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Control and synchronization of the financial systems with fractional-order are discussed in this
paper. Based on the stability theory of fractional-order differential equations, Routh-Hurwitz
stability condition, and by using linear control, simpler controllers are designed to achieve control
and synchronization of the fractional-order financial systems. The proposed controllers are linear
and easy to implement, which have improved the existing results. Theoretical analysis and num-
erical simulations are shown to demonstrate the validity and feasibility of the proposed meth-
od.

1. Introduction

Chaos, as a very interesting nonlinear phenomenon, has been intensively investigated in
many fields over the last four decades. Since the pioneering work [1] that chaotic dynamics
could exist in an economical model, research on the dynamical behavior of economical model
has become one of the most interesting and important topics which have received increasing
attention. Many continuous chaotic models have been proposed to study complex economic
dynamics, such as the forced Vander-Pol model [2], the IS-MLmodel [3], Behrens-Feichtinger
model [4], and Cournot-Puu model [5]. Just as all the other chaotic systems in engineering,
financial chaotic system has complex dynamical behaviors and possess some special features,
such as excessive sensitivity to initial conditions, the complex patterns of phase portraits,
positive Lyapunov exponents, and bounded and fractal properties of the motion in the phase
space. These features are inherent properties of the system itself, rather than caused by
external disturbances, which denote some economic behaviors in the fields of finance, stocks,
and social economics. In addition, as a nonlinear system, there exist many attractors with
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different topology, such as fixed points, limit cycles, quasiperiodic attractors, and chaotic
attractors in chaotic financial systems, which make the contradiction in economic operation
process complex and changeful. Chaotic behavior in financial systems is undesirable due to
threatening the safety of investment. Therefore, to study the chaotic behaviors in nonlinear
economical systems plays a very important role in decision-making by policy makers.
Once the instability of a periodic solution, bifurcation, multiperiodic bifurcation, or similar
phenomena appear in the economic chaotic systems, decision makers should take some
measures to intervene. Some researches suggest that controlling chaos should improve the
performance of a chaotic economy and stabilizing periodic solutions of a chaotic market
model may increase economic efficiency [6–10]. In recent years, some authors have paid
much attention to chaos control in economic models and obtained some results. For example,
Ahmed et al. and Agiza used OGY method to control chaos in economic systems [11, 12],
respectively. Pyragas [7] and Holyst and Urbanowicz [9] proposed the delayed feedback
control, which has been widely used for controlling chaos in economic models. Sun et al.
adopted impulsive control to control a financial model [13]. Du et al. applied phase space
compression to control chaos in economic systems [14].

On the other hand, it has been found that many systems in interdisciplinary fields can
be described by fractional differential equations, for example, dielectric polarization, elec-
trode-electrolyte polarization, electromagnetic waves, viscoelastic systems, quantitative f-
inance, and diffusion wave [15–17]. Recently, fractional-order systems have become an active
research area, particularly in control and synchronization of chaotic systems. Interest has
been growing in fractional calculus not only from physicists and engineers but also from
researchers in life science and economics [18–20]. In fact, financial variables possessing
long memories make fractional models more appropriate for dynamic behaviors in finance.
Research on fractional-order financial models has a wider range of applications. In 2008,
Chen studied nonlinear dynamics and chaos in a fractional-order financial system [21].
As he pointed out, one of the major differences between fractional-order and integer-order
models is that fractional-order models possess memory; that is, the fractional-order model
depends on the history of the system. The magnitude of the financial variables such as
foreign exchange rates, gross domestic product, interest rates, production, and stock market
prices can have very long memory; the reason for describing financial systems using a frac-
tional nonlinear model is that it simultaneously possesses memory and chaos. From then
on, researchers set out to investigate the fractional financial models, for instance, in [22]
a sliding mode controller was designed for a fractional-order chaotic financial system and
in [23] control of a fractional-order chaotic financial system by nonlinear feedback control
was discussed. As we know, linear feedback control is especially attractive and has been
successfully applied to practical implementation, which was adopted in [24–26] to realize
control and synchronization of integer-order chaotic systems. However, there exists substan-
tial difference between fractional-order differential systems and integer-order differential
ones. Most of the properties, conclusions, and methods to deal with integer-order systems
cannot be simply extended to the case of fractional-order ones. Therefore, results about
fractional-order chaotic systems are much less than those of integer-order systems. To the
best of our knowledge, there are few results about control and synchronization of fractional-
order systems via linear feedback control [27, 28].

