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A dynamic triopoly game characterized by firms with different expectations is modeled by three-
dimensional nonlinear difference equations, where the market has quadratic inverse demand
function and the firm possesses cubic total cost function. The local stability of Nash equilibrium
is studied. Numerical simulations are presented to show that the triopoly game model behaves
chaotically with the variation of the parameters. We obtain the fractal dimension of the strange
attractor, bifurcation diagrams, and Lyapunov exponents of the system.

1. Introduction

An oligopoly is a market form in which a market or industry is dominated by a small number
of sellers (oligopolists). Because there are few sellers, each oligopolist is likely to be aware
of the actions of the others. The decisions of one firm influence, and are influenced by, the
decisions of other firms. Strategic planning by oligopolists needs to take into account the
likely responses of the other market participants.

The classic model of oligopolies was proposed by the French mathematician, Cournot
[1]. Recently, the dynamics of the oligopoly game have been studied. Puu [2] studied the
adjustment process by three Cournot oligopolists based on an isoelastic demand function
and constant marginal costs. Ahmed et al. [3] built the dynamical system model of bounded
rationality. Yassen and Agiza [4] analyzed a duopoly gamewith delayed bounded rationality,
and they used the quadratic cost function form, Ci(qi) = ciq

2
i . Expectations play an important

role in modelling economic phenomena. Agiza et al. [5] studied the complex dynamics
and synchronization of a duopoly game with the same expectation strategies. Then, Agiza
and Elsadany [6] extended the same expectations strategies to the different expectations
strategies case. Bischi and Kopel [7] introduced adaptive expectations in a duopoly game.
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Du and Huang [8] obtained that the real-stable region of Nash equilibrium of output game
model is smaller than that in general. Brianzoni et al. [9] studied the relationship between
corruption in public procurement and economic growth within the Solow framework in
discrete time. Ma and Ji [10] established a model on the electricity market. In the model,
the inverse demand function and cost functions are all nonlinear, and the three firms take
the same expectation strategies, that is, bounded rationality. Du et al. [11] studied an output
duopoly competing evolution model by using modern game theory and decision-making
analyses about chaos control. Ma et al. [12] analyzed dynamic process of the triopoly
games in Chinese 3G telecommunication market basing on a Bertrand model with bounded
rationality. Sheng et al. [13] discussed self-adaptive proportional control method in economic
chaotic system, and the results showed that performances of the system are improved by
controlling chaos. Elabbasy et al. [14] analyzed triopoly game with heterogeneous players
which possess liner demand function and parabolic total cost function. Xin et al. [15]
presented a nonlinear discrete game model for two oligopolistic firms whose products are
adnascent. In microeconomics, however, the total cost function is analogous to the cubic
function whose inflection point lies in the first quadrant, that is, the slope of total cost
function is always nonnegative in its definitional domain and decreases to zero on the left
side of the inflection point, but in gradually increases while on the right side of the inflection
point.

By supposing the quadratic inverse demand function and cubic total cost functions,
we establish a model on the three oligarchs market basing on the above models.

In this paper, we consider that each firm form a different strategy in order to compute
its expected output. We assume that first firm adopts naive expectations and second firm
has adaptive expectations, while third firm represents a boundedly rational player. The
main aim of this work is to investigate the dynamic behaviors of three firms using different
expectations rules. Theoretical analysis and numerical simulations of the system are made in
detail.

The structure of the paper is as follows. In Section 2, we describe a nonlinear triopoly
game model. In Section 3, we analyze the fixed points and local stability of the model. In
Section 4, we study the strange attractor, bifurcation, and Lyapunov exponent by numerical
simulations. Finally, a conclusion is drawn in Section 5.

2. The Triopoly Game Model

We consider a Cournot triopoly game where qi denotes the quantity supplied by firm i, i =
1, 2, 3. The firms offer goods at discrete-time periods t = 0, 1, 2, a common market. Suppose
that the t-output of firm i is qi(t). At one period t, each firm must form an expectations of
the rival’s output in the next time period in order to determine the corresponding profit-
maximizing quantities for period t + 1. The total outputs are

Q(t) = q1(t) + q2(t) + q3(t), (2.1)

and the inverse demand function [16] is

P = P(Q(t)) = m − nQ2(t). (2.2)
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Figure 1: The four forms of cubic function graphs.

In microeconomics, the total cost curve is the analogy of cubic function, so we employ

Ci

(
qi(t)

)
= ai + biqi(t) + ciq

2
i (t) + diq

3
i (t), i = 1, 2, 3. (2.3)

The derivative of total cost function is

C′
i

(
qi(t)

)
= 3diq

2
i (t) + 2ciqi(t) + bi, (2.4)

and the discriminant is

Δ = (2ci)2 − 4(3di)bi = 4c2i − 12bidi. (2.5)

There are four forms of cubic function graph (Figure 1): if d > 0 andΔ ≤ 0, that is, Figure 1(a);
if d < 0 and Δ ≤ 0, that is, Figure 1(b); if d > 0 and Δ > 0, that is, Figure 1(c); if d < 0 and
Δ > 0, that is, Figure 1(d).

