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We are concerned with second-order discrete boundary value problems and obtain some sufficient
conditions for the existence of at least one positive solution by using the fixed point theorem due
to Krasnosel’skii on a cone.

1. Introduction

Boundary value problems for difference equations have been studied extensively by many
authors, for example, [1–10] to name a few. Many techniques arose in the studies of this kind
of problem. For example, Agarwal et al. [1] employed the critical point theory to establish
the existence of multiple solutions of some regular as well as singular discrete boundary
value problems. Cai and Yu [2] applied the Linking Theorem and the Mountain Pass Lemma
in the critical point theory to study second-order discrete boundary value problems and
obtained some new results for the existence of solutions. Li and Sun [3, 4] were concerned
with discrete system boundary value problems and gave some sufficient conditions for the
existence of one or two positive solutions by using a nonlinear alternative of Leray-Schauder
type and Krasnosel’skii’s fixed point theorem in a cone. Pang et al. [5] provided sufficient
conditions for the existence of at least three positive solutions for quasilinear boundary value
problems for finite difference equations by using a generalization of the Leggett-Williams
fixed point theorem due to Avery and Peterson. Du [6], Lin and Liu [7] discussed triple
positive solutions of some second-order discrete boundary value problems by making use of
the Leggett-Williams fixed-point theorem, respectively.
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This paper deals with the following three-point boundary value problem for second-
order difference equation of the form

Δ2y(k − 1) + h(k)f
(
y(k)

)
= 0, k ∈ {1, . . . , T},

y(0) − αΔy(0) = 0, y(T + 1) = βy(n),
(1.1)

where Δy(k − 1) = y(k) − y(k − 1), Δ2y(k − 1) = y(k + 1) − 2y(k) + y(k − 1), k ∈ {1, . . . ,
T}.

Throughout this paper, we will assume that the following conditions are satisfied:

(A1) T ≥ 3 is a fixed positive integer, n ∈ {2, . . . , T − 1}, constant α, β > 0 such that
H := T + 1 − βn + α(1 − β) > 0 and T + 1 − βn > 0;

(A2) f ∈ C([0,+∞), [0,+∞)), f is either superlinear or sublinear, that is, either f0 = 0,
f∞ = ∞ or f0 = ∞, f∞ = 0, where

f0 = lim
u→ 0+

f(u)
u

, f∞ = lim
u→∞

f(u)
u

; (1.2)

(A3) h(k) is nonnegative on {1, . . . , T} and h(k) ≡ 0 does not hold on {n, . . . , T}.

In the paper, we show the existence of positive solutions of (1.1) under some assump-
tions. We also establish the associate Green’s function. Readers may find that it is useful
to define a cone on which a positive operator was defined, and a fixed point theorem
due to Krasnosel’skii [11] will be applied to yield the existence of at least one positive so-
lution.

2. Preliminary and Green’s Function

Let N be the nonnegative integers; we letNi,j = {k ∈ N : i ≤ k ≤ j} andNp = N0,p.
By a positive solution y of problem (1.1), we mean y : NT+1 → R, y satisfies the first

equation of (1.1) on N1,T , y fulfills y(0) − αΔy(0) = 0, y(T + 1) = βy(n), and y is nonnegative
on NT+1 and positive on N1,T .

We shall need the following fixed point theorem due to Krasnosel’skii [8, 11].

Theorem A. Let E be a Banach space, and let K ⊂ E be a cone in E. Assume that Ω1 and Ω2 are
open subsets of E with 0 ∈ Ω1,Ω1 ⊂ Ω2, and letA : K

⋂
(Ω2 \Ω1) → K be a completely continuous

operator such that either

(1) ‖Au‖ ≤ ‖u‖, u ∈ K
⋂
∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ K

⋂
∂Ω2 or

(2) ‖Au‖ ≥ ‖u‖, u ∈ K
⋂
∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ K

⋂
∂Ω2.

Then A has a fixed point in K
⋂
(Ω2 \Ω1).
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Lemma 2.1 (see [7]). The function

G(k, l) =
1
H

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(l + α)
[
T + 1 − k − β(n − k)

]
, l ∈ N1,k−1 ∩N1,n−1,

(l + α)(T + 1 − k) + β(n + α)(k − l), l ∈ Nn,k−1,

(k + α)
[
T + 1 − l − β(n − l)

]
, l ∈ Nk,n−1,

(k + α)(T + 1 − l), l ∈ Nk,T ∩Nn,T ,

(2.1)

is the Green’s function of the problem

−Δ2y(k − 1) = 0, k ∈ N1,T ,
y(0) − αΔy(0) = 0, y(T + 1) = βy(n).

