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By using the topological degree theory and the fixed point index theory, the existence of nontrivial
solutions and sign-changing solutions for a class of boundary value problem on time scales is
obtained. We should point out that the integral operator corresponding to above boundary value
problem is not assumed to be a cone mapping.

1. Introduction

Let � be a time scale which has the subspace topology inherited from the standard topology
on �. For each interval I of �, we define I� = I ∩ �.

In this paper, we study the existence of nontrivial solutions and sign-changing
solutions of the following problem on time scales:

−[r(t)uΔ(t)]Δ = f(t, u(σ(t))), t ∈ [a, b]
�
,

αu(a) − βuΔ(a) = 0, γu(σ(b)) + δuΔ(σ(b)) = 0,
(1.1)

where α ≥ 0, β ≥ 0, γ ≥ 0, δ ≥ 0, (α2 + β2)(γ2 + δ2)/= 0, r(t) > 0, t ∈ [a, σ(b)]
�
, and rΔ exists.

Some basic definitions on time scales can be found in [1–3].
In an ordered Banach space, much interest has developed regarding the computation

of the fixed-point index about cone mappings. Based on it, the existence of positive solutions
of various dynamic equations has been studied extensively by numerous researchers. The
reader is referred to [4–13] for some recent works on second-order boundary value problem
on time scales.
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Dynamic equations on time scales have attracted considerable interest because of their
ability to model economic phenomena, see [14–16] and references therein. The existence of
mathematics framework to describe plays an important role in the advancement in all the
social sciences. Time scales calculus is likely to be applied in many fields of economics,
which can combine the standard discrete and continuous models. Historically, two separate
approaches have dominatedmathematicsmodeling: differential equation, termed continuous
dynamic modeling, and difference equation, termed discrete dynamic modeling. Certain
economically important phenomena do not solely possess elements of the continuous or
modeling elements of the discrete. For example, in a discrete model, an enterprise obtains
some net income in a period of time and decides how many dividends to extend and how
many to leave as retained earnings during the same period. Thus, all decisions are assumed
to be made at evenly spaced intervals. The time scales to this optimization problem are
much more flexible and realistic. For example, an enterprise obtains net income at one
point in time, dividend-extending decisions are made at a different point in time, and
keeping retained earnings takes place at yet another point in time. Moreover, dividends-
extending and retained earning decisions can be modeled to occur with arbitrary, time-
varying frequency. It is hard to overestimate the advantages of such an approach over the
discrete or continuous models used in economics. In recent years, there is much attention
paid to the existence of positive solution for second-order boundary value problems on time
scales; for details, see [4–11] and references therein.

In [5], Erbe and Peterson considered the existence of positive solutions to the following
problem:

−xΔΔ(t) = f(t, x(σ(t))), t ∈ [a, b]�,

αx(a) − βxΔ(a) = 0, γx(σ(b)) + δxΔ(σ(b)) = 0,
(1.2)

where f : [a, σ(b)]�× �+ → �
+ is continuous. The following conditions are imposed on f :

f0 := lim
u→ 0+

f(t, u)
u

= 0, f∞ := lim
u→+∞

f(t, u)
u

= +∞, uniformly on t ∈ [a, σ(b)]
�

(1.3)

or

f0 := lim
u→ 0+

f(t, u)
u

= +∞, f∞ := lim
u→+∞

f(t, u)
u

= 0, uniformly on t ∈ [a, σ(b)]
�
. (1.4)

The authors obtained the existence of positive solutions for problem (1.2) by means of the
cone expansion and compression fixed-point theorem.

In [6], Chyan and Henderson were concerned with determining values of λ for which
there exist positive solutions of the following nonlinear dynamic equation:

xΔΔ(t) + λa(t)f(x(σ(t))) = 0, t ∈ [0, 1]
�
, (1.5)

satisfying either the conjugate boundary conditions

x(0) = x(σ(1)) = 0 (1.6)
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or the right focal boundary conditions

x(0) = xΔ(σ(1)) = 0. (1.7)

Their analysis still relied on the cone expansion and compression fixed-point theorem.
Furthermore, Hong and Yeh [9] generalized the main theorems in [6] to the following

problem

xΔΔ(t) + λf(t, x(σ(t))) = 0, t ∈ [0, 1]�,

αu(0) − βxΔ(0) = 0, γx(σ(1)) + δxΔ(σ(1)) = 0.
(1.8)

They also applied the above-mentioned fixed-point theorem in a cone to yield positive
solutions of (1.8) for λ belonging to a suitable open interval.

On the other hand, there is much attention paid to the study of spectral theory of linear
problems on time scales, see [12, 13] and references therein. Agarwal et al. [12] obtained
a fundamental result on the existence of eigenvalues and the number of the generalized
zeros of associated eigenfunctions. This result provides a foundation for the further study
of the behavior of eigenvalues of the Sturm-Liouville problems on time scales. In [13], Kong
first extended the existence result in [12] to the Sturm-Liouville problems in a more general
form andwith normalized separated boundary conditions and then explored the dependence
of the eigenvalues on the boundary condition. The author showed that the nth eigenvalue
λn depends continuously on the boundary condition except at the generalized “Dirichlet”
boundary conditions, where certain jump discontinuities may occur. Furthermore, λn as
a function of the boundary condition angles is continuously differentiable wherever it
is continuous. Formulas for such derivatives were obtained which reveal the monotone
properties of λn in terms of the boundary condition angles.

We note that Li et al. [10] were concerned with the existence of positive solutions for
problem (1.1) under some conditions concerning the first eigenvalue corresponding to the
relevant linear operator. Their main results improved and generalized ones in [5–9, 11].

We should point out that the nonlinear item that appeared in the above dynamic
equations is required to be nonnegative; moreover, the positive solutions can be obtained
only by using these tools.