In this paper, based on the stability theory of fractional-order differential equations,
Routh-Hurwitz stability condition, we investigate control and synchronization of fractional-
order financial systems proposed by Chen via linear control. Sufficient conditions are estab-
lished and easy to verify. Compared with sliding mode control and nonlinear feedback
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control used for discussing fractional-order financial systems in [22, 23], the linear control is
economic and easy to implement, through which control and synchronization of fractional-
order financial systems will be obtained only by choosing suitable feedback gains. The main
job of this paper lies in two aspects. One is to remove chaotic phenomenon from fractional
financial system by controlling, which makes prediction impossible in the financial world.
The other is to realize harmonious and sustainable development between drive financial
systems and response ones by investigating synchronization. The obtained results have a
certain value to the theoretical guidance and application.

The remainder of this paper is organized as follows. In Section 2, preliminary results
are presented and fractional-order financial system is described. In Section 3, some sufficient
criteria for control of the fractional-order financial system are given. In Section 4, we discuss-
ed synchronization of the fractional-order financial system via linear error feedback. In
Section 5, numerical simulations are given to illustrate the effectiveness of the main results.
Finally, conclusions are drawn in Section 6.

2. Preliminaries and System Description

Fractional calculus is a generalization of integration and differentiation to a noninteger-order
integrodifferential operator Dα

t defined by

Dα
t =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dα

dtα
, R(α) > 0,

1, R(α) = 0,
∫ t

a

(dτ)−α, R(α) < 0.

(2.1)

Fractional calculus is being used in various fields gradually, such as biophysics, nonlin-
ear dynamics, informatics, and control engineering [29]. There are some definitions for frac-
tional derivatives. The commonly used definitions are Grunwald-Letnikov (GL), Riemann-
Liouville (RL), and Caputo (C) definitions.

The Grunwald-Letnikov (GL) derivative with fractional-order α is given by

G
αD

α
t f(t) = lim

h→ 0
f
(α)
h (t) = lim

h→ 0
h−α

[(t−α)/h]∑

i=0
(−1)i(αi

)
f(t − ih), (2.2)

where [·]means the integer part.
The Riemann-Liouvill (RL) fractional derivatives are defined by

R
αD

α
t f(t) =

dn

dtn
1

Γ(n − α)

∫ t

a

f(τ)

(t − τ)(α−n+1)
dτ, n − 1 < α < n, (2.3)

where Γ(·) is the gamma function, Γ(τ) =
∫∞
0 tτ−1e−tdt.
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Figure 1: Chaotic attractors of system (2.5) with order (0.86, 0.92, 0.95).

The Caputo (C) fractional derivative is defined as follows:

C
αD

α
t f(t) =

1
Γ(n − α)

∫ t

a

f (n)(τ)(t − τ)(n−α−1)dτ, n − 1 < α < n. (2.4)

It should be noted that the advantage of Caputo approach is that the initial conditions
for fractional differential equations with Caputo derivatives take on the same form as those
for integer-order differential, which have well-understood physical meanings. Therefore, in
the rest of this paper, the notation Dα

∗ is chosen as the Caputo fractional derivative operator
C
αD.

The fractional-order chaotic financial system can be described by

Dα1∗ x = z +
(
y − a

)
x,

Dα2∗ y = 1 − by − x2,

Dα3∗ z = −x − cz,

(2.5)

where α1, α2, and α3 are the fractional-order, α1, α2, α3 ∈ (0, 1). System (2.5) describes the time
variation of three state variables: the interest rate x, the investment demand y, and the price
index z; a is the saving amount, b is the cost per investment, c is the elasticity of demand of
commercial markets, parameters a, b, and c are positive real constants. When a = 3, b = 0.1,
c = 1, fractional-order (α1, α2, α3) is taken as (0.86, 0.92, 0.95), the largest Lyapunov exponent
of system (2.5) is greater than 0 [23]. Figure 1 displays chaotic attractors of system (2.5).