In Figure 1(a), when Δ ≤ 0, C′
i(qi(t)) ≥ 0, qi(t) ∈ R, always established, also the in-

flection point (−ci/3di, Ci(−ci/3di)) falls in the first quadrant, at the same time ai > 0 (fixed
cost is positive), di > 0, that is,

di > 0,

ai > 0,

Δ = 4c2i − 12bidi ≤ 0,

− ci
3di

> 0,

Ci

(
− ci
3di

)
= 2c3i − 9bicidi + 27aid

2
i > 0,

(2.6)

the cubic function becomes total cost function in microeconomics. Hence, the profit of firm i
in period t is given by

πi(t) = qi(t)
[
m − nQ2(t)

]
−
[
ai + biqi(t) + ciq

2
i (t) + diq

3
i (t)

]
, i = 1, 2, 3. (2.7)
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In this game, the firm makes the optimal output decision for the maximal profit. One of the
methods is to calculate the partial differentiation of the profit and let it be equal to 0:

∂πi(t)
∂qi(t)

= m − nQ2(t) − 2nqi(t)Q(t) − bi − 2ciqi(t) − 3diq
2
i (t) = 0, i = 1, 2, 3. (2.8)

Based on (2.8), we can find out the firm’s response function (2.9) for its competitors of
a certain period in triopoly market. Also (2.9) expresses a firm’s optimal output from the
every given possible speculated productions of other two firms in a fixed time, thus the
maximum benefit is obtained:

q∗1(t) =
1

3n + 3d1

[
−2n(q2(t) + q3(t)

) − c1 +
√
M

]
,

q∗2(t) =
1

3n + 3d2

[
−2n(q1(t) + q3(t)

) − c2 +
√
N
]
,

q∗3(t) =
1

3n + 3d3

[
−2n(q1(t) + q2(t)

) − c3 +
√
T
]
.

(2.9)

In (2.9),

M =
(
n2 − 3nd1

)(
q2(t) + q3(t)

)2 + 4nc1
(
q2(t) + q3(t)

)
+ c21 + 3(mn − nb1 +md1 − b1d1),

N =
(
n2 − 3nd2

)(
q1(t) + q3(t)

)2 + 4nc2
(
q1(t) + q3(t)

)
+ c22 + 3(mn − nb2 +md2 − b2d2),

T =
(
n2 − 3nd3

)(
q1(t) + q2(t)

)2 + 4nc3
(
q1(t) + q2(t)

)
+ c23 + 3(mn − nb3 +md3 − b3d3).

(2.10)

The first firm adopts naive expectations, that is,

qi(t + 1) = q∗i (t). (2.11)

The second firm has adaptive expectations, that is,

qi(t + 1) = qi(t) + α
[
qi(t) − q∗i (t)

]
, −1 < α < 0, (2.12)

where α is feedback parameter. The third firm represents a boundedly rational player, that is,

qi(t + 1) = qi(t) + βqi(t)
∂πi(t)
∂qi(t)

, 0 < β < 1, (2.13)
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where β is the output modification speed parameter. Hence, the dynamical triopoly game in
this case is formed from combining (2.11)–(2.13). Then, the dynamical system of different
expectations is described by

q1(t + 1) =
1

3n + 3d1

[
−2n(q2(t) + q3(t)

) − c1 +
√
M

]
,

q2(t + 1) = q2(t) + α

{
q2(t) − 1

3n + 3d2

[
−2n(q1(t) + q3(t)

) − c2 +
√
N
]}

,

q3(t + 1) = q3(t) + βq3(t)
[
− 3(n + d3)q23(t) −

(
4nq1(t) + 4nq2(t) + 2c3

)
q3(t)

−n(q1(t) + q2(t)
)2 +m − b3

]
.

(2.14)

In the next sections, we study the rich dynamical behaviors of this model.