However, some existing nonlinear problems cannot be attributed to the cone
mappings; thus, the cone mapping theory fails to solve these problems. At the same time,
the existence of the sign-changing solutions of the above dynamic equations is being raised
by an ever-increasing number of researchers; it is also difficult to deal with sign-changing
solution problems by the cone mappings theory. Stimulated by these works, in [17], Sun and
Liu used the lattice structure to present some methods of computation of the topological
degree for the operator that is quasiadditive on lattice. The operator is not assumed to be a
cone mapping. Furthermore, in [18], Liu and Sun established some methods of computation
of the fixed-point index and the topological degree for the unilaterally asymptotically linear
operators that are not assumed to be cone mappings. Very recently, in [19], Sun and Liu
obtained some theorems for fixed-point index about a class of nonlinear operators which are
not cone mappings by means of the theory of cone.
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The main purpose of this paper is to establish some existence theorems of nontrivial
solutions and sign-changing solutions of (1.1). Our results generalize and complement ones
in [5–11].

This paper is organized as follows. Some preliminaries are given in Section 2. In
Section 3, we presented some results obtained in [19]; then, we apply these abstract results to
problem (1.1), the existence of nontrivial solutions and sign-changing solutions for sublinear
problem (1.1) is obtained. In Section 4, we are concerned with the existence of sign-changing
solutions and nontrivial solutions for superlinear problem (1.1). Our main tool relies on the
computation of the topological degree for superlinear operators, which are obtained in [17].
In Section 5, by the use of the abstract results obtained in [18], some existence theorems of
sign-changing solutions for unilaterally asymptotically linear problem (1.1) are established.

2. Preliminaries and Some Lemmas

Let E be an ordered Banach space in which the partial ordering ≤ is induced by a cone P ⊂ E.
P is said to be normal if there exists a positive constant N such that θ ≤ x ≤ y implies
‖x‖ ≤ N‖y‖. P is called solid if it contains interior points, that is, intP /= ∅. If x ≤ y and x/=y,
we write x < y; if cone P is solid and y − x ∈ int P , we write x � y. Operator A is said
to be strongly increasing if y < x implies Ay � Ax. P is called total if E = P − P . If P is
solid, then P is total. A fixed-point u of operator A is said to be a sign-changing fixed-point if
u /∈ P ∪ (−P). Let B : E → E be a bounded linear operator. B is said to be positive if B(P) ⊂ P .
For the concepts and the properties about the cones, we refer to [20–23].

For w ∈ E, let Pw = P +w = {x ∈ E | x ≥ w} and Pw = w − P = {x ∈ E | x ≤ w}.
We call E a lattice under the partial ordering ≤ if sup{x, y} and inf{x, y} exist for

arbitrary x, y ∈ E. For x ∈ E, let

x+ = sup{x, θ}, x− = sup{−x, θ}. (2.1)

x+ and x− are called positive part and negative part of x, respectively. Taking |x| = x+ + x−,
then |x| ∈ P , and |x| is called the module of x. One can see [24] for the definition and the
properties of the lattice.

For convenience, we use the following notations:

x+ = x+, x+ = −x−, (2.2)

and then

x+ ∈ P, x− ∈ (−P), x = x+ + x−. (2.3)

In the following, we always assume that E is a Banach space, P is a total cone in E, and
the partial ordering ≤ in E is induced by P . We also suppose that E is a lattice in the partial
ordering ≤.

Let B : E → E be a positive completely continuous linear operator, let r(B) be a
spectral radius of B, let B∗ be the conjugated operator of B, and let P ∗ be the conjugated cone
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of P . Since P ⊂ E is a total cone, according to the famous Krein-Rutman theorem (see [25]),
we infer that if r(B)/= 0, then there exist ϕ ∈ P \ {θ} and g∗ ∈ P ∗ \ {θ}, such that

Bϕ = r(B)ϕ, B∗g∗ = r(B)g∗. (2.4)

Fixed ϕ ∈ P \ {θ}, g∗ ∈ P ∗ \ {θ} such that (2.4) holds. For δ > 0, let

P
(
g∗, δ

)
=
{
x ∈ P, g∗(x) ≥ δ‖x‖}. (2.5)

Then, P(g∗, δ) is also a cone in E.

Definition 2.1 (see [23]). Let B be a positive linear operator. The operator B is said to satisfy
H condition if there exist ϕ ∈ P \ {θ}, g∗ ∈ P ∗ \ {θ}, and δ > 0 such that (2.4) holds, and B
maps P into P(g∗, δ).

Definition 2.2 (see [23]). Let D ⊂ E and A : D → E be a nonlinear operator. A is said to be
quasiadditive on lattice if there exists v∗ ∈ E such that

Ax = Ax+ +Ax− + v∗, ∀x ∈ D, (2.6)

where x+ and x− are defined by (2.2).

Definition 2.3 (see [18]). Let E be a Banach space with a cone P , and let A : E → E be a
nonlinear operator. We call A a unilaterally asymptotically linear operator along Pw if there
exists a bounded linear operator B such that

lim
x∈Pw,‖x‖→∞

‖Ax − Bx‖
‖x‖ = 0. (2.7)

B is said to be the derived operator of A along Pw and will be denoted by A′
Pw
.

Similarly, we can also define a unilaterally asymptotically linear operator along Pw.
For convenience, we list the following definitions on time scales which can be found

in [1–3].

Definition 2.4. A time scaleT is a nonempty closed subset of real numbersR. For t < supT and
r > infT, define the forward jump operator σ and backward jump operator ρ, respectively,
by

σ(t) = inf{τ ∈ T | τ > t} ∈ T,

ρ(r) = sup{τ ∈ T | τ < r} ∈ T.
(2.8)

For all t, r ∈ T. If σ(t) > t, t is said to be right scattered, and if ρ(r) < r, r is said to be left
scattered; if σ(t) = t, t is said to be right dense, and if ρ(r) = r, r is said to be left dense. If
T has a right-scattered minimum m, define Tk = T − {m}; otherwise, set Tk = T. If T has a
left-scattered maximumM, define Tk = T − {M}; otherwise, set Tk = T.
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Definition 2.5. For f : T → R and t ∈ Tk , the delta derivative of f at the point t is defined
to be the number fΔ(t) (provided it exists), with the property that for each ε > 0, there is a
neighborhood U of t such that

∣
∣∣f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)

∣
∣∣ ≤ ε|σ(t) − s|, (2.9)

for all s ∈ U.