To obtain our results, the following lemma is presented.
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Consider the following fractional-order system:

Dα1∗ x = f
(
x, y, z

)
,

Dα2∗ y = g
(
x, y, z

)
,

Dα3∗ z = h
(
x, y, z

)
.

(2.6)

Lemma 2.1 (see [30]). System (2.6) is asymptotically stable at the equilibrium points if
| arg(λi(A))| > απ/2, α = max(α1, α2, α3), i = (1, 2, 3), for all eigenvalues λi of the Jacobian matrix
J :

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂f

∂x

∂f

∂y

∂f

∂z

∂g

∂x

∂g

∂y

∂g

∂z

∂h

∂x

∂h

∂y

∂h

∂z

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.7)

3. Chaos Control

3.1. Analysis of Equilibrium Points

Let

z +
(
y − a

)
x = 0,

1 − by − x2 = 0,

−x − cz = 0.

(3.1)

It is easy to obtain that system (2.5) has three equilibrium points if

c − b − abc > 0,

P1 =
(

0,
1
b
, 0
)

,

P2 =

⎛

⎝

√

(c − b − abc)
c

,
(1 + ac)

c
,

(

−1
c

)

·
√

(c − b − abc)
c

⎞

⎠,

P3 =

⎛

⎝−
√

(c − b − abc)
c

,
(1 + ac)

c
,

(
1
c

)

·
√

(c − b − abc)
c

⎞

⎠.

(3.2)
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The Jacobian matrix of system (2.5) at equilibrium point (x∗, y∗, z∗) is

J =

⎡

⎢
⎢
⎣

y∗ − a x∗ 1

−2x∗ −b 0

−1 0 −c

⎤

⎥
⎥
⎦. (3.3)

The characteristic equation of the Jacobian matrix J is given by

λ3 +
(
a + b + c − y∗)λ2 +

(
ab + ac + bc − by∗ − cy∗ + 2(x∗)2 + 1

)
λ

+ abc − bcy + b + 2c(x∗)2 = 0.
(3.4)

When a = 3, b = 0.1, c = 1, P1 = (0, 10, 0). Substituting the parameters a, b, and c into
(3.4), one obtains

λ3 − 5.9λ2 − 6.6λ − 0.6 = 0. (3.5)

The roots of (3.5) are λ1 = 6.8730, λ2 = −0.8730, and λ3 = −0.1; obviously, λ1 is a positive real
number, based on the lemma, arg(λ1) = 0, arg(λ2) = arg(λ3) = π . So, the equilibrium point P1

is unstable.
When a = 3, b = 0.1, c = 1, P2 = (

√
0.6, 4,−√0.6), P3 = (−√0.6, 4,

√
0.6). Substituting

the parameters a, b, and c into (3.4), the characteristic equation of the Jacobian matrix J at
equilibrium points P2, P3 is

λ3 + 0.1λ2 + 1.2λ + 1.2 = 0. (3.6)

The roots of (3.6) are λ1 = −0.7256, λ2 = 0.3128+1.2474i, and λ3 = 0.3128−1.2474i. According to
the lemma, λ1 is a negative real number, arg(λ1) = π , arg |(λ2,3)| = 1.3251. α = 2| arg(λ2,3)|/π =
0.8436. Therefore, we can conclude that if the maximum fractional-order α among α1, α2, α3

is less than 0.8436, the equilibrium points P2, P3 are stable. On the contrary, the equilibrium
points P2, P3 are unstable.

According to the above analysis, when the maximum fractional-order α among α1, α2,
and α3 is less than 0.8436, there exist two stable equilibrium points; when α1 = α2 = α3 =
0.8436, system (2.5) will admit a limit cycle; when fractional-order α1, α2, and α3 are all
greater than 0.8436, there are no stable equilibria, with all the equilibrium points being
unstable, which implies that there may exist chaos for system (2.5). By calculating the values
of Lyapunov exponents of system (2.5), it could be found that system (2.5) exhibits chaotic
behaviors if maximum fractional-order α among α1, α2, and α3 is greater than or equal to 0.86
[23].

3.2. Chaos Control

In this subsection, linear state feedback controller is designed to control fractional-order cha-
otic financial system to its equilibrium.



