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Almost periodic solution of a three-species competition systemwith grazing rates and diffusions is
investigated. By using the method of upper and lower solutions and Schauder fixed point theorem
as well as Lyapunov stability theory, we give sufficient conditions to ensure the existence and
globally asymptotically stable for the strictly positive space homogenous almost periodic solution,
which extend and include corresponding results obtained by Q. C. Lin (1999), F. D. Chen and X. X.
Chen (2003), Y. Q. Liu, S. L, Xie, and Z. D. Xie (1996).

1. Introduction

In this paper, we study the following three-species competition system with grazing rates
and diffusions:

∂v1(x, t)
∂t

= k1(t)Δv1(x, t) + v1(x, t)[a1(t) − b1(t)v1(x, t) − c1(t)v2(x, t) − d1(t)v3(x, t)] + f1(t),

∂v2(x, t)
∂t

= k2(t)Δv2(x, t) + v2(x, t)[a2(t) − b2(t)v1(x, t) − c2(t)v2(x, t) − d2(t)v3(x, t)] + f2(t),

∂v3(x, t)
∂t

= k3(t)Δv3(x, t) + v3(x, t)[a3(t) − b3(t)v1(x, t) − c3(t)v2(x, t) − d3(t)v3(x, t)] + f3(t),

(1.1)



2 Discrete Dynamics in Nature and Society

where (x, t) ∈ Ω × R+, Ω ⊆ Rn is the bounded open subset of Rn with smooth boundary
∂Ω, which represent the habitat domain for three species. System (1.1) is supplement with
boundary conditions and initial conditions:

∂vi(x, t)
∂n

= 0, i = 1, 2, 3, (x, t) ∈ ∂Ω × R+, (1.2)

vi(x, 0) = vi0(x) ≥ 0, vi0(x)/≡ 0, i = 1, 2, 3, x ∈ Ω, (1.3)

where ∂/∂n denotes the outward normal derivation on ∂Ω, and vi(x, t) represent the
density of ith species at point x = (x1, . . . , xn) and the time of t. Here, ki(t), ai(t), bi(t),
ci(t), di(t), and fi(t) (i = 1, 2, 3) denote the diffusivity rates, competition rates, and grazing
rates, respectively. They are almost periodic functions in real number field R. Δ is a Laplace
operator on Ω.

System (1.1)–(1.3) describes the interaction among three species and is an important
model in biomathcmatics, which has been intensively investigated, and much attention is
carried to the problem [1–8]. When there is no diffusion, Jiang [1] and Lin [2] studied the
existence, uniqueness, and stability on periodic solution and almost periodic solution for
two-species competition system under the condition that the coefficients are the periodic
function and almost periodic function, respectively; F. D. Chen and X. X. Chen [3] extended
the results in [2] to n-species case. When there are no diffusion and grazing rates, Zhang
and Wang [4, 5] investigated the existence of a positive periodic solution for a two-species
nonautonomous competition Lotka-Volterra patch system with time delay and the existence
of multiple positive periodic solutions for a generalized delayed population model with
exploited term by using the continuation theorem of coincidence degree theory; Hu and
Zhang [6] established criteria for the existence of at least four positive periodic solutions for
a discrete time-delayed predator-prey system with nonmonotonic functional response and
harvesting by employing the continuation theorem of coincidence degree theory. When there
are no grazing rates, Pao and Wang [7] proved the stability for invariable coefficient case
by utilizing the method of upper and lower solutions. Liu et al. [8] showed the stability
on the periodic solution for n-species competition system with grazing rates and diffusions.
Nevertheless, generally speaking, the system does not always change strictly according to
periodic laws, sometimes it changes according to almost periodic laws, and it is important to
survey almost periodic solution for the multispecies competition system with grazing rates
and diffusions. To sum up, we pay more attention to almost periodic solution of a three-
species competition system (1.1)–(1.3) with grazing rates and diffusions; in this paper, by
using the method of upper and lower solutions and Schauder fixed point theorem as well as
Lyapunov stability theory, we obtain sufficient conditions which ensure the existence and
globally asymptotically stable for the strictly positive space homogenous almost periodic
solution, which extend and include corresponding results obtained in [2, 3, 8]. Many other
results on the periodic solution and almost periodic solution can be found in [9–16].

2. Preliminary

Firstly, we give out some definitions and lemmas.

Definition 2.1. Suppose that f(t) is a continuous function in R. Then f(t) is said to be almost
periodic in t ∈ R if for every ε > 0 corresponds T(ε) > 0 such that for any interval I whose
length is equal to T(ε) there is at least one τ ∈ I such that

∣
∣f(t + τ) − f(t)

∣
∣ ≤ ε, ∀t ∈ R. (2.1)
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Definition 2.2. If a smooth function V (t) = (v1(t), v2(t), v3(t)) satisfies (1.1) in R+, and
every component of V (t) is the almost periodic function, we called that V (t) is a spatial
homogeneity almost periodic solution for (1.1), which is denoted by V (t, T(ε)).