3. The Fixed Points and Local Stability

To investigate the local stability of the fixed points, we find the Jacobian matrix for the system
of (2.14) as the following form:

J =

⎛

⎜⎜
⎝

J11 J12 J13

J21 J22 J23

J31 J32 J33

⎞

⎟⎟
⎠. (3.1)

In the Jacobian matrix, all the elements are

J11 = 0,

J12 =
1

3n + 3d1

[

−2n +

(
n2 − 3nd1

)(
q2(t) + q3(t)

)
+ 2nc1√

M

]

,

J13 =
1

3n + 3d1

[

−2n +

(
n2 − 3nd1

)(
q2(t) + q3(t)

)
+ 2nc1√

M

]

,

J21 =
α

3n + 3d2

[

2n −
(
n2 − 3nd2

)(
q1(t) + q3(t)

)
+ 2nc2√

N

]

,

J22 = 1 + α,
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J23 =
α

3n + 3d2

[

2n −
(
n2 − 3nd2

)(
q1(t) + q3(t)

)
+ 2nc2√

N

]

,

J31 = −2nβq3(t)
(
2q3(t) + q1(t) + q2(t)

)
,

J32 = −2nβq3(t)
(
2q3(t) + q1(t) + q2(t)

)
,

J33 = −9βq23(t)(n + d3) − 4βq3(t)
(
2nq1(t) + 2nq2(t) + c3

) − nβ
(
q1(t) + q2(t)

)2 +mβ − βb3 + 1.

(3.2)

It is difficult to obtain the analytical solutions in (2.14), so we assign a value to each parameter.
Let m = 5, n = 1, b1 = 0.4, c1 = −0.03, d1 = 0.005, b2 = 0.35, c2 = −0.025, d2 = 0.006, b3 = 0.3,
c3 = −0.02, d3 = 0.007, and qi(t+1) = qi(t), i = 1, 2, 3. We can have at most twelve fixed points:

p1 = (−11.7603, 22.7082,−11.0250),
p2 = (−23.3748, 12.1247, 11.3572),
p3 = (12.1586,−22.7057, 10.6744),
p4 = (24.0193,−12.2490,−11.8248),
p5 = (−10.9683,−10.6505, 21.5217),
p6 = (−0.5387,−0.5548,−0.5709),
p7 = (0.5450, 0.5581, 0.5712),

p8 = (11.4286, 10.7135,−21.9975),

p9 =
(
−16.5828 − i · 1.1934 × 10−39, 16.5984 + i · 1.0365 × 10−39, 0

)
,

p10 =
(
0.7563 − i · 2.9304 × 10−40, 0.7697 − i · 1.0252 × 10−39, 0

)
,

p11 =
(
−0.7471 + i · 2.1154 × 10−40,−0.7651 + i · 7.7378 × 10−40, 0

)
,

p12 =
(
16.9122 + i · 1.3936 × 10−41,−16.8731 + i · 5.0528 × 10−41, 0

)
.

(3.3)

They are all independent of the parameters α and β apparently. The outputs of zero,
negative number and complex number, are meaningless in application, so they are omitted
from consideration. Only p7 is reasonable, and the Jacobian matrix at p7 is

J =

⎛

⎜⎜⎜
⎝

0 −0.5732 −0.5732
0.5736α α + 1 0.5736α

−2.5653β −2.5653β 1 − 4.4688β

⎞

⎟⎟⎟
⎠

. (3.4)
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Figure 2: The stable region of the fixed point p7.

Its characteristic equation is

f(λ) = λ3 +Aλ2 + Bλ + C, (3.5)

where

A = −2 − α + 4.4688β,

B = 1.3288α − 2.9973αβ − 5.9392β + 1,

C = 1.2528αβ − 0.3288α + 1.4704β.

(3.6)

According to the Routh-Hurwitz stability criterion, the necessary and sufficient con-
dition of asymptotic stabilization at p7 is that all zero points of its characteristic polynomial
are inside the unit circle in complex plane. So it must satisfy the following four conditions
[17]:

f(1) = A + B + C + 1 > 0,

−f(−1) = −A + B − C + 1 > 0,

C2 − 1 < 0,

(
1 − C2

)2 − (B −AC)2 > 0.

(3.7)

The conditions (3.7) determine a stable region in the plane (α, β) as shown in Figure 2.
However, p7 is asymptotically stable with the values α, β in the stable region, and it shows
that the output will reach the Nash equilibrium p7 by modulating limited times with random
initial output.

From Figure 2, it is clear that the outputs are asymptotically stable which the firm
adopts adaptive expectations of negative feedback mechanism (−1 < α < 0), but market will
loose of stability with the change of β.
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Figure 3: Three-dimensional and two-dimensional view of strange attractors.

4. Numerical Simulations of the System

4.1. The Strange Attractor and Fractal Dimension

In the phase space, the chaotic motion is stochastic and its trajectory never closed in a given
region. When the parameters take the values of m = 5, n = 1, b1 = 0.4, c1 = −0.03, d1 = 0.005,
b2 = 0.35, c2 = −0.025, d2 = 0.006, b3 = 0.3, c3 = −0.02, d3 = 0.007, α = −0.1, β = 0.57, and
the initial outputs are 0.2, 0.5, 0.8, the chaotic attractors of system map (2.14) is shown in
Figure 3.