(2.2)

Remark 2.2. We observe that the condition H > 0 and T + 1 − βn > 0 implies G(k, l) is positive
on NT+1 ×N1,T , which means that the finite set

{
G(k, l)
G(k, k)

: k ∈ NT+1, l ∈ N1,T

}
(2.3)

takes positive values. Then we let

M1 = min
{

G(k, l)
G(k, k)

: k ∈ NT+1, l ∈ N1,T

}
, (2.4)

M2 = max
{

G(k, l)
G(k, k)

: k ∈ NT+1, l ∈ N1,T

}
. (2.5)

3. Main Results

Theorem 3.1. Assume that (A1)–(A3) hold, then problem (1.1) has at least one positive solution.

Proof. In the following, we denote

m = min
k∈Nn,T

G(k, k), M = max
k∈NT+1

G(k, k). (3.1)

Then 0 < m < M.

Let E be the Banach space defined by E = {y : NT+1 → R}. Define

K =
{
y ∈ E : y(k) ≥ 0, for k ∈ NT+1 and min

k∈Nn,T

y(k) ≥ σ
∥∥y

∥∥
}
, (3.2)

where σ = M1m/M2M ∈ (0, 1), ‖y‖ = maxk∈NT+1 |y(k)|. It is clear that K is a cone in E.
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We define the operator S : K → E by

(
Sy

)
(k) =

T∑

l=1

G(k, l)h(l)f
(
y(l)

)
, k ∈ NT+1. (3.3)

It is clear that problem (1.1) has a solution y if and only if y ∈ E is a solution of the operator
equation y(k) = (Sy)(k). We shall now show that the operator S maps K into itself. For this,
let y ∈ K; from (A2), (A3), we find

(
Sy

)
(k) =

T∑

l=1

G(k, l)h(l)f
(
y(l)

) ≥ 0, for k ∈ NT+1. (3.4)

From (2.5), we obtain

(
Sy

)
(k) =

T∑

l=1

G(k, l)h(l)f
(
y(l)

) ≤ M2

T∑

l=1

G(k, k)h(l)f
(
y(l)

)

≤ M2M
T∑

l=1

h(l)f
(
y(l)

)
, for k ∈ NT+1.

(3.5)

Therefore

∥
∥Sy

∥
∥ ≤ M2M

T∑

l=1

h(l)f
(
y(l)

)
. (3.6)

Now from (A2), (A3), (2.4), and (3.6), for k ∈ Nn,T , we have

(
Sy

)
(k) ≥ M1

T∑

l=1

G(k, k)h(l)f
(
y(l)

) ≥ M1m
T∑

l=1

h(l)f
(
y(l)

)

≥ M1m

M2M

∥∥Sy
∥∥ = σ

∥∥y
∥∥.

(3.7)

Then

min
k∈Nn,T

(
Sy

)
(k) ≥ σ

∥∥Sy
∥∥. (3.8)

From (3.4) and (3.6), we obtain Sy ∈ K. Hence S(K) ⊆ K. Also standard arguments yield
that S : K → K is completely continuous.

Case 1. Suppose f is superlinear. Now since f0 = 0, we may choose C1 > 0 such that f(u) ≤
δ1u, for 0 < u ≤ C1, where δ1 satisfies

δ1M2M
T∑

l=1

h(l) ≤ 1. (3.9)
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Let y ∈ K be such that ‖y‖ = C1; by using (2.5) and (3.9), we have

(
Sy

)
(k) ≤ M2

T∑

l=1

G(k, k)h(l)f
(
y(l)

) ≤ δ1M2M
T∑

l=1

h(l)y(l)

≤ δ1M2M
T∑

l=1

h(l)
∥∥y

∥∥ ≤ ∥∥y
∥∥.

(3.10)

Now if we let

Ω1 =
{
y ∈ E :

∥∥y
∥∥ < C1

}
, (3.11)

then

∥∥Sy
∥∥ ≤ ∥∥y

∥∥, for y ∈ K ∩ ∂Ω1. (3.12)

Next since f∞ = ∞, there exists C2 > 0, such that f(u) ≥ δ2u, for u ≥ C2, where δ2 > 0
satisfying

δ2M1σ
T∑

l=n

G(n, n)h(l) ≥ 1. (3.13)

Let C2 = max{2C1, C2/σ} and Ω2 = {y ∈ E : ‖y‖ < C2}, and let y ∈ K and ‖y‖ = C2, then

min
k∈Nn,T

y(k) ≥ σ
∥∥y

∥∥ ≥ C2. (3.14)

Applying (2.4) and (3.13), one has

(
Sy

)
(n) = M1

T∑

l=1

G(n, l)h(l)f
(
y(l)

) ≥ M1

T∑

l=n

G(n, n)h(l)f
(
y(l)

)

≥ δ2M1

T∑

l=n

G(n, n)h(l)y(l) ≥ δ2M1σ
T∑

l=n

G(n, n)h(l)
∥∥y

∥∥

≥ ∥∥y
∥∥.