Definition 2.3. For any nonnegative smooth initial data

V (x, 0) = (v1(x, 0), v2(x, 0), v3(x, 0)) = (v10(x), v20(x), v30(x)) ≥ 0, V (x, 0)/≡ 0, x ∈ Ω,
(2.2)

if there exists a unique positive solution V (x, t) = (v1(x, t), v2(x, t), v3(x, t)) for the system
(1.1) with boundary conditions (1.2), and limt→∞(Vi(x, t) − Vi(t, T(ε))) = 0, i = 1, 2, 3,
uniformly for x ∈ Ω, we called that spatial homogeneity almost periodic solution V (t, T(ε))
is globally asymptotically stable.

Definition 2.4. Suppose that V (x, t) ≡ (v1(x, t), v2(x, t), v3(x, t)), V (x, t) ≡ (v1(x, t), v2(x, t),
v3(x, t)); if V (x, t) ≥ V (x, t) and

∂v1(x, t)
∂t

≥ k1(t)Δv1(x, t) + v1(x, t)
[

a1(t) − b1(t)v1(x, t) − c1(t)v2(x, t) − d1(t)v3(x, t)
]

+f1(t), (x, t) ∈ Ω × R+,

∂v2(x, t)
∂t

≥ k2(t)Δv2(x, t) + v2(x, t)
[

a2(t) − b2(t)v1(x, t) − c2(t)v2(x, t) − d2(t)v3(x, t)
]

+f2(t), (x, t) ∈ Ω × R+,

∂v3(x, t)
∂t

≥ k3(t)Δv3(x, t) + v3(x, t)
[

a3(t) − b3(t)v1(x, t) − c3(t)v2(x, t) − d3(t)v3(x, t)
]

+f3(t), (x, t) ∈ Ω × R+,

∂vi(x, t)
∂n

≥ 0, i = 1, 2, 3, (x, t) ∈ ∂Ω × R+,

vi(x, 0) ≥ vi0(x), i = 1, 2, 3, x ∈ Ω,

∂v1(x, t)
∂t

≤ k1(t)Δv1(x, t) + v1(x, t)
[

a1(t) − b1(t)v1(x, t) − c1(t)v2(x, t) − d1(t)v3(x, t)
]

+f1(t), (x, t) ∈ Ω × R+,

∂v2(x, t)
∂t

≤ k2(t)Δv2(x, t) + v2(x, t)
[

a2(t) − b2(t)v1(x, t) − c2(t)v2(x, t) − d2(t)v3(x, t)
]

+f2(t), (x, t) ∈ Ω × R+,

∂v3(x, t)
∂t

≤ k3(t)Δv3(x, t) + v3(x, t)
[

a3(t) − b3(t)v1(x, t) − c3(t)v2(x, t) − d3(t)v3(x, t)
]

+f3(t), (x, t) ∈ Ω × R+,

∂vi(x, t)
∂n

≤ 0, i = 1, 2, 3, (x, t) ∈ ∂Ω × R+,

vi(x, 0) ≤ vi0(x), i = 1, 2, 3, x ∈ Ω,

(2.3)

we called V (x, t) and V (x, t) a pair of ordered upper and lower solutions for systems (1.1)–
(1.3).
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Lemma 2.5 (see [12, 17]). Suppose that V (x, t) and V (x, t) are a pair of ordered upper and lower
solution for systems (1.1)–(1.3), then there exists a unique solution V (x, t) for systems (1.1)–(1.3).
Moreover, one has

V (x, t) ≥ V (x, t) ≥ V (x, t). (2.4)

For the almost periodic function F(t) in R, one denotes F̃ = sup{F(t), t ∈ R}, F
∼

=

inf{F(t), t ∈ R}, andM[F] = lim(t−s)→∞{
∫ t

s F(τ)dτ/(t−s)}. When F(t) is T -periodic function,
one denotes M[F] =

∫T

0 F(s)ds/T .

3. Main Results and Proofs

Now we are in a position to state our main results and give our proofs.

Theorem 3.1. If a
∼ i
, b
∼i
, c
∼i
, d

∼ i
, f

∼ i
are positive numbers, and

(

b̃i + c̃i + d̃i

)

a
∼ i

≤ L = min

⎧

⎪⎪
⎨

⎪⎪
⎩

√
√
√
√

b
∼1
f̃1

,

√
√
√
√

c
∼2
f̃2

,

√
√
√
√

d
∼3
f̃3

,

(

d
∼1

+ c
∼1

)

ã1
,

(

b
∼2

+ d
∼2

)

ã2
,

(

b
∼3

+ c
∼3

)

ã3

⎫

⎪⎪
⎬

⎪⎪
⎭

(3.1)

are satisfied for i = 1, 2, 3, then there exists a strictly positive spatial homogeneity almost periodic
solution V (t) = (v̂1(t), v̂2(t), v̂3(t)) for (1.1).

