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We investigate a delayed eco-epidemiological model with disease in predator and saturation
incidence. First, by comparison arguments, the permanence of the model is discussed. Then,
we study the local stability of each equilibrium of the model by analyzing the corresponding
characteristic equations and find that Hopf bifurcation occurs when the delay τ passes through
a sequence of critical values. Next, by means of an iteration technique, sufficient conditions are
derived for the global stability of the disease-free planar equilibrium and the positive equilibrium.
Numerical examples are carried out to illustrate the analytical results.

1. Introduction

Recently, more attention has been paid to the eco-epidemiology model which considers both
the ecological and epidemiological issues simultaneously due to the fact that most of the
ecological populations suffer from various infectious diseases which have a significant role in
regulating population sizes (see, e.g., [1–6]). Mukherjee [7] discussed a predator-prey model
with disease in prey. The criteria were derived for both local stability and instability involving
system parameters. In addition, considering the time required by the susceptible individuals
to become infective after their interaction with the infectious individuals, Zhou et al. [8]
formulated a delayed eco-epidemiology model and found that the Hopf bifurcation occurs
when the delay passes through a sequence of critical values. They also gave an estimation
of the length of the time delay to preserve stability. On the other hand, in the predator-prey
system, the disease not only can spread in prey but also can spread in predator. Therefore,
Zhang et al. [9] studied an eco-epidemiological model with disease in predator and showed
that a Hopf bifurcation can occur as the delay increased. The above-mentioned works all used
bilinear incidence to model disease transmission.
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Note that ecologically the assumption of standard incidence instead of the former
bilinear mass action incidence is meaningful for large populations and a low number of
infected individuals, a very good justification behind this assumption being found in [10].
Han et al. [11] proposed fourmodifications of a predator-preymodel with standard incidence
to include an SIS or SIR parasitic infection. Thresholds were identified, and global stability
results were proved. When the disease persists in the prey population and the predators have
a sufficient feeding efficiency to survive, the disease also persists in the predator population.
Hethcote et al. [12] considered a predator-prey model including an SIS parasitic infection in
the prey with infected prey being more vulnerable to predation. Thresholds were identified
which determine when the predator population survives and when the disease remains
endemic.

However, there are a variety of factors that emphasize the need for a modification
of the bilinear incidence and standard incidence. For example, the underlying assumption of
homogeneousmixingmay not always hold. Incidence rates that increase more gradually than
linearly in I and Smay arise from saturation effects. It has been strongly suggested by several
authors that the disease transmission processmay follow saturation incidence. After studying
the cholera epidemic spread in Bari in 1973, Capasso and Serio [13] introduced a saturated
incidence rate g(I)S into epidemic models with g(I) = βI/(1 + αI). A general saturation
incidence rate g(I)S = βIpS/(1 + αIp) was proposed by Liu et al. [14] and used by a number
of authors; see, for example, Ruan andWang [15] (p = 2), Bhattacharyya andMukhopadhyay
[16] (p = 1), and so forth. βIp measures the infection force of the disease, and 1/(1 + αIp)
measures the inhibition effect from the behavioral change of the susceptible individuals
when their number increases or from the crowding effect of the infective individuals. This
incidence rate seems more reasonable than the bilinear incidence rate βSI, because it includes
the behavioral change and crowding effect of the infective individuals and prevents the
unboundedness of the contact rate by choosing suitable parameters.

Motivated by the works of Zhang et al. [9] and Capasso and Serio [13], in this
paper, we are concerned with the effect of disease in predator and saturated incidence on
the dynamics of eco-epidemiological model. To this end, we consider the following delay
differential equations:

ẋ(t) = rx(t)
(
1 − x(t)

K

)
− ax(t)S(t),

Ṡ(t) = bx(t − τ)S(t − τ) − cS2(t) − βS(t)I(t)
1 + αI(t)

,

İ(t) =
βS(t)I(t)
1 + αI(t)

− dI(t),

(1.1)

with initial conditions

x(θ) = φ1(θ), S(θ) = φ2(θ), I(θ) = φ3(θ),

φi(θ) ≥ 0, θ ∈ [−τ, 0], φi(0) > 0 (i = 1, 2, 3),
(1.2)

where (φ1(θ), φ2(θ), φ3(θ)) ∈ C([−τ, 0]), R
3
+), the Banach space of continuous functions

mapping the interval [−τ, 0] into R
3
+0, here R

3
+0 = {(x1, x2, x3) : xi ≥ 0, i = 1, 2, 3}.
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We make the following assumptions for our model (1.1).

(A1) The prey population grows logistically with intrinsic growth rate r and environ-
mental carrying capacity K.

(A2) There is a spread of disease in predators which are divided solely into susceptible
and infectious population. a is the capturing rate of susceptible predators, b is the
growth rate of susceptible predator due to predation of prey.