Discrete Dynamics in Nature and Society 7

The controlled fractional-order chaotic financial system is given by

Dα1∗ x = z +
(
y − a

)
x + k1(x − x∗),

Dα2∗ y = 1 − by − x2 + k2
(
y − y∗),

Dα3∗ z = −x − cz + k3(z − z∗),

(3.7)

where k1, k2, and k3 denote feedback gains and (x∗, y∗, z∗) is the desired equilibrium point.
Obviously, system (3.7) has one equilibrium point (x∗, y∗, z∗).

The Jacobian matrix of system (3.7) at equilibrium point (x∗, y∗, z∗) is

J =

⎡

⎢
⎢
⎣

y∗ − a + k1 x∗ 1

−2x∗ k2 − b 0

−1 0 k3 − c

⎤

⎥
⎥
⎦. (3.8)

The characteristic equation of the Jacobian matrix (3.8) is

λ3 +
(
a + b + c − k1 − k2 − k3 − y∗)λ2

+
(
ab + ac + bc + k1k2 + k2k3 + k1k3 − (b + c)k1

+
(
y − a − c

)
k2 − bcy∗ +

(
y − a − b

)
k3 + 1 − by∗ + 2(x∗)2

)
λ

− bck1 + ck1k2 +
(
cy∗ − ac − 1

)
k2 −

(
by∗ + ab + 2(x∗)2

)
k3 + bk1k3

+
(
a − y

)
k2k3 − k1k2k3 + abc + b + c − y∗ + 2c(x∗)2 = 0.

(3.9)

Our goal is to find suitable feedback gains such that all the state trajectories of system
(3.7) are controlled to its equilibrium point, that is to say, roots of (3.9) should satisfy the
conditions in the lemma.

Theorem 3.1. When a = 3, b = 0.1, c = 1, P1 = (0, 10, 0); system (3.7) stabilizes to equilibrium
point P1, if state feedback gains k1, k2, and k3 satisfy the following conditions:

−10 ≤ k1 − k3 < −6, k1 + k3 < −6, k2 < 0.1. (3.10)

Proof. Substituting the parameters a, b, and c into (3.9), one obtains

(10λ + 1 − 10k2)
(
λ2 − (k1 + k3 + 6)λ + k1k3 − k1 + 7k3 − 6

)
= 0. (3.11)

It is very easy to obtain the roots of (3.11):

λ1 = k2 − 0.1, λ2,3 =
1
2

(

k1 + k3 + 6 ±
√

(k1 − k3 + 10)(k1 − k3 + 6)
)

. (3.12)
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Note that λ1 is a negative real number, λ2,3 are a pair of conjugate imaginary roots, and the
real parts of imaginary root are negative, that is, arg(λ1) = π , arg(λ2,3) > π/2. Therefore,
the trajectory of the controlled fractional-order system (3.7) is asymptotically stable at equi-
librium point P1.

In Theorem 3.1, we designed three simple linear feedback controllers to ensure con-
trolled system (3.7) stabilized to P1. In practice, two linear feedback controllers or single
linear feedback controller in controlled system (3.7) will do the same thing. Then we have
the following corollaries.

Corollary 3.2. Controlled system (3.7) will approach asymptotically to P1 with one of the following
conditions about feedback gains:

−10 ≤ k1 < −6, k2 < 0.1, k3 = 0,

k1 + k3 < −6, −10 ≤ k1 − k3 < −6, k2 = 0.
(3.13)

Corollary 3.3. Controlled system (3.7) will approach asymptotically to P1 if feedback gains satisfy

−10 ≤ k1 < −6, k2 = 0, k3 = 0. (3.14)

Theorem 3.4. When a = 3, b = 0.1, c = 1, P2 = (
√
0.6, 4,−√0.6); if feedback gains k1, k2, and k3

satisfy one of the following conditions, system (3.7) will approach and stabilizes to equilibrium point
P2 asymptotically:

k1 = 0, k2 < −0.9, k3 = 0,

k1 <
121 − √

62161
220

, k2 = 0, k3 = 0.
(3.15)

Proof. (1) Substitute the parameters a = 3, b = 0.1, c = 1, and k1 = k3 = 0 into (3.9), one obtains

λ3 +
(

1
10

− k2

)

λ2 +
6
5
λ +

6
5
= 0. (3.16)

According to the Routh-Hurwitz criterion, real parts of these eigenvalues λ1,2,3 of (3.16) are
all negative if

1
10

− k2 > 0,
(

1
10

− k2

)
6
5
>

6
5
, (3.17)

that is, k2 < −0.9. That implies that the trajectory of the controlled fractional-order system
(3.7) is asymptotically stable at equilibrium point P2.