Definition 2.6. If GΔ(t) = f(t), then we define the delta integral by

∫b

a

f(t)Δt = G(b) −G(a). (2.10)

Lemma 2.7 (see [17]). Suppose that B : E → E is a positive bounded linear operator. If the spectral
radius r(B) < 1, then (I − B)−1 exists and is a positive bounded linear operator.

Lemma 2.8 (see [5]). Set

d =
γβ

r(a)
+

αδ

r(σ(b))
+ αγ

∫σ(b)

a

1
r(τ)

Δτ /= 0. (2.11)

Let

G(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

1
d
x(t)y(σ(s)), t ≤ s,

1
d
x(σ(s))y(t), σ(s) ≤ t,

(2.12)

where

x(t) = α
∫ t

a

1
r(τ)

Δτ +
β

r(σ(b))
, y(t) = γ

∫σ(b)

t

1
r(τ)

Δτ +
δ

r(σ(b))
. (2.13)

Then G(t, s) is the Green function of the following linear boundary value problem:

−
[
r(t)uΔ(t)

]Δ
= 0, t ∈ [a, b]

�
,

αu(a) − βuΔ(a) = 0, γu(σ(b)) + δuΔ(σ(b)) = 0.
(2.14)

According to Lemma 2.8, problem (1.1) can be converted into the equivalent nonlinear
integral equation

u(t) =
∫σ(b)

a

G(t, s)f(s, u(σ(s)))Δs, t ∈
[
a, σ2(b)

]

�

. (2.15)
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Define the operators

Au(t) =
∫σ(b)

a

G(t, s)f(s, u(σ(s)))Δs, t ∈
[
a, σ2(b)

]

�

, (2.16)

Ku(t) =
∫σ(b)

a

G(t, s)u(σ(s))Δs, t ∈
[
a, σ2(b)

]

�

. (2.17)

By in [13, Theorem 2.1], we can know that K has the sequence of eigenvalues:

0 < λ1 < λ2 < λ3 < · · · < λn < · · · , n ∈ �k0 , (2.18)

where

�
k
0 :=

⎧
⎨

⎩

{1, 2, . . .}, k = ∞,

{1, 2, . . . , k}, k < ∞,
(2.19)

the algebraic multiplicities of every eigenvalue is simple, and the spectral radius r(K) = λ−11 .
Let

E =
{
u :

[
a, σ2(b)

]
�
−→ �, uΔ(t) is continuous on

[
a, σ2(b)

]
�
,

[
r(t)uΔ(t)

]Δ is right dense continuous on [a, b)
�

}
.

(2.20)

Then E is an ordered Banach space with the supremum norm ‖u‖ = supt∈[a,σ2(b)]
�

|u(t)|. Define
a cone P ⊂ E by

P =
{
u ∈ E | u(t) ≥ 0, t ∈

[
a, σ2(b)

]

�

}
. (2.21)

It is clear that P is a normal solid cone and E becomes a lattice under the natural ordering ≤.

Lemma 2.9 (see [10]). Assume that there exists h(t) ∈ P \ {θ}, such that

G(t, s) ≥ h(t)G(τ, s), t, τ ∈ [a, σ(b)]
�
, s ∈ [a, b]

�
. (2.22)

Suppose that there exists ψ∗ ∈ P ∗ \ {θ}, such that ψ∗ = r−1(K)K∗ψ∗, ψ∗(h(t))/≡ 0. Then operatorK
satisfies H condition, where K is defined in (2.17).

3. Topological Degree for Sublinear Problem (1.1)

For R > 0, define TR = {x ∈ E | ‖x‖ < R}.
In [17], Sun and Liu obtained the following abstract results.
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Lemma 3.1 (see [17]). Let E be a Banach space, and let P be a normal solid cone in E, w0 ∈ E, and
let A : Pw0 → Pw0 be a completely continuous operator. Suppose that there exists a positive bounded
linear operator B : E → E with r(B) < 1 and u0 ∈ P such that

Ax ≤ Bx + u0, ∀x ∈ Pw0 . (3.1)

Then there exists R0 > 0, such that the fixed-point index i(A, TR ∩ Pw0 , Pw0) = 1 for all R > R0.

Lemma 3.2 (see [17]). Let E be a Banach space, and let P be a normal solid cone in E, w0 ∈ E, and
let A : Pw0 → Pw0 be a completely continuous operator. Suppose that there exists a positive bounded
linear operator B and a positive completely continuous operator B1, u0 ∈ P , r ∈ �, r > 0, such that

Ax ≤ Bx + u0, ∀x ∈ P, Ax ≥ B1x, ∀x ∈ ∂Tr ∩ P. (3.2)

If r(B) < 1 and r(B1) ≥ 1, thenA has at least one nonzero positive fixed-point in P .

Lemma 3.3 (see [17]). Let E be a Banach space, let P be a normal solid cone in E, w0 ∈ int(−P),
and let A : Pw0 → Pw0 be a completely continuous operator. Suppose that

(i) there exists a positive bounded linear operator B with r(B) < 1 and u0 ∈ P such that

Ax ≤ Bx + u0, ∀x ∈ Pw0 , (3.3)

(ii) Aθ = θ, the Fréchet derivativeA′
θ
of A at θ exists, and 1 is not an eigenvalue of A′

θ
.