(A3) Susceptible predators become infected when they come in contact with infected
predator, and this contact process is assumed to follow the saturation incidence rate
βS(t)I(t)/(1 + αI(t)), with β measuring the force of infection and α the inhibition
effect.

(A4) c > 0 models death rate due to overcrowding, and τ is the time required for the
gestation of susceptible predator. d is the death rate of infected predator. All the
above-mentioned parameters are assumed to be positive.

The paper is organized as follows. In the next section, the positivity of solutions
and the permanence of system are discussed. By analyzing the corresponding characteristic
equations, we find conditions for local stability and bifurcation results in Section 3. In
Section 4, sufficient conditions are derived for the global stability of the disease-free planar
equilibrium and the positive equilibrium of the system. Numerical examples are carried out
to illustrate the validity of the main results. The paper ends with a conclusion in the last
section.

2. Permanence

To prove the permanence of system (1.1), we need the following lemma, which is a direct
application of Theorem4.9.1 in the study by Kuang [17].

Lemma 2.1. Consider the following equation:

ẋ(t) = ax(t − τ) − bx(t) − cx2(t), (2.1)

where a, b, c, τ > 0 and x(t) > 0 for all t ∈ [−τ, 0].

(1) If a > b, then lim supt→+∞x(t) = (a − b)/c.

(2) If a < b, then lim supt→+∞x(t) = 0.

Theorem 2.2. All the solutions of (1.1) with initial conditions (1.2) are all nonnegative.

Proof. Let (x(t), S(t), I(t)) be the solution of system (1.1) satisfying conditions (1.2). From the
first and last equations of system (1.1), we have

x(t) = x(0)e
∫ t
0[r(1−x(ξ)/K) −aS(ξ)]dξ,

I(t) = I(0)e
∫ t
0[βS(ξ)/(1+αI(ξ))−d]dξ.

(2.2)

Hence, x(t) and I(t) are positive.
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We now claim that S(t) > 0 for all t > 0. Otherwise, there exists a t1 > 0 such that
S(t1) = 0 and S(t) > 0 for all t ∈ [0, t1). Then Ṡ(t1) ≤ 0. From the second equation of (1.1), we
have

Ṡ(t1) = bx(t1 − τ)S(t1 − τ) > 0, (2.3)

which is a contradiction.

Theorem 2.3. All the solutions of (1.1) with initial conditions (1.2) are ultimately bounded.

Proof. From the first equation of (1.1), we have

ẋ(t) ≤ rx(t)
(
1 − x(t)

K

)
. (2.4)

Hence, we get

lim sup
t→+∞

x(t) ≤ K =̇ M1. (2.5)

From the second equation of system (1.1), for t sufficiently large, we have

Ṡ(t) = bx(t − τ)S(t − τ) − cS2(t) − βS(t)I(t)
1 + αI(t)

≤ bKS(t − τ) − cS2(t).
(2.6)

Hence, by Lemma 2.1, one can get

lim sup
t→+∞

S(t) ≤ bK

c
=̇ M2. (2.7)

It follows from the third equation of (1.1) and the above inequality, that for t
sufficiently large, we have

İ(t) =
βS(t)I(t)
1 + αI(t)

− dI(t)

≤ βM2I(t)
1 + αI(t)

− dI(t).
(2.8)

Hence, one can see lim supt→+∞ I(t) ≤ (1/(dα))|βM2 − d| =̇ M3.

Now, we show that system (1.1) is permanent.

Theorem 2.4. Suppose that

(H1)

βm2 > d, (2.9)

wherem2 is defined in (2.13), then system (1.1) is permanent.
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Proof. From the first equation of system (1.1), we have

ẋ(t) ≥ rx(t)
(
1 − x(t)

K
− aM2

r

)
. (2.10)

It then follows that

lim inf
t→+∞

x(t) ≥ K

[
1 − aM2

r

]
=̇ m1. (2.11)

Using the second equation of system (1.1), for t sufficiently large, we have

Ṡ(t) ≥ bm1S(t − τ) − cS2(t) − βS(t)M3

1 + αM3
. (2.12)

Hence, by Lemma 2.1 and (H1), one can derive that

lim inf
t→+∞

S(t) ≥ 1
c

[
bm1 −

βM3

1 + αM3

]
=̇ m2. (2.13)

From the third equation of system (1.1) and, above inequality, we have

İ(t) ≥ βm2I(t)
1 + αI(t)

− dI(t). (2.14)

Since (H1) holds, then

lim inf
t→+∞

I(t) ≥ 1
dα

[
βm2 − d

]
=̇ m3. (2.15)

Therefore, the above calculations and Theorem 2.2 imply that there exist Mi,mi (i =
1, 2, 3) such that

0 < m1 ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M1,

0 < m2 ≤ lim inf
t→+∞

S(t) ≤ lim sup
t→+∞

S(t) ≤ M2,

0 < m3 ≤ lim inf
t→+∞

I(t) ≤ lim sup
t→+∞

I(t) ≤ M3.

(2.16)

3. Local Stability

System (1.1) possesses the following equilibria.