Proof. By the conditions in Theorem 3.1, we have

0 <
c̃1 + d̃1

La
∼1

− b̃1
≤ 1, 0 <

b̃2 + d̃2

La
∼2

− c̃2
≤ 1, 0 <

b̃3 + c̃3

La
∼3

− d̃3

≤ 1. (3.2)

Let

m = L ·max

⎧

⎪
⎨

⎪
⎩

c̃1 + d̃1

La
∼1

− b̃1
,
b̃2 + d̃2

La
∼2

− c̃2
,
b̃3 + c̃3

La
∼3

− d̃3

⎫

⎪
⎬

⎪
⎭

. (3.3)

Then we have 0 < m ≤ L, and

(

c̃1 + d̃1

) L

m
≤ La

∼1
− b̃1,

(

b̃2 + d̃2

) L

m
≤ La

∼2
− c̃2,

(

b̃3 + c̃3
) L

m
≤ La

∼3
− d̃3. (3.4)

Therefore

b̃1 +
(

c̃1 + d̃1

) L

m
− f

∼1
m2 ≤ La

∼1
, c̃2 +

(

b̃2 + d̃2

) L

m
− f

∼2
m2 ≤ La

∼2
,

d̃3 +
(

b̃3 + c̃3
) L

m
− f

∼3
m2 ≤ La

∼3
.

(3.5)
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Furthermore, by the given conditions in Theorem 3.1, one has

b
∼1

− f̃1L
2 ≥ 0, c

∼2
− f̃2L

2 ≥ 0, d
∼3

− f̃3L
2 ≥ 0,

(

c
∼1

+ d
∼1

)
m

L
≥ mã1,

(

b
∼2

+ d
∼2

)
m

L
≥ mã2,

(

b
∼3

+ c
∼3

)
m

L
≥ mã3.

(3.6)

Thus

b
∼1

+
(

c
∼1

+ d
∼1

)
m

L
− f̃1L

2 ≥ mã1, c
∼2

+
(

b
∼2

+ d
∼2

)
m

L
− f̃2L

2 ≥ mã2,

d
∼3

+
(

b
∼3

+ c
∼3

)
m

L
− f̃3L

2 ≥ mã3.

(3.7)

Combining (3.5) and (3.7), we have

b̃1 +
(

c̃1 + d̃1

) L

m
− f

∼1
m2 ≤ La

∼1
, b

∼1
+
(

c
∼1

+ d
∼1

)
m

L
− f̃1L

2 ≥ mã1,

c̃2 +
(

b̃2 + d̃2

) L

m
− f

∼2
m2 ≤ La

∼2
, c

∼2
+
(

b
∼2

+ d
∼2

)
m

L
− f̃2L

2 ≥ mã2,

d̃3 +
(

b̃3 + c̃3
) L

m
− f

∼3
m2 ≤ La

∼3
, d

∼3
+
(

b
∼3

+ c
∼3

)
m

L
− f̃3L

2 ≥ mã3.

(3.8)

Let

Hm
L =

{(

φ(t), ϕ(t), γ(t)
)

: φ, ϕ, γ are almost periodic in t ∈ R, 0 < m ≤ φ, ϕ, γ ≤ L
}

. (3.9)

We consider the following system corresponding to (1.1):

v̇1 = v1(a1(t) − b1(t)v1 − c1(t)v2 − d1(t)v3) + f1(t), t ∈ R+,

v̇2 = v2(a2(t) − b2(t)v1 − c2(t)v2 − d2(t)v3) + f2(t), t ∈ R+,

v̇3 = v3(a3(t) − b3(t)v1 − c3(t)v2 − d3(t)v3) + f3(t), t ∈ R+.

(3.10)

Let zi = 1/vi, i = 1, 2, 3; then (3.10) becomes

ż1 = b1(t) − a1(t)z1 + c1(t)
z1
z2

+ d1(t)
z1
z3

− f2(t)z21,

ż2 = c2(t) − a2(t)z2 + b2(t)
z2
z1

+ d2(t)
z2
z3

− f2(t)z22,

ż3 = d3(t) − a3(t)z3 + b3(t)
z3
z1

+ c3(t)
z3
z2

− f3(t)z23.

(3.11)
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For any (φ(t), ϕ(t), γ(t)) ∈ Hm
L , byM[b1] > 0, M[c2] > 0, M[d3] > 0, we observe [18] that

ż1 = b1(t) − a1(t)z1 + c1(t)
φ(t)
ϕ(t)

+ d1(t)
φ(t)
γ(t)

− f1(t)φ2(t),

ż2 = c2(t) − a2(t)z2 + b2(t)
ϕ(t)
φ(t)

+ d2(t)
ϕ(t)
γ(t)

− f2(t)ϕ2(t),

ż3 = d3(t) − a3(t)z3 + b3(t)
γ(t)
φ(t)

+ c3(t)
γ(t)
ϕ(t)

− f3(t)γ2(t),

(3.12)

have almost periodic solution:

ẑ1(t) =
∫ t

−∞
e−
∫ t
s a1(r)dr

[

b1(s) + c1(s)
φ(s)
ϕ(s)

+ d1(s)
φ(s)
γ(s)

− f1(s)φ2(s)
]

ds,

ẑ2(t) =
∫ t

−∞
e−
∫ t
s a2(r)dr

[

c2(s) + b2(s)
ϕ(s)
φ(s)

+ d2(s)
ϕ(s)
γ(s)

− f2(s)ϕ2(s)
]

ds,

ẑ3(t) =
∫ t

−∞
e−
∫ t
s a2(r)dr

[

d3(s) + b3(s)
γ(s)
φ(s)

+ c3(s)
γ(s)
ϕ(s)

− f3(s)γ2(s)
]

ds.