Then

(1) if the sum of the algebraic multiplicities for all eigenvalues ofA′
θ in (0, 1) is an odd number,

A has at least one nonzero fixed-point;

(2) if r(A′
θ
) > 1 and A(P) ⊂ P , A(−P) ⊂ (−P), A has at least two nonzero fixed-points, one

of which is positive, the other is negative;

(3) if r(A′
θ
) > 1, the sum of the algebraic multiplicities for all eigenvalues of A′

θ
in (0, 1) is an

even number, and

A(P \ {θ}) ⊂ int(P), A((−P) \ {θ}) ⊂ int(−P), (3.4)

then A has at least three nonzero fixed-points, one of which is positive another is negative,
and the third fixed-point is sign-changing.

By means of the above abstract results, we have the following theorems.
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Theorem 3.4. Suppose that there existM > 0 and η > 0 such that

f(t, u) ≥ −M, ∀t ∈ [a, σ(b)]
�
, u ≥ 0, (3.5)

lim
|u|→∞

sup
f(t, u)
u

≤ λ1 − η, uniformly on t ∈ [a, σ(b)]
�
. (3.6)

Then problem (1.1) has at least one solution.

Proof. It is easy to check that A : E → E is a completely continuous operator. Choose 0 < ε <
η. Denote c = λ1 −η+ ε < λ1. According to (3.6), we can know that there exists R > 0 such that

f(t, u)
u

≤ c, t ∈ [a, σ(b)]
�
, |u| ≥ R. (3.7)

This implies that there exists constant numberM0 > 0 such that

f(t, u) ≥ cu −M0, t ∈ [a, σ(b)]
�
, u ≤ 0, (3.8)

f(t, u) ≤ cu +M0, t ∈ [a, σ(b)]
�
, u ≥ 0. (3.9)

Denote B = cK, where K is defined as (2.17). It is obvious that B : E → E is a positive
bounded linear operator, and r(B) = cr(K) < λ1r(K) = 1. By Lemma 2.7, we have that
(I − B)−1 exists and is a positive bounded linear operator.

Set b > 0, and let

b(t) ≡ b, l(t) ≡M0 +M,

w0(t) = −
[
(I − B)−1(Kl + b)

]
(t), t ∈ [a, σ(b)]

�
.

(3.10)

It is obvious that w0 ∈ (−P), and

w0(t) − (Bw0)(t) = −(Kl)(t) − b(t), t ∈ [a, σ(b)]�. (3.11)

For any u0 ≤ 0, it follows from (3.5) and (3.8) that

f(t, u) ≥ cu0 −M −M0, u ≥ u0, (3.12)

which together with w0 ≤ 0 implies that

f(t, u(t)) ≥ cw0(t) − l(t), u(t) ≥ w0(t). (3.13)
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Note that K(P) ⊂ P . Combining (3.11) with (3.13) and (2.16), we have

Au(t) =
∫σ(b)

a

G(t, s)f(s, u(σ(s)))Δs

≥
∫σ(b)

a

G(t, s)[cw0(σ(s)) − l(σ(s))]Δs

≥
∫σ(b)

a

G(t, s)[cw0(σ(s)) − l(σ(s))]Δs − b(t)

= w0(t), ∀u(t) ≥ w0(t), t ∈
[
a, σ2(b)

]

�

.

(3.14)

This implies that A(Pw0) ⊂ Pw0 .
Let

ϑ = sup{|w0(t)| : t ∈ [a, σ(b)]�},
κ = sup

{∣∣f(t, u)
∣∣ : t ∈ [a, σ(b)]

�
,−ϑ ≤ u ≤ 0

}
.

(3.15)

It is easy to know from (3.9) that

f(t, u) ≤ cu +M0 + κ + cϑ, t ∈ [a, σ(b)]
�
, u ≥ −ϑ. (3.16)

Thus,

f(t, u(t)) ≤ cu(t) +M0 + κ + cϑ, ∀u(t) ≥ w0(t), t ∈ [a, σ(b)]
�
. (3.17)

Let e0(t) ≡ M0 + κ + cϑ, u0(t) = (Ke0)(t), t ∈ [a, σ(b)]
�
. It is clear that u0 ∈ P . It follows from

(3.17) that

Au(t) ≤ Bu(t) + u0(t), ∀u ∈ Pw0 . (3.18)

Thus, all conditions in Lemma 3.1 are satisfied; the conclusion then follows from Lemma 3.1.

Theorem 3.5. Suppose that

f(t, u) ≥ 0, ∀t ∈ [a, σ(b)]
�
, u ≥ 0, (3.19)

and there exists η > 0 such that

lim
u→∞

sup
f(t, u)
u

≤ λ1 − η, lim
u→ 0

inf
f(t, u)
u

≥ λ1 + η, uniformly on t ∈ [a, σ(b)]
�
. (3.20)

Then problem (1.1) has at least one positive solution.
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Proof. It is clear thatA : P → P is a completely continuous operator. Choose 0 < ε < η.
Denote

c = λ1 − η + ε, c1 = λ1 + η − ε. (3.21)

then c < λ1, c1 > λ1. By (3.20), we obtain that there exists D > d > 0 such that

f(t, u) ≤ cu, t ∈ [a, σ(b)]
�
, u ≥ D, (3.22)

f(t, u) ≥ c1u, t ∈ [a, σ(b)]
�
, 0 ≤ u ≤ d. (3.23)

According to (3.22), we have

f(t, u) ≤ cu +M, t ∈ [a, σ(b)]
�
, u ≥ 0, (3.24)

where

M = sup
t∈[a,σ(b)]

�
, |u|≤D

∣
∣f(t, u)

∣
∣. (3.25)

Denote B = cK, B1 = c1K, where K is still defined as (2.17); then, B, B1 : E → E are both
completely continuous positive linear operators, and

r(B) = cr(K) < λ1r(K) = 1, r(B1) = c1r(K) > λ1r(K) = 1. (3.26)

Let v0 = K(M). Then, v0 ∈ P . It follows from (2.16), (3.19), (3.23), and (3.24) that

Au(t) ≤
∫σ(b)

a

G(t, s)
[
cu(σ(s)) +M

]
Δs

= Bu(t) + v0(t), ∀u ∈ P, t ∈ [a, σ(b)]
�
,

Au(t) ≥
∫σ(b)

a

G(t, s)m1u(σ(s))Δs

= B1u(t), ∀u ∈ P, t ∈ [a, σ(b)]
�
, ‖u‖ ≤ d.