(1) The trivial equilibrium E0(0, 0, 0).

(2) The axial equilibrium E1(K, 0, 0).

(3) The disease-free planar equilibrium E2(x2, S2, 0), where

x2 =
Kcr

Kab + rc
, S2 =

Kbr

Kab + rc
. (3.1)
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(4) The unique positive equilibrium E3(x3, S3, I3) exists if βS3 > d, where

S3 =
Kbα − β +

√(
Kbα − β

)2 + 4dα(Kab/r + c)

2α(Kab/r + c)
,

I3 =
βS3 − d

dα
, x3 = K − KaS3

r
.

(3.2)

In the following, we discuss the local stability of each equilibrium of system (1.1) by
analyzing the corresponding characteristic equations, respectively.

3.1. Stability of Equilibrium E0

The characteristic equation of system (1.1) at the trivial equilibrium E0 is of the form

λ(λ − r)(λ + d) = 0. (3.3)

It is easy to see that (3.3) always has a positive root r. Hence, E0 is always unstable.

3.2. Stability of Equilibrium E1

The characteristic equation of system (1.1) at the axial equilibrium E1 is of the form

(λ +K)
(
λ − bKe−λτ

)
(λ + d) = 0. (3.4)

There are two characteristic roots λ1 = −K, λ2 = −d, and another characteristic root is given
by the root of

λ = bKe−λτ . (3.5)

It is clear that Reλ > 0. Hence, E1 is always unstable.

3.3. Stability of Equilibrium E2

Theorem 3.1. The disease-free planar equilibrium E2 is locally asymptotically stable if βS2 < d, and
the equilibrium E2 is unstable if βS2 > d.

Proof. The characteristic equation of system (1.1) at the disease-free planar equilibrium E2 is
of the form

(
λ +

rx2

K

)(
λ + 2cS2 − cS2e

−λτ
)(

λ + d − βS2
)
= 0. (3.6)

Clearly, λ1 = −rx2/K is a negative eigenvalue. The second eigenvalue is given by the
root of

λ2 = cS2

(
e−λ2τ − 2

)
. (3.7)
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Suppose that Reλ2 ≥ 0, then Reλ2 = cS2(e−Reλ2τ cos(τ Imλ2) − 2) < 0. It is a contradiction,
so Reλ2 < 0. The last eigenvalue is λ3 = βS2 − d. The equilibrium E2 is locally asymptotically
stable if βS2 < d, and the equilibrium E2 is unstable if βS2 > d.

3.4. Stability of Equilibrium E3

The characteristic equation of system (1.1) at the positive equilibrium E3 is of the form

λ3 +A1λ
2 +A2λ +A3 + e−λτ

(
B1λ

2 + B2λ + B3

)
= 0, (3.8)

where

A1 =
rx3

K
+ 2cS3 +

βI3
1 + αI3

+
dαI3
1 + αI3

,

A2 =
(
rx3

K
+

dαI3
1 + αI3

)
×
(
2cS3 +

βI3
1 + αI3

)
+

dαI3
1 + αI3

× rx3

K
+

βI3

(1 + αI3)2
,

A3 =
rx3

K
×
[

dβI3
1 + αI3

+
(
2cS3 +

βI3
1 + αI3

)
× dαI3
1 + αI3

]
,

B1 = −bx3,

B2 = bx3 ×
(
− dαI3
1 + αI3

− rx3

K
+ aS3

)
,

B3 = bx3 × dαI3
1 + αI3

×
(
−rx3

K
+ aS3

)
.

(3.9)

For τ = 0, the transcendental (3.8) reduces to the following equation:

λ3 + (A1 + B1)λ2 + (A2 + B2)λ +A3 + B3 = 0. (3.10)

We can easily get

A1 + B1 =
rx3

K
+ cS3 +

dαI3
1 + αI3

> 0,

A2 + B2 =
(
rx3

K
+

dαI3
1 + αI3

)
× cS3 +

dαI3
1 + αI3

× rx3

K
+

βI3

(1 + αI3)2
+ bx3aS3 > 0,

A3 + B3 =
rx3

K
×
[

dβI3
1 + αI3

+ cS3 × dαI3
1 + αI3

]
+ bx3 × dαI3

1 + αI3
× aS3 > 0,

[A1 + B1] × [A2 + B2] − [A3 + B3] > 0.

(3.11)

Therefore, the Routh-Hurwitz criterion implies that all the roots of (3.8) have negative real
parts and we can conclude that the positive equilibrium E3 is asymptotically stable in the
absence of delay.
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Theorem 3.2. For system (1.1), if the condition (H2) A3 < B3 holds, the positive equilibrium E3 is
conditionally stable.