(3.13)

By the system (3.13), we define a mapping A:

A
(

φ(t), ϕ(t), γ(t)
)

= (ẑ1(t), ẑ2(t), ẑ3(t)), ∀(φ(t), ϕ(t), γ(t)) ∈ Hm
L . (3.14)

Combining (3.8) and (3.13), we have

ẑ1(t) ≥
∫ t

−∞
e−ã1(t−s)

[

b
∼1

+
(

c
∼1

+ d
∼1

)
m

L
− f̃1L

2
]

ds =
1
ã1

[

b
∼1

+
(

c
∼1

+ d
∼1

)
m

L
− f̃1L

2
]

≥ m,

ẑ1(t) ≤
∫ t

−∞
e
−a
∼1
(t−s)
[

b̃1 +
(

c̃1 + d̃1

) L

m
− f

∼1
m2

]

ds =
1
a
∼1

[

b̃1 +
(

c̃1 + d̃1

) L

m
− f

∼1
m2

]

≤ L,

ẑ2(t) ≥
∫ t

−∞
e−ã2(t−s)

[

c
∼2

+
(

b
∼2

+ d
∼2

)
m

L
− f̃2L

2
]

ds =
1
ã2

[

c
∼2

+
(

b
∼2

+ d
∼2

)
m

L
− f̃2L

2
]

≥ m,

ẑ2(t) ≤
∫ t

−∞
e
−a
∼2
(t−s)
[

c̃2 +
(

b̃2 + d̃2

) L

m
− f

∼2
m2

]

ds =
1
a
∼2

[

c̃2 +
(

b̃2 + d̃2

) L

m
− f

∼2
m2

]

≤ L,

ẑ3(t) ≥
∫ t

−∞
e−ã3(t−s)

[

d
∼3

+
(

b
∼3

+ c
∼3

)
m

L
− f̃3L

2
]

ds =
1
ã3

[

d
∼3

+
(

b
∼3

+ c
∼3

)
m

L
− f̃3L

2
]

≥ m,

ẑ3(t) ≤
∫ t

−∞
e
−a
∼3
(t−s)
[

d̃3 +
(

b̃3 + c̃3
) L

m
− f

∼3
m2

]

ds =
1
a
∼3

[

d̃3 +
(

b̃3 + c̃3
) L

m
− f

∼3
m2

]

≤ L.

(3.15)
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Therefore, (ẑ1(t), ẑ2(t), ẑ3(t)) ∈ Hm
L , that is, AHm

L ⊂ Hm
L . If A is uniformly boundness and

equicontinuous, by Ascoli-Arzela theorem, A is compact mapping.
It is obvious to obtain uniformly boundedness. In fact, for any (φ(t), ϕ(t), γ(t)) ∈ Hm

L ,
by (3.15) we have (ẑ1(t), ẑ2(t), ẑ3(t)) = A(φ(t), ϕ(t), γ(t)) ∈ Hm

L ; that is, it satisfies

0 < (m,m,m) ≤ A
(

φ(t), ϕ(t), γ(t)
)

= (ẑ1(t), ẑ2(t), ẑ3(t)) ≤ (L, L, L). (3.16)

Next we prove equicontinuous. For any (φ(t), ϕ(t), γ(t)) ∈ Hm
L , we denote (ẑ1(t), ẑ2(t),

ẑ3(t)) = A(φ(t), ϕ(t), γ(t)), t1 < t2, and then

|ẑ1(t1) − ẑ1(t2)| =
∣
∣
∣
∣
∣

∫ t1

−∞
e−
∫ t1
s a1(r)dr

[

b1(s) + c1(s)
φ(s)
ϕ(s)

+ d1(s)
φ(s)
γ(s)

− f1(s)φ2(s)
]

−
∫ t2

−∞
e−
∫ t2
s a1(r)dr

[

b1(s) + c1(s)
φ(s)
ϕ(s)

+ d1(s)
φ(s)
γ(s)

− f1(s)φ2(s)
]
∣
∣
∣
∣
∣
.

(3.17)

Let h1(t) = b1(t) + c1(t)(φ(t)/ϕ(t)) + d1(t)(φ(t)/γ(t)) − f1(t)φ2(t); we obtain

|ẑ1(t2) − ẑ1(t1)| =
∣
∣
∣
∣
∣

∫ t2

−∞
e−
∫ t2
s a1(r)drh1(s)ds −

∫ t1

−∞
e−
∫ t1
s a1(r)drh1(s)ds

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫ t2

t1

e−
∫ t2
s a1(r)drh1(s)ds

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫ t1

−∞
e−
∫ t1
s a1(r)dr

(

e−
∫ t2
t1
a1(r)dr − 1

)

h1(s)ds

∣
∣
∣
∣
∣
.