(3.27)

By Lemma 3.2, problem (1.1) has at least one positive solution.

Remark 3.6. Condition (3.20) implies that

lim
u→+∞

sup
f(t, u)
u

< λ1, lim
u→ 0+

inf
f(t, u)
u

> λ1, uniformly on t ∈ [a, σ(b)]
�
. (3.28)

Hence, Theorem 3.5 becomes Theorem 2.1 in [10]. Therefore, our main result generalizes
Theorem 2.1 in [10].
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Theorem 3.7. Assume that (3.5) and (3.6) hold. In addition, suppose that

f(t, 0) ≡ 0, ∀t ∈ [a, σ(b)]
�
, (3.29)

lim
u→ 0

f(t, u)
u

= λ, uniformly on t ∈ [a, σ(b)]
�
. (3.30)

Then

(i) if λn < λ < λn+1, where n is an odd number, then problem (1.1) has at least one nontrivial
solution;

(ii) if λ > λ1 and

f(t, u)u ≥ 0, ∀t ∈ [a, σ(b)]
�
, u ∈ �, (3.31)

then problem (1.1) has at least two nontrivial solutions, one of which is positive and the
other is negative.

Proof. It suffices to verify that all the conditions of Lemma 3.3 are satisfied.
Letw0 be defined as (3.10). SinceKl + b ∈ intP , we havew0 ∈ int(−P). It follows from

(3.5), (3.6), and the proof of Theorem 3.4 that A : Pw0 → Pw0 is completely continuous and
condition (i) of Lemma 3.3 holds. Furthermore, (3.29) implies thatAθ = θ; (3.30) implies that

A′
θu(t) =

∫σ(b)

a

G(t, s)f ′
u(s, 0)u(σ(s))Δs

= λ
∫σ(b)

a

G(t, s)u(σ(s))Δs, t ∈
[
a, σ2(b)

]

�

.

(3.32)

This shows that A′
θ = λK. Let ι denote the sum of the algebraic multiplicities for all

eigenvalues of A′
θ
in (0, 1). Since λn < λ < λn+1, we can obtain that 1 is not an eigenvalue

of A′
θ
and ι = n is an odd number. Conclusion (1) of Lemma 3.3 holds.
Equqtion (3.31) implies that A(P) ⊂ P, A(−P) ⊂ (−P). By λ > λ1, we can know that 1

is not an eigenvalue of A′
θ, and r(A

′
θ) = λr(K) > λ1r(K) = 1. This implies that the conclusion

(2) of Lemma 3.3 holds.

Theorem 3.8. Assume that (3.5), (3.6), (3.29), and (3.30) hold. In addition, suppose that

λn < λ < λn+1, where n is an even number,

f(t, u)u > 0, ∀t ∈ [a, σ(b)]
�
, u /= 0, u ∈ �.

(3.33)

Then the problem (1.1) has at least three nontrivial solutions, one of which is positive, another is
negative, and the third solution is sign changing.
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Proof. For convenience, let us introduce another ordered Banach space.
Letting, e1 be the first normalized eigenfunction of K corresponding to its first

eigenvalue λ1, then ‖e1‖ = 1. It follows from [10, Lemma 1.4] that e1 > 0. Let

E = {x ∈ E | there exists ν > 0, −νe1(t) ≤ x(t) ≤ νe1(t)}. (3.34)

According to [20], we can obtain that E is an ordering Banach space, P = E ∩ P is a normal
solid cone, andK : E → E is a linear completely continuous operator satisfyingK(P \ {θ}) ⊂
int P , where

intP =
{
x ∈ P | there exist ς1 > 0, ς2 > 0, ς1e1(t) ≤ x(t) ≤ ς2e1(t)

}
. (3.35)

Letting l(t) and B be as in Theorem 3.4, then l ∈ P \ {θ}. Letw0 = −(I −B)−1(Kl). Since
K(P) ⊂ P , we have Kl ∈ intP . Furthermore, we obtain w0 ∈ int(−P ). Noting that K(E) ⊂ E,
we have A(E) ⊂ E.

Similarly to the proof of Theorem 3.4, we have

A(Pw0) ⊂ Pw0 . (3.36)

Furthermore, we can know that

A
(
Pw0

)
⊂ Pw0 . (3.37)

Since K : E → E is completely continuous, we have that A : Pw0 → Pw0 is completly
continuous. According to Theorem 3.7, it is easy to show that conditions (i) and (ii) of
Lemma 3.3 are satisfied, and A′

θ
= λK.

Since λn < λ < λn+1, we have that 1 is not an eigenvalue of A′
θ
and λ > λ1. It follows

that

r
(
A′
θ

)
= λr(K) > λ1r(K) = 1. (3.38)

Moreover, we can know that the sum of the algebraic multiplicities for all eigenvalues of A′
θ

in (0, 1) is n; this is an even number.
In the following, we check the condition (3.4).
By (3.33), we have

f(t, u) > 0, ∀u > 0, f(t, u) < 0, ∀u < 0, ∀t ∈ [a, σ(b)]
�
. (3.39)

Notice that

K(P \ {θ}) ⊂ intP. (3.40)
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It follows that

A
(
P \ {θ}

)
⊂ intP, A

((
−P

)
\ {θ}

)
⊂ int

(
−P

)
. (3.41)

Therefore, condition (3.4) holds. The conclusion follows from Lemma 3.3 (3).

4. Topological Degree for Superlinear Problem (1.1)

In [17], Sun and Liu discussed computation for the topological degree about superlinear
operators which are not cone mappings. The main tools are the partial ordering relation and
the lattice structure. Their main results are the following theorems.