Proof. Substituting λ = iω into (3.8) and separating the real and imaginary parts, one can get

A1ω
2 −A3 = (B3 − B1ω2) cos(ωτ) + B2ω sin(ωτ),

ω3 −A2ω = B2ω cos(ωτ) − (B3 − B1ω2) sin(ωτ).
(3.12)

Squaring and adding (3.12) we get

ω6 +D1ω
4 +D2ω

2 +D3 = 0, (3.13)

where

D1 = A2
1 − 2A2 − B2

1 , D2 = A2
2 − B2

2 − 2A1A3 + 2B1B3, D3 = A2
3 − B2

3 . (3.14)

We know that D3 < 0 provided that the condition (H2) holds. There is at least a positive ω0

satisfying (3.13), that is, the characteristic equation (3.8) has a pair of purely imaginary roots
of the form ±iω0. From (3.12), we can get the corresponding τk > 0 such that the characteristic
(3.8) has a pair of purely imaginary roots

τk =
1
ω0

arccos

⎡
⎣
(
A1ω

2
0 −A3

)(
B3 − B1ω

2
0

)
+
(
ω3

0 −A2ω0
)
B2ω0(

B3 − B1ω
2
0

)2 + (B2ω0)2

⎤
⎦ +

2kπ
ω0

, (k = 0, 1, 2, . . .).

(3.15)

Let λ(τ) = ν(τ) + iω(τ) be the roots of (3.8) such that τ = τk satisfying ν(τk) = 0 and ω(τk) =
ω0. Differentiating the two sides of (3.8) with respect to τ , we get

(
dλ
dτ

)−1
=

2λ3 +A1λ
2 −A2

−λ2(λ3 +A1λ2 +A2λ +A3)
+

B1λ
2 − B3

λ2(B1λ2 + B2λ + B3)
− τ

λ
. (3.16)

Therefore,

sign
[
d Re λ

dτ

]
τ=τk

= sign

[
Re
(
dλ
dτ

) −1]
λ=iω0

=
1
ω2

0

sign

[
Re

(
A3 +A1ω

2
0 + i2ω3

0

A1ω
2
0 −A3 + i

(
ω3

0 −A2ω0
) + B1ω

2
0 + B3

−B1ω
2
0 + iB2ω0 + B3

)]

=
1
ω2

0

sign

⎡
⎣2ω6

0 +
(
A2

1 − 2A2 − B2
1

)
ω4

0 + B2
3 −A2

3(
B3 − B1ω

2
0

)2 + (B2ω0)2

⎤
⎦.

(3.17)



Discrete Dynamics in Nature and Society 9

If the conditions (H2) and (H3) A2
1 − 2A2 > B2

1 hold, one can see

sign
[
d Re λ

dτ

]
τ=τk

> 0. (3.18)

Therefore, the transversality condition holds, hence, the Hopf bifurcation occurs at ω = ω0

and τ = τk.

Theorem 3.3. Suppose that the conditions (H2) and (H3) are satisfied.

(1) The positive equilibrium E3 of system (1.1) is asymptotically stable for all τ ∈ [0, τ0) and
unstable for τ > τ0.

(2) System (1.1) undergoes a Hopf Bifurcation at the positive equilibrium E3 when τ = τk (k =
0, 1, . . .).

4. Global Stability

In this section, we study the global stability of equilibriums E2 and E3. The strategy of proofs
is to use an iteration technique and comparison arguments, respectively.

Theorem 4.1. If

(H4) βbK < cd, Kab < rc holds, then the disease-free planar equilibrium E2 is globally
asymptotically stable.

Proof. Let (x(t), S(t), I(t)) be any positive solution of system (1.1)with initial conditions (1.2).
Let the following hold:

U1 = lim sup
t→+∞

x(t), U2 = lim sup
t→+∞

S(t), U3 = lim sup
t→+∞

I(t),

V1 = lim inf
t→+∞

x(t), V2 = lim inf
t→+∞

S(t), V3 = lim inf
t→+∞

I(t).
(4.1)

In the following we shall claim that U1 = V1 = x2, U2 = V2 = S2, U3 = V3 = 0.
It follows from the first equation of system (1.1) that

ẋ(t) ≤ rx(t)
(
1 − x(t)

K

)
. (4.2)

By comparison, we obtain that

U1 = lim sup
t→+∞

x(t) ≤ K + ε. (4.3)

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that U1 ≤
Mx

1 , where

Mx
1 = K. (4.4)

Hence, for ε > 0 sufficiently small, there is a T1 > 0 such that, if t > T1, x(t) ≤ Mx
1 + ε.
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We, therefore, derive from the second equation of system (1.1) that, for t > T1 + τ ,

Ṡ(t) ≤ b
(
Mx

1 + ε
)
S(t − τ) − cS2(t). (4.5)

Hence, by Lemma 2.1, one can get

U2 = lim sup
t→+∞

S(t) ≤ b
(
Mx

1 + ε
)

c
=̇ MS

1 . (4.6)

Hence, for ε > 0 sufficiently small, there is a T2 > 0 such that, if T2 > T1 + τ , S(t) ≤ MS
1 + ε.