(2) Substituting the parameters a = 3, b = 0.1, c = 1, and k2 = k3 = 0 into (3.9), one
obtains

λ3 +
(

1
10

− k1

)

λ2 +
(
6
5
− 11
10

k1

)

λ +
6
5
− 1
10

k1 = 0. (3.18)
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By applying the Routh-Hurwitz criterion, if the following conditions for feedback gains are
met,

1
10

− k1 > 0,
6
5
− 11
10

k1 > 0,
(

1
10

− k1

)(
6
5
− 11
10

k1

)

>
6
5
− 1
10

k1, (3.19)

then real parts of these eigenvalues λ1,2,3 are all negative. It follows that k1 < (1/220)(121 −√
62161). Thus, the trajectory of the controlled fractional-order system (3.7) is asymptotically

stable at equilibrium point P2.

Remark 3.5. Actually, we adopt single linear feedback controller to stabilize P2 of controlled
system in Theorem 3.4, namely, stabilizing P2 by adding single linear feedback controller
on the first state or the second state, but we cannot do it via adding single linear feedback
controller on the third state; the reasons are described as follows.

Substituting the parameters a = 3, b = 0.1, c = 1, and k1 = k2 = 0 into (3.9), one obtains

λ3 +
(

1
10

− k3

)

λ2 +
(
6
5
+

9
10

k3

)

λ − 11
10

k3 +
6
5
= 0. (3.20)

By using the Routh-Hurwitz criterion, real parts of these eigenvalues λ1,2,3 are all negative if

1
10

− k3 > 0, −11
10

k3 +
6
5
> 0,

(
1
10

− k3

)(
6
5
+

9
10

k3

)

> −11
10

k3 +
6
5
. (3.21)

By using simple calculation, such k3 is obviously absent. So the trajectory of the controlled
fractional-order system (3.7) is not asymptotically stable at equilibrium point P2.

Theorem 3.6. When a = 3, b = 0.1, c = 1, P2 = (−√0.6, 4,
√
0.6); if feedback gains k1, k2, and k3

satisfy one of the following conditions, system (3.7) will approach and stabilize to equilibrium point
P2 asymptotically:

k1 = 0, k2 < −0.9, k3 = 0,

k1 <
121 − √

62161
220

, k2 = 0, k3 = 0.
(3.22)

Proof. The proof is the same as that of Theorem 3.4 and so we omit it here.

4. Chaos Synchronization

In this section, we will investigate synchronization of fractional-order financial system (2.5).
Three and two simple linear feedback controllers are designed to achieve synchronization,
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which simplify the existing synchronization schemes and reduce the synchronization cost.
Drive system and response system are described as follows, respectively:

Dα1∗ xm = zm +
(
ym − a

)
xm,

Dα2∗ ym = 1 − bym − x2
m,

Dα3∗ zm = −xm − czm,

(4.1)

Dα1∗ xs = zs +
(
ys − a

)
xs + u1,

Dα2∗ ys = 1 − bys − x2
s + u2,

Dα3∗ zs = −xs − czs + u3,

(4.2)

where u1, u2, and u3 denote the external control inputs, to be designed later. It follows from
systems (4.1) and (4.2) that the following error dynamical system is

D
q1
∗ e1 =

(
ym − a

)
e1 + xse2 + e3 − u1,

D
q2
∗ e2 = (xm + xs)e1 − be2 − u2,

D
q3
∗ e3 = −e1 − ce3 − u3,

(4.3)

where e1 = xm − xs, e2 = ym − ys, and e3 = zm − zs. Our aim is to find suitable control
laws ui(i = 1, 2, 3) for stabilizing the error dynamics system (4.3). To this end, the following
theorem is proposed.

Theorem 4.1. For any given initial conditions, synchronization between systems (4.1) and (4.2) will
occur if control schemes are defined as follows:

u1 = k1e1,

u2 = k2e2,

u3 = k3e3,

(4.4)

where k1, k2, and k3 are feedback gains and satisfy the following conditions:

k1 > L − a,

k2 < −b − 9L2

4(L − a − k1)
,

k3 < −c.