Lemma 4.1 (see [17]). Let E be a Banach space, and let A : E → E be a completely continuous
operator satisfying A = BF, where F is quasiadditive on lattice and B is a positive bounded linear
operator satisfyingH condition. Moreover, suppose that P is a solid cone in E and

(i) there exist a1 > r−1(B) and y1 ∈ P , such that

Fx ≥ a1x − y1, ∀x ∈ P, (4.1)

(ii) there exist 0 < a2 < r−1(B) and y2 ∈ P , such that

Fx ≥ a2x − y2, ∀x ∈ (−P). (4.2)

In addition, there exist a bounded open set Ω, which contains θ, and a positive bounded
linear operator B0 with r(B0) ≤ 1, such that

|Ax| ≤ B0|x|, ∀x ∈ ∂Ω. (4.3)

Then A has at least one nonzero fixed-point.

Lemma 4.2 (see [17]). Let E be a Banach space, and let A : E → E be a completely continuous
operator satisfying A = BF, where F is quasiadditive on lattice and B is a positive bounded linear
operator satisfying H condition. Moreover, suppose that P is a solid cone in E and conditions (i) and
(ii) of Theorem 4.1 are satisfied. In addition, assume that Aθ = θ, the Fréchet derivativeA′

θ
of A at θ

exists, and 1 is not an eigenvalue of A′
θ
. ThenA has at least one nonzero fixed-point.

In [23], Sun obtained the following further result concerning sign-changing fixed-point.

Lemma 4.3 (see [23]). Let the conditions of Theorem 4.2 be satisfied. In addition, suppose that the
sum of the algebraic multiplicities for all eigenvalues of A′

θ
in the interval (0, 1) is an even number,

and

A(P \ {θ}) ⊂ intP, A((−P) \ {θ}) ⊂ − intP. (4.4)

Then A has at least three nonzero fixed-points, one of which is positive, another is negative, the third
one is a sign-changing fixed-point.
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In the following, we will apply the above three abstract theorems to problem (1.1); our
main results are as follows.

Theorem 4.4. Assume that f : [a, σ(b)]
�
× � → � is continuous. Suppose that there exists η > 0

such that

lim
u→−∞

sup
f(t, u)
u

≤ λ1 − η, uniformly on t ∈ [a, σ(b)]
�
, (4.5)

lim
u→+∞

inf
f(t, u)
u

≥ λ1 + η, uniformly on t ∈ [a, σ(b)]
�
, (4.6)

lim
u→ 0

sup
∣∣∣
∣
f(t, u)
u

∣∣∣
∣ ≤ λ1 − η, uniformly on t ∈ [a, σ(b)]

�
. (4.7)

Then problem (1.1) has at least one nontrivial solution.

Proof. It is clear that A : E → E is completely continuous. According to (4.6) and (4.5), we
have that there exists R1 > 0, such that

f(t, u) ≥
(
λ1 +

1
2
η

)
u, t ∈ [a, σ(b)]

�
, u ≥ R1,

f(t, u) ≥
(
λ1 − 1

2
η

)
u, t ∈ [a, σ(b)]

�
, u ≤ −R1.

(4.8)

Hence, there existsM0 > 0 such that

f(t, u) ≥
(
λ1 +

1
2
η

)
u −M0, t ∈ [a, σ(b)]

�
, u ≥ 0,

f(t, u) ≥
(
λ1 − 1

2
η

)
u −M0, t ∈ [a, σ(b)]

�
, u ≤ 0.

(4.9)

According to the proof of Theorem 3.1 in [10], we have

G(t, s) ≥ x(t)y(t)
maxt∈[a,σ2(b)]

�
x(t)maxt∈[a,σ2(b)]

�
y(t)

G(τ, s), t, τ ∈
[
a, σ2(b)

]

�

, s ∈ [a, σ(b)]
�
.

(4.10)

By Lemma 2.9, we can know that linear operatorK satisfies theH condition.
Let Fu(t) = f(t, u(t)) for u ∈ E. It is easy to check that F satisfies (2.6) and A = KF.

It follows from (4.9) that (4.1) and (4.2) hold, where a1 = λ1 + (1/2)η > λ1 = r−1(K) and
a2 = λ1 − (1/2)η < λ1 = r−1(K).

By (4.7), we obtain that there exists r0 > 0 such that

∣
∣f(t, u)

∣
∣ ≤

(
λ1 − 1

2
η

)
|u|, t ∈ [a, σ(b)]

�
, |u| ≤ r0. (4.11)
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Therefore,

|Au| ≤
(
λ1 − 1

2
η

)
K|u|, ∀u ∈ E, ‖u‖ = r0. (4.12)

Thus, (4.3) holds. An application of Lemma 4.1 shows that problem (1.1) has at least one
nontrivial solution.

Remark 4.5. If we assume that f : [a, σ(b)]
�
×�+ → �

+ , condition (4.5), (4.6)will be removed.
Therefore, Theorem 4.4 generalizes and extends Theorem 3.4 in [10].

Theorem 4.6. Assume that f : [a, σ(b)]
�
× � → � is continuous and (4.5) holds. In addition,

suppose that

f(t, 0) ≡ 0, ∀t ∈ [a, σ(b)]
�
,

lim
u→ 0

f(t, u)
u

= λ, uniformly on t ∈ [a, σ(b)]
�
,

(4.13)

and λ /∈ {λ1, λ2, . . . , λn, . . .}. Then problem (1.1) has at least one nontrivial solution.

Proof. By Theorem 4.4, we only need to verify the condition “moreover” of Lemma 4.2.
According to (4.13), we can know that Aθ = θ and A′

θ
= λK. Since K has the sequence

of eigenvalues {λn}∞n=1, it is easy to see that {λn/λ}∞n=1 is the sequence of all eigenvalues of
A′
θ. Therefore, 1 is not an eigenvalue of A′

θ. The conclusion of Theorem 4.6 follows from
Lemma 4.2.

