gq> i [“]qmzzoq( [+ x]5 (2.2)

Let I'(s) be the gamma function, then we consider the following complex integral. For
seC,

1 © ~ (@) = a q- 1 o1 a & qa(m+x)
— | F; (-t x)tdt = 1-4%)" + , 23
I'(s) ,[0 g (~tx) s—1logq( 9°) [a]qmzzo[m+x]3u 23)
where x#0,-1,-2,-3,....
Now, we define the twisted Hurwitz’s type g-zeta function as follows.
For s € C, define
~a a 1 1-— qa s a & a(m+x)
W (s,x) = L) T, (24)
[a],1-s logq [a], = [m + x] o

where x #0,-1,-2,-3,....
Note that Q‘(f) (s, x) is meromorphic function whole in complex s-plane except for s = 1.
From (2.3) and (2.4), we can derive the following equation:

&9 (s, x) = % I 0 F® (-t, %)t 2. (2.5)

By (1.7), (2.3), (2.4), (2.5), and Laurent series, we get

E(“)(x)
a k,
(1 -kx) = ———, (26)
where k € N.
Therefore, by (2.6), we obtain the following theorem.
Theorem 2.1. For k € N, one has
B (x)
a k,
W1 -kx) = ; (2.7)
From (2.4), one notes that
- 1= g%)° © a(m+1)
g’l) (S,l) — a 1 ( q ) a q _
[(x]ql—s log g [a]q mzo[m+1]qa
(2.8)

__a 1(1_"7)+“qu’
[al,1-s logq  [a], == [m]
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Now, by (2.8), one defines the weighted g-zeta function as follows:

-~ 1- 11)5 a 2 gem
(SIS N . O .
I [a],1-s logq  [al, mzl [m] (2.9)
=W (s,1).
Fork e N, by (1.1) and (1.5), one gets
R(a)
- - B, (1)
a a k,
;1=K =&"1-k1) =-—
(2 4B k= 2.10
RO o
- B
B¢, |
— if k> 1.

Therefore, by (2.10), one obtains the following corollary.

Corollary 2.2. For k € N, one has

(o) e
GO -k) = 5 2.11)
r(a)
Bk,q .
k_T lfk > 1.

Let yx be the Dirichlet’s character with conductor d € N. Let us consider the generalized g-
Bernoulli polynomials with weight a as follows:

ﬁ‘ggg (t, x) _ a tzx(m)qa(m+x)e[m+x]qat
[ ]‘I m=0
. , (2.12)
— B (@)
= ZB"/X/‘?(X)E'
n=0 :

The sequence Eifj)(,q(x) will be called the nth generalized g-Bernoulli polynomials with weight a

attached to .

In the special case, x = 0, E,(l“))(q 0) = Eﬁl“))(q are called the nth generalized q-Bernoulli numbers

with weight a attached to .
From (1.7) and (2.12), one notes that

x+a>

y (2.13)

d-1
=(a) _ 1 = ()
Fixtt) = g Zx@F] (1dlt,
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Thus, by (2.13), one gets

E(ﬂ),q( )=

e S

an

(a)B!

Therefore, by (2.14), one obtains the following theorem.

Theorem 2.3. For n € Z,, one has

B(ﬁ) q( x) =

[d

”dl

q a=0

In the special case, x = 0, one obtains the following corollary.

Corollary 2.4. For n € Z,, one has

Let

B@
"Xq

FO(t) =

i (@ t
P

then, by (2.12) and (2.17), one easily gets

For s € C, consider

Biva(d) -

Bﬁ"xx 9 _

q a=0

th(m)q‘""e

[ q m=0

n

nan'/

d-1

a

n

LI

1 . r(a) 5— _
5 Jy Pt o r(s)

where x #0,-1,-2,-3, . ...

]‘7 1=0

Zx(m a(m+x) f[m+x gt 5~ 1dt

<x+a>.

x(g™[

= [d]q Zx( )B “”( ):

T @B ()

0 m=0
a X(m)qa(m+x) 1 J< » )
e Yy d
[aqmzo [m+x]5 T(s) vy
a ZX(n,l)qoz(erx)
[a ) [m+x]q

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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Now, one defines Hurwitz's type q-L-function with weight a as follows. For s € C,

(n+x)a
1@ s, -, x(m)q 2.20
g (8,x1x)(~t,x) = q;} n+x (2.20)
where x #0,-1,-2,-3, . ...
From (2.19) and (2.20), one notes that
LY (s, x| x) = f F&) (—t, )t 2dt. (2.21)
I(s)
By (1.7) and (2.21) and Laurent series, one obtains the following theorem.
Theorem 2.5. For k € N, one has
B (x)
L1k x| x) = —"% (2.22)

In the special case, x = 0, i(qa>(1 -k, x|0)= i;“)(l —k, x) are called the g-L-function with
weight a.
Let

& g™, (=g
F(1-s)logqg

F{(s,a|F) = :
! [ ]q[a]q m=a(mod F) [m]q“

m>0

a <oo qa(a+nF) . (1_qlx>5 > (2'23)

 [Fllel, \&la+nF];.  F(1-s)logq
_ [F]q“ T(a) a
= [FL P o (7 F)

where a and F are positive integers with 0 < a < F.
Then, by (2.23), one gets

[F1%B 4(a/F) .

HY1-na|F)=- , >1,
1 [F] n

(2.24)

and ﬁq(“)(s, a | F) has as simple pole as s = 1 with residue (a/[F],)((q~1)/logq").
Let x be the Dirichlet character with conductor F, then one easily sees that

F
L9 (s,x) = Sx(@H (s,a| F). (2.25)
a=1
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