It follows from the third equation of system (1.1) that, for t > T2,

İ(t) ≤ β
(
MS

1 + ε
)
I(t)

1 + αI(t)
− dI(t). (4.7)

Since (H4) holds, one can see

U3 = lim sup
t→+∞

I(t) ≤ 0. (4.8)

According to Theorem 2.2, we can get limt→+∞I(t) = U3 = V3 = 0.
We derive from the first equation of system (1.1) that, for t > T2 + τ ,

ẋ(t) ≥ rx(t)

(
1 − x(t)

K
− a
(
MS

1 + ε
)

r

)
. (4.9)

By comparison we derive that

V1 = lim inf
t→+∞

x(t) ≥ K

[
1 − a

(
MS

1 + ε
)

r

]
. (4.10)

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that V1 ≥
Nx

1 , where

Nx
1 = K

[
1 − aMS

1

r

]
. (4.11)

Hence, for ε > 0 sufficiently small, there is a T3 > 0 such that, if T3 > T2 + τ , x(t) ≥ Nx
1 − ε.

We derive from the second equation of system (1.1) that, for t > T3,

Ṡ(t) ≥ b
(
Nx

1 − ε
)
S(t − τ) − cS2(t) − βS(t)ε

1 + αε
. (4.12)

Hence, by Lemma 2.1, one can get
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V2 = lim inf
t→+∞

S(t) ≥ 1
c

[
b
(
Nx

1 − ε
) − βε

1 + αε

]
. (4.13)

Since this is true for arbitrary ε > 0 sufficiently small, we conclude that V2 ≥ NS
1 , where

NS
1 =

bNx
1

c
. (4.14)

Hence, for ε > 0 sufficiently small, there is a T4 > 0 such that, if T4 > T3 + τ , S(t) ≥ NS
1 − ε.

Again, it follows from the first equation of system (1.2) that, for t > T4,

ẋ(t) ≤ rx(t)

(
1 − x(t)

K
− a
(
NS

1 − ε
)

r

)
. (4.15)

A comparison argument yields

U1 = lim sup
t→+∞

x(t) ≤ K

[
1 − a

(
NS

1 − ε
)

r

]
. (4.16)

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that U1 ≤
Mx

2 , where

Mx
2 = K

[
1 − aNS

1

r

]
. (4.17)

Hence, for ε > 0 sufficiently small, there is a T5 > 0 such that, if T5 > T4 + τ , x(t) ≤ Mx
2 + ε.

It follows from the second equation of system (1.1) that, for t > T5,

Ṡ(t) ≤ b
(
Mx

2 + ε
)
S(t − τ) − cS2(t) − βS(t)ε

1 + αε
. (4.18)

By Lemma 2.1, one can derive that

V2 = lim sup
t→+∞

S(t) ≤ 1
c

[
b
(
Mx

2 + ε
) − βε

1 + αε

]
. (4.19)

Since this is true for arbitrary ε > 0 sufficiently small, we conclude thatU2 ≤ MS
2 , where

MS
2 =

bMx
2

c
. (4.20)

Hence, for ε > 0 sufficiently small, there is a T6 > 0 such that, if T6 > T5 + τ , S(t) ≤ MS
2 + ε.

We derive from the first equation of system (1.1) that, for t > T6,
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ẋ(t) ≥ rx(t)

(
1 − x(t)

K
− a
(
MS

2 + ε
)

r

)
. (4.21)

By comparison it follows that

V1 = lim inf
t→+∞

x(t) ≥ K

[
1 − a

(
MS

2 + ε
)

r

]
. (4.22)

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that V1 ≥
Nx

2 , where

Nx
2 = K

[
1 − aMS

2

r

]
. (4.23)

Hence, for ε > 0 sufficiently small, there is a T7 > 0 such that, if T7 > T6 + τ , x(t) ≥ Nx
2 − ε.

We derive from the second equation of system (1.1) that, for t > T7,

Ṡ(t) ≥ b
(
Nx

2 − ε
)
S(t − τ) − cS2(t) − βS(t)ε

1 + αε
. (4.24)

Hence, by Lemma 2.1, one can get

V2 = lim inf
t→+∞

S(t) ≥ 1
c

[
b
(
Nx

2 − ε
) − βε

1 + αε

]
. (4.25)

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that V2 ≥
NS

2 , where

NS
2 =

bNx
2

c
. (4.26)

Hence, for ε > 0 sufficiently small, there is a T7 > 0 such that, if T8 > T7 + τ , S(t) ≥ NS
2 − ε.

Continuing this process, we get four sequences Mx
n,M

S
n,N

x
n ,N

S
n (n = 1, 2, . . .) such

that, for n ≥ 2,

Mx
n = K

[
1 − aNS

n−1
r

]
,

Nx
n = K

[
1 − aMS

n

r

]
,

MS
n =

bMx
n

c
,

NS
n =

bNx
n

c
.