Theorem 4.7. Assume that f : [a, σ(b)]
�
× � → � and (4.5), (4.6), and (4.13) hold. If

λn < λ < λn+1, where n is an even number,

f(t, u)u > 0, ∀t ∈ [a, σ(b)]
�
, u /= 0, u ∈ �.

(4.14)

Then the problem (1.1) has at least three nontrivial solutions, one of which is positive, another is
negative, and the third solution is sign changing.

Proof. From the proof of Theorem 4.6, it is easy to show that all conditions of Lemma 4.2 are
satisfied and A′

θ
has the sequence of eigenvalues {λn/λ}∞n=1.

Since λn < λ < λn+1 and n is an even number, we can know that the sum of the algebraic
multiplicities for all eigenvalues of A′

θ in (0, 1) is an even number. Condition (4.14) implies
that

A((−P) \ {θ}) ⊂ − intP, A(P \ {θ}) ⊂ intP. (4.15)

An application of Lemma 4.3 shows that problem (1.1) has at least three nontrivial solutions,
one of which is positive, another is negative, and the third solution is sign changing.

Now let us end this section by the following two examples.
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Example 4.8. Let � = �. Considering the following BVP:

Δ2u(t − 1) − 0.381966u + 4u2 + u4 = 0, t ∈ [1, 4],
u(0) = u(5) = 0,

(4.16)

where [1, 4] is the discrete interval {1, 2, 3, 4},Δu(t) = u(t + 1) − u(t), Δ2u(t) = Δ(Δu(t)).
By [26, Remark 2.3 and Lemma 2.9], we can know that λk = 4 sin2(kπ/10), k = 1, 2, 3, 4.

In addition, the algebraic multiplicity of each eigenvalue λk is equal to 1.
Setting δ = 0.00000001, it is easy to check that

lim sup
u→ 0

∣∣∣
∣∣
−0.381966u + 4u2 + u4

u

∣∣∣
∣∣
= 0.381966

= 0.38196601− 0.00000001

= λ1 − δ,

lim sup
u→−∞

−0.381966u + 4u2 + u4

u
= lim sup

u→−∞

(
−0.381966 + 4u + u3

)

= −∞,

lim sup
u→+∞

(
−0.381966 + 4u + u3

)
= +∞.

(4.17)

Therefore, all conditions in Theorem 4.4 are satisfied. By Theorem 4.4, BVP (4.16) has at least
one nontrivial solution.

Example 4.9. Let � = �. Consider the following BVP:

Δ2u(t − 1) + u(0.39 + 0.007 arctanu) = 0, t ∈ [1, 4],
u(0) = u(5) = 0.

(4.18)

In virtue of Example 4.8, we can know that λ1 = 0.38196601, λ2 = 1.381966011, λ3 =
3.553057584, and λ4 = 6.316546812.

Setting δ = 0.00000001, by direct calculation, we have

lim sup
u→−∞

u(0.39 + 0.007 arctanu)
u

= 0.39 − 0.007
π

2
= 0.39 − 0.010995574

≤ 0.38196601− 0.00000001

= λ1 − δ,
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lim sup
u→+∞

u(0.39 + 0.007 arctanu)
u

= 0.39 + 0.007 × π

2

= 0.400995574

≥ 0.38196601+ 0.00000001

= λ1 − δ,
lim
u→ 0

(0.39 + 0.007 arctanu) = 0.39/∈ {0.38196601, 1.381966011, 3.553057584, 6.316546812}.
(4.19)

Therefore, all conditions in Theorem 4.6 are satisfied. By Theorem 4.6, BVP (4.18) has at least
one nontrivial solution.

5. Topological Degree for Unilaterally Asymptotically
Linear Problem (1.1)

In [18], Liu and Sun presented some methods of computing the topological degree for
unilaterally asymptotically linear operators by using the lattice structure. Their main results
are as follows.

Lemma 5.1 (see [18]). Let P be a normal cone in E, and let A : E → E be completely continuous
and quasiadditive on lattice. Suppose that there exist u∗, u1 ∈ P and a positive bounded linear operator
L0 : E → E with r(L0) < 1, such that

Ax ≥ −u∗, ∀x ∈ P, Ax ≥ L0x − u1, ∀x ∈ (−P). (5.1)

In addition, suppose that A′
P exists, Aθ = θ, the Fréchet derivative A′

θ
of A at θ exists, and 1 is not

an eigenvalue of A′
θ
. Then A has at least one nontrivial fixed-point, provide that one of the following

is satisfied:

(i) r(A′
P ) > 1 and 1 is not an eigenvalue ofA′

P corresponding to a positive eigenvector;

(ii) r(A′
P ) < 1 and the sum of the algebraic multiplicities for all eigenvalues of A′

θ
, lying in the

interval (0, 1), is an odd number.

Lemma 5.2 (see [18]). Suppose that

(i) A is strongly increasing on P and −P ;
(ii) both A′

P andA′
(−P) exist with r(A

′
P ) > 1 and r(A′

(−P)) > 1; 1 is not an eigenvalue ofA′
P or

A′
(−P) corresponding to a positive eigenvector;

(iii) Aθ = θ; the Fréchet derivativeA′
θ
of A at θ is strongly positive, and r(A′

θ
) < 1;

(iv) the Fréchet derivative A′
∞ of A at ∞ exists; 1 is not an eigenvalue of A′

∞; the sum of the
algebraic multiplicities for all eigenvalues of A′

∞, lying in the interval (0, 1) is an even
number.

ThenA has at least three nontrivial fixed-points, containing one sign-changing fixed-point.
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Through this section, the following hypotheses are needed:

(E1) limu→+∞(f(t, u)/u) = p uniformly on t ∈ [a, σ(b)]
�
;

(E2) limu→−∞(f(t, u)/u) = q uniformly on t ∈ [a, σ(b)]
�
;

(E3) f(t, 0) ≡ 0, limu→ 0(f(t, u)/u) = λ uniformly on t ∈ [a, σ(b)]
�
.