(3.18)

Recalling (φ(t), ϕ(t), γ(t)) ∈ Hm
L , we deduce that there exists a positive number M such that

|h1(s)| ≤ M; then (3.18) becomes

|ẑ1(t2) − ẑ1(t1)| ≤ Me
− ∫ t2

ξ1
a1(r)dr |t2 − t1| + 1

a
∼1

M

∣
∣
∣
∣
1 − e−

∫ t2
t1
a1(r)dr

∣
∣
∣
∣
, (3.19)

where ξ1 ∈ (t1, t2).
Similarly, we have

|ẑ2(t2) − ẑ2(t1)| ≤ Ne
− ∫ t2

ξ2
a2(r)dr |t1 − t2| + 1

a
∼2

N

∣
∣
∣
∣
1 − e−

∫ t2
t1
a2(r)dr

∣
∣
∣
∣
, (3.20)

where ξ2 ∈ (t1, t2), and N is a positive number.
By a completely analogous argument, we obtain

|ẑ3(t2) − ẑ3(t1)| ≤ Pe
− ∫ t2

ξ3
a3(r)dr |t1 − t2| + 1

a
∼3

P

∣
∣
∣
∣
1 − e−

∫ t2
t1
a3(r)dr

∣
∣
∣
∣
, (3.21)

where ξ3 ∈ (t1, t2), and P is a positive number.
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By (3.19)–(3.21), for any (φ(t), ϕ(t), γ(t)) ∈ Hm
L , we derive

lim
ξ→ 0

sup
|t1−t2|≤ξ

∣
∣A
(

φ, ϕ, γ
)

(t1) −A
(

φ, ϕ, γ
)

(t2)
∣
∣ = 0, uniformly for x ∈ Ω. (3.22)

Thus, A is a compact mapping which maps Hm
L into itself; by Schauder fixed point

theorem, there exists a fixed point (φ(t), ϕ(t), γ(t)) ∈ Hm
L for A; namely, (3.11) has a

solution; therefore there exists a strictly positive almost periodic solution (v∗
1(t), v

∗
2(t), v

∗
3(t)) =

(1/φ(t), 1/ϕ(t), 1/γ(t)), t ∈ R+ for system (3.10). It is obvious that (v∗
1(t), v

∗
2(t), v

∗
3(t)), t ∈ R+

is also the spatial homogeneity almost periodic solution for (1.1).

Theorem 3.2. Under the conditions of Theorem 3.1, suppose that system (1.1) satisfies the following
conditions:

sup
t≥0

(b3(t) + b2(t) − b1(t)) = −ε1 < 0, sup
t≥0

(c3(t) + c1(t) − c2(t)) = −ε2 < 0,

sup
t≥0

(d1(t) + d2(t) − d3(t)) = −ε3 < 0.
(3.23)

Then there exists a strictly positive spatial homogeneity almost periodic solution (v∗
1(t), v

∗
2(t), v

∗
3(t))

for (1.1), and the corresponding solution for systems (1.1)–(1.3) is globally asymptotically stable; that
is, the solution (v1(x, t), v2(x, t), v3(x, t)), (x, t) ∈ Ω × R+ satisfies

lim
t→∞
(

vi(x, t) − v∗i (t)
)

= 0, i = 1, 2, 3, uniformly for x ∈ Ω. (3.24)

Proof. We have obtained the existence by Theorem 3.1; next we pay more attention to the
stability. Concerning (3.24), we have two cases on initial data vi0(x), i = 1, 2, 3.

(1) vi0(x) > 0, x ∈ Ω.

(2) There exists a point x0 ∈ Ω, such that v10(x0) = 0, v20(x0) = 0 or v30(x0) = 0.

For the case (1), let li = minx∈Ωvi0(x), ri = maxx∈Ω vi0(x), i = 1, 2, 3; then 0 < li ≤
vi0(x) ≤ ri. Suppose that (v1(t), v2(t), v3(t)) and (v1(t), v2(t), v3(t)) are the solution for (3.10)
corresponding to initial datum (v1(0), v2(0), v3(0)) = (r1, r2, r3) and (v1(0), v2(0), v3(0)) =
(l1, l2, l3), respectively; then there are a pair of ordered upper and lower solutions
(v1(t), v2(t), v3(t)) and (v1(t), v2(t), v3(t)) for (1.1)–(1.3); by Lemma 2.5, there exists a unique
solution (v1(x, t), v2(x, t), v3(x, t)), (x, t) ∈ Ω × R+ for system (1.1)–(1.3), which satisfies

(

v1(t), v2(t), v3(t)
) ≤ (v1(x, t), v2(x, t), v3(x, t)) ≤ (v1(t), v2(t), v3(t)). (3.25)

If we have

lim
t→∞
[

vi(t) − v∗
i (t)
]

= lim
t→∞
[

vi(t) − v∗
i (t)
]