(4.27)
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Clearly, we have

Nx
n ≤ V1 ≤ U1 ≤ Mx

n, NS
n ≤ V2 ≤ U2 ≤ MS

n. (4.28)

It follows from (4.27) that

Mx
n+1 = K

[
1 − Kab

rc

]
+Mx

n

K2a2b2

r2c2
. (4.29)

Noting that Mx
n ≥ S2 and Kab < rc, we derive from (4.29) that

Mx
n+1 = K

[
1 − Kab

rc

]
+Mx

n

[
Kab

rc
− 1
][

Kab

rc
+ 1
]

≤ K

[
1 − Kab

rc

]
+

Kcr

Kab + rc

[
Kab

rc
− 1
][

Kab

rc
+ 1
]

= 0.

(4.30)

Thus, the sequence Mx
n is monotonically nonincreasing. Therefore, it follows that

limn→+∞Mx
n exists. Taking n → +∞, we obtain from (4.29) that

lim
n→+∞

Mx
n+1 = K

[
1 − Kab

rc

]
+ lim

n→+∞
Mx

n

K2a2b2

r2c2
. (4.31)

Noting that

lim
n→+∞

Mx
n+1 = lim

n→+∞
Mx

n, (4.32)

it follows from (4.31) that

lim
n→+∞

Mx
n+1 = lim

n→+∞
Mx

n = x2. (4.33)

We derive from (4.33) and the third equation of (4.27) that

lim
n→+∞

MS
n+1 = lim

n→+∞
MS

n = S2. (4.34)

Similarly, one can derive from (4.27) and (4.34) that

lim
n→+∞

Nx
n = x2, lim

n→+∞
NS

n = S2. (4.35)

It follows from (4.28), (4.33), and (4.35) that

V1 = U1 = x2, V2 = U2 = S2. (4.36)
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We, therefore, have

lim
t→+∞

x(t) = x2, lim
t→+∞

S(t) = S2, lim
t→+∞

I(t) = 0. (4.37)

Hence, the disease-free planar equilibrium E2 is globally asymptotically stable. The proof is
complete.

Theorem 4.2. If

(H5) βbK > cd and Kab < rc, β > Kbα holds, then the positive equilibrium E3 is globally
asymptotically stable.

Proof. Let (x(t), S(t), I(t)) be any positive solution of system (1.1)with initial conditions (1.2).
Let the following hold:

x = lim sup
t→+∞

x(t), S = lim sup
t→+∞

S(t), I = lim sup
t→+∞

I(t),

x = lim inf
t→+∞

x(t), S = lim inf
t→+∞

S(t), I = lim inf
t→+∞

I(t).
(4.38)

In the following we claim that x = x = x3, S = S = S3, I = I = I3.
It follows from the first equation of system (1.1) that

ẋ(t) ≤ rx(t)
(
1 − x(t)

K

)
. (4.39)

By comparison we obtain

x = lim sup
t→+∞

x(t) ≤ K + ε. (4.40)

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that x ≤ Mx
1 ,

where

Mx
1 = K. (4.41)

Hence, for ε > 0 sufficiently small, there is a T1 > 0 such that, if t > T1, x(t) ≤ Mx
1 +ε.We obtain

from the second equation of system (1.1) that, for t > T1 + τ ,

Ṡ(t) ≤ b
(
Mx

1 + ε
)
S(t − τ) − cS2(t). (4.42)

Hence, by Lemma 2.1, we derive that

S = lim sup
t→+∞

S(t) ≤ b
(
Mx

1 + ε
)

c
. (4.43)
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Since it is true for arbitrary ε > 0 sufficiently small, we conclude that S ≤ MS
1 , where

MS
1 =

bMx
1

c
. (4.44)

Hence, for ε > 0 sufficiently small, there is a T2 > 0 such that, if T2 > T1 + τ , S(t) ≤ MS
1 + ε.

It follows from the third equation of system (1.1) that

İ(t) ≤ β
(
MS

1 + ε
)
I(t)

1 + αI(t)
− dI(t). (4.45)

Since (H5) holds, one can see

I = lim sup
t→+∞

I(t) ≤ β
(
MS

1 + ε
) − d

dα
. (4.46)

Since it is true for arbitrary ε > 0 sufficiently small, we conclude that I ≤ MI
1, where

MI
1 =

βMS
1 − d

dα
. (4.47)

We derive from the first equation of system (1.1) that, for t > T2,

ẋ(t) ≥ rx(t)

(
1 − x(t)

K
− a
(
MS

1 + ε
)

r

)
. (4.48)

By comparison we derive that

x = lim inf
t→+∞

x(t) ≥ K

[
1 − a

(
MS

1 + ε
)

r

]
. (4.49)

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that x ≥ Nx
1 ,

where

Nx
1 = K

[
1 − aMS

1

r

]
. (4.50)

Hence, for ε > 0 sufficiently small, there is a T3 > 0 such that, if T3 > T2 + τ , x(t) ≥ Nx
1 − ε.