(3.15)

Thus

∥∥Sy
∥∥ ≥ ∥∥y

∥∥, y ∈ K ∩ ∂Ω2. (3.16)

In view of (3.12) and (3.16), it follows from Theorem A that S has a fixed point y ∈ K
⋂
(Ω2 \

Ω1) such that C1 ≤ ‖y‖ ≤ C2.



6 Discrete Dynamics in Nature and Society

Case 2. Suppose f is sublinear case. Since f0 = ∞, we may choose C3 > 0 such that f(u) ≥ δ3u
for 0 < u ≤ C3, where δ3 > 0 satisfying

δ3M1σ
T∑

l=n

G(n, n)h(l) ≥ 1, (3.17)

Ω3 = {y ∈ E : ‖y‖ < C3}; let y ∈ K and ‖y‖ = C3. Using (2.4) and (3.17), one has

(
Sy

)
(n) ≥ M1

T∑

l=n

G(n, n)h(l)f
(
y(l)

) ≥ δ3M1

T∑

l=n

G(n, n)h(l)y(l)

≥ δ3M1σ
T∑

l=n

G(n, n)h(l)
∥∥y

∥∥ ≥ ∥∥y
∥∥.

(3.18)

Then ‖Sy‖ ≥ ‖y‖, y ∈ K
⋂
∂Ω3.

In view of f∞ = 0, there exists C4 > 0 such that f(u) ≤ δ4u for u ≥ C4, where δ4 > 0
satisfying

δ4M2M
T∑

l=n

h(l) ≤ 1. (3.19)

There are two subcases to consider, that is, f is bounded and f is unbounded.

Subcase 2.1. Suppose f is bounded, that is, f(y) ≤ L for all y ∈ [0,∞) for some L > 0. Let

C4 = max

{

2C3, LM2M
T∑

l=1

h(l)

}

. (3.20)

Then, for y ∈ K and ‖y‖ = C4, one has

(
Sy

)
(k) ≤ M2

T∑

l=1

G(k, k)h(l)f
(
y(l)

) ≤ LM2M
T∑

l=1

h(l)

≤ C4 =
∥
∥y

∥
∥.

(3.21)

Hence ‖Sy‖ ≤ ‖y‖.
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Subcase 2.2. Suppose f is unbounded, that is, there exists C4 > max{2C3, C4/σ} such that
f(u) ≤ f(C4) for all 0 < u ≤ C4. Then, for y ∈ K with ‖y‖ = C4, from (2.5) and (3.19), we have

(
Sy

)
(k) ≤ M2

T∑

l=1

G(k, k)h(l)f
(
y(l)

) ≤ M2M
T∑

l=1

h(l)f(C4)

≤ δ4M2M
T∑

l=1

h(l)C4 ≤ C4 =
∥∥y

∥∥.

(3.22)

Thus in both Subcases 2.1 and 2.2, we may put Ω4 = {y ∈ E : ‖y‖ < C4}. Then
∥
∥Sy

∥
∥ ≤ ∥

∥y
∥
∥, y ∈ K ∩ ∂Ω4. (3.23)

By using the fixed point Theorem A, it follows that problem (1.1) has at least one positive
solution, such that C3 ≤ ‖y‖ ≤ C4. The proof is finished.

Finally, we give an example to demonstrate our main result.

Example 3.2. Consider the following three-point boundary value problem:

Δ2y(k − 1) +
2

(−k2 + 10k + 33)1.5
(
y + 20

)1.5 = 0, k ∈ N1,8,

y(0) − 13
9
Δy(0) = 0, y(9) =

22
37

y(4),

(3.24)

where T = 8, n = 4, α = 13/9, β = 22/37, T+1−βn+α(1−β) = 800/111 > 0, T+1−βn = 245/37 >
0, h(k) = 2/(−k2 + 10k + 33)1.5, k ∈ N1,8, f(y) = (y + 20)1.5, then f is superlinear. Conditions of
Theorem 3.1 are all satisfied. Then problem (3.24) has at least one positive solution y. Indeed
y = −k2 + 10k + 13 is one such positive solution.
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