Our main results are as follows.

Theorem 5.3. Suppose that f satisfies (E1)–(E3). Then problem (1.1) has at least one nontrivial
solution provided one of the following conditions is satisfied:

(i) p > λ1, 0 < q < λ1,p, λ/=λk, k = 1, 2, . . .;

(ii) 0 < p < λ1, q > λ1, q, λ/=λk, k = 1, 2, . . .;

(iii) 0 < p < λ1, 0 < q < λ1, λn < λ < λn+1, n is an odd number.

Proof. It follows from Definition 2.3 that

A′
Pu(t) = pKu(t), ∀t ∈

[
a, σ2(b)

]

�

.

A′
(−P)u(t) = qKu(t), ∀t ∈

[
a, σ2(b)

]

�

.

(5.2)

Furthermore, we have

A′
θu(t) =

∫σ(b)

a

G(t, s)f ′
u(s, 0)u(σ(s))Δs

= λ
∫σ(b)

a

G(t, s)u(σ(s))Δs

= λKu(t), ∀t ∈
[
a, σ2(b)

]

�

.

(5.3)

Assume that condition (i) is satisfied. By p > 0, we can obtain that there exists M1 > 0 such
that

f(t, u) ≥ −M1, ∀t ∈ [a, σ(b)]
�
, u ≥ 0. (5.4)

So, we have

Au(t) ≥ −KM1, ∀u ≥ 0. (5.5)

Since q < λ1, we can obtain that q + η < λ1 for some η > 0. (E2) implies that there exists μ0 > 0
such that

f(t, u) ≥ (
q + η

)
u − μ0, ∀t ∈ [a, σ(b)]

�
, u ≤ 0. (5.6)
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Consequently,

Au(t) =
∫σ(b)

a

G(t, s)f(t, u(σ(s)))Δs

≥
∫σ(b)

a

G(t, s)
[(
q + η

)
u(σ(s)) − μ0

]
Δs

=
(
q + η

)
Ku −Kμ0, ∀u ∈ (−P).

(5.7)

Let D0 = (q + η)K, then

r(D0) =
(
q + η

)
r(K) < λ1r(K) = 1. (5.8)

Equation (5.5) and (5.7) imply that (5.1) holds.
Since the sequences of all eigenvalues of A′

θ
, A′

P , and A′
(−P) are {λn/λ}∞n=1, {λn/p}∞n=1,

and {λn/q}∞n=1, respectively. It is easy to see from p, λ /=λk, k = 1, 2, . . . that 1 is not an
eigenvalue of A′

θ or A′
P . Lemma 5.1(i) assures that A has at least one nontrivial fixed-point,

and hence problem (1.1) has at least one nontrivial solution. Similarly, we can prove that the
conclusion holds in the case that condition (ii) or (iii) is satisfied.

Theorem 5.4. Letting f satisfy (E1)–(E3) and p = q =: χ. In addition, suppose that

(i) f(t, u) is strictly increasing on u for fixed t ∈ [a, σ(b)]
�
;

(ii) λn < χ < λn+1 and n is an even number;

(iii) 0 < λ < λ1.

Then problem (1.1) has at least three nontrivial solutions, containing a sign-changing solution.

Proof. Similarly to the proof of Theorem 3.8, we still need to use another orderedBanach space
E.

From the proof of Theorem 5.3 and Theorem 3.8, we know that A′
θ
= λK and A′

P =
A′

(−P) = χK. P ⊂ P gives that A′
P
= A′

(−P) = χK, where P is as in Theorem 3.8. It is easy to see

that A′
∞ = χK. Evidently, e1 ∈ int P . It follows from the condition (i) and K(P \ {θ}) ⊂ int P

that A is strongly increasing.
Condition (ii) implies that 1 is not an eigenvalue of A′

P or A′
(−P), and r(A

′
P ) = rA

′
(−P) =

χr(K) > λ1r(K) = 1. By the same method, we can show that A′
θ
is strongly increasing.

Moreover, by (iii), we have r(A′
θ
) = λr(K) < λ1r(K) = 1. At last, from the proof of

Theorem 5.3, we obtain that the sequence of all eigenvalues of A′
∞ is {λn/χ}∞n=1. According

to (ii), we can know that the sum of the algebraic multiplicities for all eigenvalues of A′
∞ in

(0, 1) is an even number. Hence, all the conditions of Lemma 5.2 are satisfied. The conclusion
follows from Lemma 5.2.

6. Conclusion

In this paper, some existence results of sign-changing solutions for dynamic equations on
time scales are established. As far as we know, there were few papers that studied this topic.
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Therefore, our results of this paper are new. It is natural for us to apply the method of this
paper to more general form of dynamic equations. However, we note that the study of sign-
changing solutions for time scales boundary value problems relies on the spectrum structure
of linear dynamic equations on time scales. The reader is referred to [27, 28] for further works.

Inmost papers on time scales boundary value problem, in order to obtain the existence
of positive solutions by using fixed-point theorems on a cone, the nonlinear term, which
appears in the right-hand side of the equation, is required to be nonnegative. For our main
results, the nonlinear term may be a sign-changing function, thus, the integral operator is
not necessary to be a cone mapping. We should point out that Sun and Zhang [29] have
studied nontrivial solutions of the singular superlinear Sturm-Liouville problems of ordinary
differential equations; the ideas of this paper come from [17–19, 29].

In [30], Luo focused on the application of spectral theory of linear dynamic problems
to the existence of positive solutions for nonlinear weighted eigenvalue problem on time
scales. The author also discussed the existence of nodal solutions and the global structure
of the solution for nonlinear eigenvalue problem on time scales by using the eigenvalues
of the corresponding linear problem and global bifurcation theory. Up to now, no results
on the spectrum structure of linear dynamic equations have been established for multipoint
boundary value problems. This is an open problem.
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