We derive from the second equation of system (1.1) that, for t > T3,

Ṡ(t) ≥ b
(
Nx

1 − ε
)
S(t − τ) − cS2(t) − βS(t)MI

1

1 + αMI
1

. (4.51)
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Hence, by Lemma 2.1 and (H5), one can get

S = lim inf
t→+∞

S(t) ≥ 1
c

[
b
(
Nx

1 − ε
) − βMI

1

1 + αMI
1

]
. (4.52)

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that S ≥ NS
1 ,

where

NS
1 =

1
c

[
bNx

1 − βMI
1

1 + αMI
1

]
. (4.53)

Hence, for ε > 0 sufficiently small, we get S(t) ≥ NS
1 − ε.

It follows from the third equation of system (1.1) that

İ(t) ≥ β
(
NS

1 − ε
)
I(t)

1 + αI(t)
− dI(t). (4.54)

Provided that βNS
1 > d, one can see

I = lim inf
t→+∞

I(t) ≥ β
(
NS

1 − ε
) − d

dα
. (4.55)

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that I ≥ NI
1,

where

NI
1 =

βNS
1 − d

dα
. (4.56)

It follows from the first equation of system (1.1) that

ẋ(t) ≤ rx(t)

(
1 − x(t)

K
− a
(
NS

1 − ε
)

r

)
. (4.57)

By comparison we derive that

x = lim sup
t→+∞

x(t) ≤ K

[
1 − a

(
NS

1 − ε
)

r

]
. (4.58)

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that x ≤ Mx
2 ,

where

Mx
2 = K

[
1 − aNS

1

r

]
. (4.59)

Hence, for ε > 0 sufficiently small, there is a T4 > 0 such that, if t > T4, x(t) ≤ Mx
2 + ε.
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We obtain from the second equation of system (1.1) that, for t > T4 + τ ,

Ṡ(t) ≤ b
(
Mx

2 + ε
)
S(t − τ) − cS2(t) − βS(t)NI

1

1 + αNI
1

. (4.60)

Hence, by Lemma 2.1, one can get

S = lim sup
t→+∞

S(t) ≤ 1
c

[
b
(
Mx

2 + ε
) − βNI

1

1 + αNI
1

]
. (4.61)

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that S ≤ MS
2 ,

where

MS
2 =

1
c

[
bMx

2 −
βNI

1

1 + αNI
1

]
. (4.62)

Hence, for ε > 0 sufficiently small, there is a T5 > 0 such that, if T5 > T4 + τ , S(t) ≤ MS
2 + ε.

It follows from the third equation of system (1.1) that

İ(t) ≤ β
(
MS

2 + ε
)
I(t)

1 + αI(t)
− dI(t). (4.63)

Hence, by (H5), one can see

I = lim sup
t→+∞

I(t) ≤ β
(
MS

2 + ε
) − d

dα
. (4.64)

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that I ≤ MI
2,

where

MI
2 =

βMS
2 − d

dα
. (4.65)

We derive from the first equation of system (1.1) that, for t > T5,

ẋ(t) ≥ rx(t)

(
1 − x(t)

K
− a
(
MS

2 + ε
)

r

)
. (4.66)

By comparison we derive that

x = lim inf
t→+∞

x(t) ≥ K

[
1 − a

(
MS

2 + ε
)

r

]
. (4.67)
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Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that x ≥ Nx
2 ,

where

Nx
2 = K

[
1 − aMS

2

r

]
. (4.68)

Hence, for ε > 0 sufficiently small, there is a T6 > 0 such that, if T6 > T5 + τ , x(t) ≥ Nx
2 − ε.

We derive from the second equation of system (1.1) that, for t > T6,

Ṡ(t) ≥ b
(
Nx

2 − ε
)
S(t − τ) − cS2(t) − βS(t)MI

2

1 + αMI
2

. (4.69)

By Lemma 2.1, one can get

S = lim inf
t→+∞

S(t) ≥ 1
c

[
b
(
Nx

2 − ε
) − βMI

2

1 + αMI
2

]
. (4.70)

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that S ≥ NS
1 ,

where

NS
2 =

1
c

[
bNx

2 − βMI
2

1 + αMI
2

]
. (4.71)

Hence, for ε > 0 sufficiently small, we get S(t) ≥ NS
2 − ε.

It follows from the third equation of system (1.1) that

İ(t) ≥ β
(
NS

2 − ε
)
I(t)

1 + αI(t)
− dI(t). (4.72)

Since (H5) holds, one can see

I = lim inf
t→+∞

I(t) ≥ β
(
NS

2 − ε
) − d

dα
. (4.73)

Since this inequality holds true for arbitrary ε > 0 sufficiently small, we conclude that I ≥ NI
2,

where

NI
2 =

βNS
2 − d

dα
. (4.74)
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Continuing this process, we obtain six sequences Mx
n,M

S
n,M

I
n,N

x
n ,N

S
n ,N

I
n (n =

1, 2, . . .) such that, for n ≥ 2,

Mx
n = K

[
1 − aNS

n−1
r

]
,

MS
n =

1
c

[
bMx

n −
βNI

n−1
1 + αNI

n−1

]
,

MI
n =

βMS
n − d

dα
,

Nx
n = K

[
1 − aMS

n

r

]
,

NS
n =

1
c

[
bNx

n − βMI
n

1 + αMI
n

]
,

NI
n = βNS

n − d

dα
.