= 0, i = 1, 2, 3, (3.26)
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then (3.24) holds. Therefore, if we want to obtain (3.26), we only need to prove that the
solution (v1(t), v2(t), v3(t)) for (3.10)with arbitrary positive initial data (v1(0), v2(0), v3(0)) =
(v10, v20, v30) satisfies

lim
t→∞
(

vi(t) − v∗
i (t)
)

= 0, i = 1, 2, 3. (3.27)

Because of the initial datum (v10, v20, v30) > 0 and grazing rates (f
∼1
, f

∼2
, f

∼3
) > 0, by

the practical meaning in biology, we know that (v1(t), v2(t), v3(t)) > 0. Now let

Pi(t) = lnvi(t), Qi(t) = lnv∗
i (t), i = 1, 2, 3. (3.28)

Then one has

d

dt
(P1(t) −Q1(t)) = −b1(t)

(

eP1(t) − eQ1(t)
)

− c1(t)
(

eP2(t) − eQ2(t)
)

− d1(t)
(

eP3(t) − eQ3(t)
)

+

(

1
v1(t)

− 1
v∗
1(t)

)

f1(t),

d

dt
(P2(t) −Q2(t)) = −b2(t)

(

eP1(t) − eQ1(t)
)

− c2(t)
(

eP2(t) − eQ2(t)
)

− d2(t)
(

eP3(t) − eQ3(t)
)

+
(

1
v2(t)

− 1
v∗
2(t)

)

f2(t),

d

dt
(P3(t) −Q3(t)) = −b3(t)

(

eP1(t) − eQ1(t)
)

− c3(t)
(

eP2(t) − eQ2(t)
)

− d3(t)
(

eP3(t) − eQ3(t)
)

+

(

1
v3(t)

− 1
v∗
3(t)

)

f3(t).

(3.29)

Namely,

d

dt
(P1(t) −Q1(t)) = −

(

b1(t) +
f1(t)

v1(t)v∗
1(t)

)
(

eP1(t) − eQ1(t)
)

− c1(t)
(

eP2(t) − eQ2(t)
)

− d1(t)
(

eP3(t) − eQ3(t)
)

,

d

dt
(P2(t) −Q2(t)) = −b2(t)

(

eP1(t) − eQ1(t)
)

−
(

c2(t) +
f2(t)

v2(t)v∗
2(t)

)(

eP2(t) − eQ2(t)
)

− d2(t)
(

eP3(t) − eQ3(t)
)

,

d

dt
(P3(t) −Q3(t)) = −b3(t)

(

eP1(t) − eQ1(t)
)

− c3(t)
(

eP2(t) − eQ2(t)
)

−
(

d3(t) +
f3(t)

v3(t)v∗
3(t)

)
(

eP3(t) − eQ3(t)
)

.

(3.30)
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Consider the following Lyapunov function:

U(t) =
3∑

i=1

|Pi(t) −Qi(t)|, t ≥ 0. (3.31)

Let D+U represent the right derivation on function U(t); we have

D+U(t)

=
3∑

i=1

D+|Pi(t) −Qi(t)| =
3∑

i=1

sgn(Pi(t) −Qi(t))
d

dt
(Pi(t) −Qi(t))

= sgn(P1(t) −Q1(t))

×
[

−
(

b1(t) +
f1(t)

v1(t)v∗
1(t)

)

(

eP1(t) − eQ1(t)
) − c1(t)

(

eP2(t) − eQ2(t)
) − d1(t)

(

eP3(t) − eQ3(t)
)

]

+ sgn(P2(t) −Q2(t))

×
[

−b2(t)
(

eP1(t) − eQ1(t)
)

−
(

c2(t) +
f2(t)

v2(t)v∗
2(t)

)(

eP2(t) − eQ2(t)
)

− d2(t)
(

eP3(t) − eQ3(t)
)]

+ sgn(P3(t) −Q3(t))

×
[

−b3(t)
(

eP1(t) − eQ1(t)
)

− c3(t)
(

eP2(t) − eQ2(t)
)

−
(

d3(t) +
f3(t)

v3(t)v∗
3(t)

)
(

eP3(t) − eQ3(t)
)
]

≤ (b3(t) + b2(t) − b1(t))
∣
∣
∣eP1(t) − eQ1(t)

∣
∣
∣ + (c1(t) + c3(t) − c2(t))

∣
∣
∣eP2(t) − eQ2(t)

∣
∣
∣

+ (d1(t) + d2(t) − d3(t))
∣
∣eP3(t) − eQ3(t)

∣
∣

≤ −ε1
∣
∣v1(t) − v∗

1(t)
∣
∣ − ε2

∣
∣v2(t) − v∗

2(t)
∣
∣ − ε3

∣
∣v3(t) − v∗

3(t)
∣
∣.