An attractor is informally described as strange if it has non integer dimension. This
is often the case when the dynamics on it are chaotic, and the trajectory may be periodic
or chaotic. The obvious character of the chaotic attractor is the exponential separation of
two adjacent trajectories, which shows the sensitive dependence on the initial conditions
of the chaotic system. The Lyapunov exponent of a dynamical system is a quantity that
characterizes the rate of separation of infinitesimally close trajectories. It is common to refer
to the largest one as the Maximal Lyapunov exponent (MLE), because it determines a notion
of predictability for a dynamical system. A positive MLE is usually taken as an indication
that the system is chaotic. The Lyapunov exponents of the system map (2.14) on the above
conditions are λ1 = 0.300850, λ2 = −0.062698, and λ3 = −0.913312, respectively. The MLE
λ1 is positive, which shows the chaotic character in the outputs game model of the triopoly
market.
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Strange attractors are typically characterized by fractal dimension. Fractal dimension
illustrates that the chaotic motion has self-similar structure, that is to say, the chaotic motion
follows a definite rule. In particular from, the knowledge of the Lyapunov exponents, it is
possible to obtain the so-called Kaplan-Yorke dimension DKY, which is defined as follows:

DKY = k +
∑k

i=1 λi
|λk+1| ,

(4.1)

where k is the maximum integer such that the sum of the k largest exponents is still non
negative, that is, k is the the maximum i satisfying

∑k
i=1 λi ≥ 0 and

∑k+1
i=1 λi < 0. The λi

is the Lyapunov exponents series, arranged in descending order by numerical value. DKY

represents an upper bound for the information dimension of the system [18]. Therefore, in
the system map (2.14), k = 2 and the Kaplan-Yorke dimension is

DKY = 2 +
0.300850 − 0.062698

|−0.913312| = 2.260756, (4.2)

which is hyperchaotic behavior. This shows that the economic system is a chaotic system
of fractal dimensional structure at this time, so that the evolution of system becomes more
complex. When the system sinks into chaotic state, the firms will be difficult to make long-
term strategic planning and cannot obtain a stable profit. At the same time, because of sharp
market fluctuations, it is also difficult for firms to keep pace with market changes.

4.2. The Outputs Bifurcation and Lyapunov Exponent Spectrum

To provide some numerical evidences for the chaotic behavior of system map (2.14), we
present outputs bifurcations diagrams with respect to α and β (Figures 4 and 5) and
Laypunov exponent spectrum with respect to α and β (Figures 6 and 7). Figures 4 and 6
are fixed β = 0.25, α ∈ [−1, 0]. Figures 5 and 7 are fixed α = −0.1, β ∈ [0, 0.6]. The parameters
take the values of m = 5, n = 1, b1 = 0.4, c1 = −0.03, d1 = 0.005, b2 = 0.35, c2 = −0.025,
d2 = 0.006, b3 = 0.3, c3 = −0.02, d3 = 0.007, and the initial outputs are 0.2, 0.5, 0.8.

Figure 4 shows that the trajectories, through inverse period-doubling bifurcations,
reach Nash equilibrium p7(0.5450, 0.5581, 0.5712) with the increase of α, and the chaotic
phenomenon does not emerge. This can also be discovered in Figure 6 that there is no positive
Lyapunov exponent. The bifurcation diagram is in good agreement with Lyapunov exponent
spectrum. It indicates that when the firm takes adaptive expectations, the smaller the absolute
value of the negative feedback factor α is, the more stable of the market will be.

Figure 5 shows that the trajectories converge to the Nash equilibrium p7 when β <
0.3225, and the Nash equilibrium becomes unstable when β > 0.3225. Then, the period
doubling bifurcations appears, that is, period-doubling, period four, period eight, and the
chaotic behaviors occur when β > 0.5525. It can be obtained from Figure 7 that the Lyapunov
exponents are positive corresponding to the chaotic region. This means that the market
becomes unstable and easily access to the chaotic state for a large value of adjustment speed.
In a word, the adjustment speed of the bounded rational firm on the market can cause the
outputs game model to demonstrate complicated characters.
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Figure 7: Lyapunov exponent with α = −0.1, β ∈ [0, 0.6].

5. Conclusion

In this paper, assuming that the inverse demand function is quadratic and the total cost
function is cubic, we analyze the dynamic behaviors of triopoly market model with different
expectations. Then the stability of the Nash equilibrium, bifurcation, and chaotic behavior
of the repeated game are investigated. We think that the cubic total cost function is more
reasonable than parabolic total cost function in microeconomics. The fractal dimension of
strange attractors is 2.260756, which shows that the economic system is a chaotic system of
fractal dimensional structure. By theoretical analysis and numerical simulation, we reveal
that the firm of adaptive expectations has a stabilizing effect on the system, that is, the smaller
the absolute value of the negative feedback factor is, the more stable of the market will
be. However, the fast adjustment speed of the boundedly rational firm causes instability,
even chaos. Hence, the different expectations may lead to rich dynamical behaviors and
complexity.
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