(4.75)

A direct calculation shows that

Mx
2 −Mx

1 = −KaNS
1

r
< 0,

MS
2 −MS

1 =
1
c

[
b
(
Mx

2 −Mx
1

) − βNI
1

1 + αNI
1

]
< 0,

MI
2 −MI

1 =
β
(
MS

2 −MS
1

)
dα

< 0,

Nx
2 −Nx

1 =
Ka
(
MS

1 −Ms
2

)
r

> 0,

NS
2 −NS

1 =
1
c

[
b
(
Nx

2 −Nx
1

)
+

βMI
1

1 + αMI
1

− βMI
2

1 + αMI
2

]
> 0,

NI
2 −NI

1 =
β
(
NS

2 −NS
1

)
dα

> 0.

(4.76)

By induction, we can show that MS
n+1 < MS

n , N
S
n+1 > NS

n . Therefore, the sequence MS
n is

decreasing, and the sequence NS
n is increasing. Clearly, we have

Nx
n ≤ x ≤ x ≤ Mx

n, NS
n ≤ S ≤ S ≤ MS

n, NI
n ≤ I ≤ I ≤ MI

n. (4.77)

Hence, the limits of the sequences MS
n andNS

n exist. Denote

S = lim
t→+∞

MS
n, S = lim

t→+∞
NS

n . (4.78)
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Figure 1: The temporal solution found by numerical integration of system (1.1) with r = 2, K = 2, a = 2,
c = 2, β = 2, α = 1, d = 0.8, b = 0.3, τ = 1, and (x0, S0, I0) = (1, 1, 1).

We derive from (4.75) that

[
S − S

][
β −Kbα +

Kba

dr

(
S + S

)]
= 0. (4.79)

Since (H5) holds, β −Kbα+ (Kba/dr)(S+S) > 0. It, therefore, follows from (4.79) that S = S.
Accordingly, we derive from (4.75) that

S =
1
c

[
bK

(
1 − aS

r

)
− β

α
+
d

S

]
. (4.80)

By a simple calculation, we obtain

S = S = S3. (4.81)

It follows from (4.75) and (4.81) that I = I = I3, x = x = x3. Hence, the unique positive
equilibrium E3 is globally asymptotically stable. The proof is complete.

In the following we will present two examples to verify our results obtained earlier.

Example 4.3. In system (1.1), we let r = 2, K = 2, a = 1, c = 2, β = 2, α = 1, d = 0.8, b = 0.3,
τ = 1. It is easy to show that Kbβ − cd = −0.4 < 0, rc −Kab = 3.4 > 0. By Theorem 4.1 we see
that the equilibrium E2(1.7391, 0.2609, 0) of system (1.1) is globally stable (see Figure 1).
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Figure 2: The temporal solution found by numerical integration of system (1.1) with r = 2, K = 2, a = 1,
c = 2, β = 2, α = 1, d = 0.4, b = 0.3, τ = 1, and (x0, S0, I0) = (1, 1, 1).

Example 4.4. In system (1.1), we let r = 2, K = 2, a = 1, c = 2, β = 2, α = 1, d = 0.4, b = 0.3, τ = 1.
It is easy to show that Kbβ − cd = 0.4 > 0, Kab − rc = −3.4 < 0, β − Kbα = 1.400 > 0. By
Theorem 4.2 we see that the equilibrium E3(1.7881, 0.2119, 0.0596) of system (1.1) is globally
stable, as depicted in Figure 2.

5. Conclusion

In this paper, we have incorporated the disease for the predator and the time delay into an
eco-epidemiology model. A saturation incidence function was used to model the behavioral
change of the susceptible predator when their number increases or due to the crowding effect
of the infected predator. First, by comparison arguments, the permanence of system (1.1)was
studied. Then, by analyzing the corresponding characteristic equations, sufficient conditions
were derived for the local stability of each equilibrium of system (1.1). From Theorem 3.3,
we showed that system (1.1) undergoes a Hopf bifurcation when the delay passes through a
sequence of critical values. Next, by using the iteration technique and comparison arguments,
we derived sufficient conditions for the global stability of the disease-free planer equilibrium
and positive equilibrium of system (1.1). By Theorems 4.1 and 4.2, we showed that (1) if (H4)
holds, the infected predator population becomes extinct and the disease will be eliminated;
that is, only sound predator and prey coexist; (2) if (H5) holds, the prey, the sound predator
and the infected predator coexist. The disease will not be eliminated, and the system is
permanent.
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