(3.32)

Integrated by the time, we have

U(t) +
3∑

i=1

εi

∫ t

0

∣
∣vi(s) − v∗

i (s)
∣
∣ds ≤ U(0). (3.33)

By the nonnegative ofU(t) and the boundedness ofU(0), we obtain that theU(t) is bounded,
and

∫ t

0

∣
∣vi(t) − v∗

i (t)
∣
∣ds, i = 1, 2, 3, (3.34)

convergences, by (3.32)we get D+U(t) < 0, then the limit

lim
t→∞

U(t) = l (3.35)
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exists, and U(t) ≥ l. If l > 0, then at least one of the following three inequalities

|P1(t) −Q1(t)| > l

4
, |P2(t) −Q2(t)| > l

4
, |P3(t) −Q3(t)| > l

4
(3.36)

holds. Without loss of generality, we assume that |P1(t)−Q1(t)| > l/4. Thus there is no point of
intersection between P1(t) andQ1(t). Suppose that P1(t) > Q1(t); then we have P1(t)−Q1(t) >
l/4. Thus

∫ t

0

∣
∣v1(t) − v∗

1(t)
∣
∣ds =

∫ t

0

∣
∣
∣eP1(s) − eQ1(s)

∣
∣
∣ds =

∫ t

0
eQ1(s)

∣
∣
∣eP1(s)−Q1(s) − 1

∣
∣
∣ds

≥ m

∫ t

0

(

eP1(s)−Q1(s) − 1
)

ds > m

∫ t

0

(

el/4 − 1
)

ds = m
(

el/4 − 1
)

t −→ +∞,

(3.37)

which contradicts with the convergence of
∫ t

0 |vi(s) − v∗
i (s)|ds. Therefore l = 0; consequently

lim
t→∞
∣
∣vi(t) − v∗

i (t)
∣
∣ = 0, i = 1, 2, 3. (3.38)

Then we obtain (3.27).
For the case (2), firstly, choose three sufficient large positive numbersM1,M2, and M3,

such that

f1(t) ≤ −M1(a1(t) − b1(t)M1), t > 0,

f2(t) ≤ −M2(a2(t) − c2(t)M2), t > 0,

f3(t) ≤ −M3(a3(t) − d3(t)M3), t > 0,

(3.39)

and Mi ≥ maxx∈Ω vi0(x), i = 1, 2, 3. Let v
∼ i

= 0, ṽi = Mi, i = 1, 2, 3; then we have

∂ṽ1

∂t
− k1(t)Δṽ1 − ṽ1

[

a1(t) − b1(t)ṽ1 − c1(t)v∼2
− d1(t)v∼3

]

− f1(t) ≥ 0,

∂v
∼1
∂t

− k1(t)Δv
∼1

− v
∼1

[

a1(t) − b1(t)v∼1
− c1(t)ṽ2 − d1(t)ṽ3

]

− f1(t) ≤ 0,

∂ṽ2

∂t
− k2(t)Δṽ2 − ṽ2

[

a2(t) − b2(t)v∼1
− c2(t)ṽ2 − d2(t)v∼3

]

− f2(t) ≥ 0,

∂v
∼2
∂t

− k2(t)Δv
∼2

− v
∼2

[

a2(t) − b2(t)ṽ1 − c2(t)v∼2
− d2(t)ṽ3

]

− f2(t) ≤ 0,

∂ṽ3

∂t
− k3(t)Δṽ3 − ṽ3

[

a3(t) − b3(t)v∼1
− c3(t)v∼2

− d3(t)ṽ3

]

− f3(t) ≥ 0,

∂v
∼3
∂t

− k3(t)Δv
∼3

− v
∼3

[

a3(t) − b3(t)ṽ1 − c3(t)ṽ2 − d3(t)v∼3

]

− f3(t) ≤ 0.

(3.40)
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Namely, v
∼ i

= 0, and ṽi = Mi, i = 1, 2, 3 are a pair of ordered upper and lower solutions for

systems (1.1)–(1.3). By Lemma 2.5, there exists a unique solution (v1(x, t), v2(x, t), v3(x, t))
for systems (1.1)–(1.3), which satisfy

0 ≤ vi(x, t) ≤ Mi, i = 1, 2, 3; (x, t) ∈ Ω × [0,∞). (3.41)

Secondly, we choose positive numbers δ1, δ2, and δ3 such that

δ1 + a1(t) − b1(t)v1(x, t) − c1(t)v2(x, t) − d1(t)v3(x, t) > 0, (x, t) ∈ Ω × [0,∞),

δ2 + a2(t) − b2(t)v1(x, t) − c2(t)v2(x, t) − d2(t)v3(x, t) > 0, (x, t) ∈ Ω × [0,∞),

δ3 + a3(t) − b3(t)v1(x, t) − c3(t)v2(x, t) − d3(t)v3(x, t) > 0, (x, t) ∈ Ω × [0,∞).

(3.42)

Accordingly, we have

∂v1

∂t
− k1(t)Δv1 + δ1v1 = v1[δ1 + a1(t) − b1(t)v1 − c1(t)v2 − d1(t)v3] + f1(t) ≥ 0,

∂v2

∂t
− k2(t)Δv2 + δ2v2 = v2[δ2 + a2 − b2(t)v1 − c2(t)v2 − d2(t)v3] + f2(t) ≥ 0,

∂v3

∂t
− k3(t)Δv3 + δ3v3 = v3[δ3 + a3 − b3(t)v1 − c3(t)v2 − d3(t)v3] + f3(t) ≥ 0.

(3.43)

Next, we prove vi(x, t) > 0 inΩ×(0,∞) for i = 1, 2, 3. Firstly, we show vi(x, t) > 0 inΩ×(0,∞).
If there exists one point (x0, t0) ∈ Ω×(0,∞) such that vi(x0, t0) = 0, by extremum principle, we
have vi(x, t) ≡ 0 in Ω × [0, t0). However vi(x, 0) = vi0(x) ≥ 0, and not being constant zero, we
obtain a contradiction. Therefore we have vi(x, t) > 0 inΩ× (0,∞). Then we show vi(x, t) > 0
in ∂Ω × (0,∞). If there exists a point (x0, t0) ∈ ∂Ω × (0,∞) such that vi(x0, t0) = 0, by the
extremum principle, we have ∂vi(x, t)/∂n < 0, where (x, t) ∈ ∂Ω × (0,∞), which is contrary
with boundary conditions (1.2). Thus we have vi(x, t) > 0 in Ω × (0,∞).

For a fixed number λ > 0, by (3.41), we have

0 < vi(x, λ) ≤ Mi, i = 1, 2, 3, x ∈ Ω. (3.44)

Because vi(x, t + λ) satisfy system (1.1) in Ω × (0,∞) and the conditions (1.2) in ∂Ω × (0,∞),
thereby (v1(x, t + λ), v2(x, t + λ), v3(x, t + λ)) is regarded as a solution for system (1.1) under
initial data (v̂10(x), v̂20(x), v̂30(x)) = (v1(x, λ), v2(x, λ), v3(x, λ)), nevertheless, we have v̂i0 > 0
in Ω, i = 1, 2, 3; combining the conclusions in case (1), we have

lim
t−→∞

(

vi(x, t + λ) − v∗
i (t)
)

= 0, i = 1, 2, 3, uniformly for x ∈ Ω. (3.45)

By the arbitrariness of λ, we obtain

lim
t−→∞

(

vi(x, t) − v∗
i (t)
)

= 0, i = 1, 2, 3, uniformly for x ∈ Ω. (3.46)
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If ki(t), ai(t), bi(t), ci(t), di(t), and fi(t) (i = 1, 2, 3) of (1.1) are periodic functions in
real number field R, respectively, then we have the following results.

Corollary 3.3. If a
∼ i
, b
∼i
, c
∼i
, d
∼ i
, f
∼ i

are positive numbers, and

(

b̃i + c̃i + d̃i

)

a
∼ i

≤ L = min

⎧

⎪⎪⎨

⎪⎪
⎩

√
√
√
√

b
∼1
f̃1

,

√
√
√
√

c
∼2
f̃2

,

√
√
√
√

d
∼3
f̃3

,

(

d
∼1

+ c
∼1

)

ã1
,

(

b
∼2

+ d
∼2

)

ã2
,

(

b
∼3

+ c
∼3

)

ã3

⎫

⎪⎪⎬

⎪⎪
⎭

(3.47)

are satisfied for i = 1, 2, 3, then there exists a strictly positive spatial homogeneity periodic solution
V (t) = (v̂1(t), v̂2(t), v̂3(t)) for (1.1).

Corollary 3.4. Under the conditions of Corollary 3.3, suppose that system (1.1) satisfies the following
conditions:

sup
t≥0

(b3(t) + b2(t) − b1(t)) = −ε1 < 0, sup
t≥0

(c3(t) + c1(t) − c2(t)) = −ε2 < 0,

sup
t≥0

(d1(t) + d2(t) − d3(t)) = −ε3 < 0.
(3.48)

Then there exists a strictly positive spatial homogeneity periodic solution (v∗
1(t), v

∗
2(t), v

∗
3(t)) for (1.1),

and the corresponding solution for systems (1.1)–(1.3) is globally asymptotically stable; that is, the
solution (v1(x, t), v2(x, t), v3(x, t)), (x, t) ∈ Ω × R+ satisfies

lim
t→∞
(

vi(x, t) − v∗
i (t)
)

= 0, i = 1, 2, 3, uniformly for x ∈ Ω. (3.49)

4. Conclusion

This paper presents the use of upper and lower solutions method for systems of nonlinear
reaction-diffusion equations. This method is a powerful tool for solving nonlinear differential
equations in mathematical physics, chemistry, and engineering, and so forth. The technique
constructing a pair of upper and lower solutions and Lyapunov function provides a new
efficient method to handle the nonlinear structure.

We have dealt with the problem of almost periodic solution for a three-species
competition system with grazing rates and diffusions. The general sufficient conditions
have been obtained to ensure the existence and stability of the strictly positive space
homogenous almost periodic solution for the nonlinear reaction-diffusion equations. These
criteria generalize and improve some known results. In particular, the sufficient conditions
that we obtained are very simple, which provide flexibility for the application and analysis
of nonlinear three-species competition system.
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