(4.5)
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Proof. Combining (4.3) with (4.4), the error system (4.3) is given by

D
q1
∗ e1 =

(
ym − a − k1

)
e1 + xse2 + e3,

D
q2
∗ e2 = (xm + xs)e1 − (b + k2)e2,

D
q3
∗ e3 = −e1 − (c + k3)e3.

(4.6)

Error dynamical system (4.6) can be rewritten as the following matrix form:

⎡

⎢
⎢
⎢
⎢
⎣

D
q1
∗ e1

D
q2
∗ e2

D
q3
∗ e3

⎤

⎥
⎥
⎥
⎥
⎦

= A

⎡

⎢
⎢
⎢
⎢
⎣

e1

e2

e3

⎤

⎥
⎥
⎥
⎥
⎦
, (4.7)

where

A =

⎡

⎢
⎢
⎢
⎢
⎣

ym − a − k1 xs 1

xm + xs −(b + k2) 0

−1 0 −(c + k3)

⎤

⎥
⎥
⎥
⎥
⎦
. (4.8)

Suppose that λ is one of the eigenvalues of matrix A and the corresponding nonei-
genvector is ε = (ε1, ε2, ε3)

T , that is,

Aε = λε. (4.9)

Taking conjugate transposal on both sides of (4.9), one obtains

(Aε)H = λεH. (4.10)

Equation (4.9)multiplied left by 1/2εH plus (4.10)multiplied right by 1/2ε, we have

εH
(
1
2
A +

1
2
AH

)

ε =
1
2

(
λ + λ

)
εHε. (4.11)
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Because a chaotic system has bounded trajectories, there exists a positive constant L, such
that |x| < L, |y| < L. Thus,

εH
1
2

(
A +AH

)
ε =

[
εH1 , εH2 , εH3

]

⎡

⎢
⎢
⎢
⎢
⎣

ym − a − k1
xm + 2xs

2
0

xm + 2xs

2
−(b + k2) 0

0 0 −(c + k3)

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

ε1

ε2

ε3

⎤

⎥
⎥
⎦

≤
[∣
∣
∣εH1

∣
∣
∣,
∣
∣
∣εH2

∣
∣
∣,
∣
∣
∣εH3

∣
∣
∣

]

⎡

⎢
⎢
⎢
⎢
⎣

L − a − k1
3
2
L 0

3
2
L −(b + k2) 0

0 0 −(c + k3)

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

|ε1|
|ε2|
|ε3|

⎤

⎥
⎥
⎦.

(4.12)

From (4.11), we have

1
2

(
λ + λ

)
=

εH
(
(1/2)A + (1/2)AH

)
ε

εHε

≤ 1
εHε

[∣
∣
∣εH1

∣
∣
∣,
∣
∣
∣εH2

∣
∣
∣,
∣
∣
∣εH3

∣
∣
∣

]
P[|ε1|, |ε2|, |ε3|]T ,

(4.13)

where

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

L − a − k1
3
2
L 0

3
2
L −(b + k2) 0

0 0 −(c + k3)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (4.14)

It is obvious that real parts of all eigenvalues λ are negative and matrix P should be
negative definite, namely, the following inequalities hold:

L − a − k1 < 0,

−(b + k2)(L − a − k1) − 9
4
L2 < 0,

(b + k2)(c + k3)(L − a − k1) +
9
4
L2(c + k3) < 0.

(4.15)

Simplifing the above inequalities, one has

k1 > L − a,

k2 < −b − 9L2

4(L − a − k1)
,

k3 < −c.

(4.16)
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Therefore, based on stability theorem of fractional-order systems, error system (4.6) is as-
ymptotically stable at the origin, which implies that synchronization between systems (4.1)
and (4.2) will be achieved.

Based on the above analysis, it is easy to obtain that two linear feedback controllers
could also achieve synchronization between systems (4.1) and (4.2). Then, we have the
following corollary.

Corollary 4.2. For any given initial condition, if control schemes are described as u1 = k1e1, u3 =
k3e3 and feedback gains satisfy

L − a < k1 < L − a +
9
4b

L2, k3 < −c, (4.17)

then the response system (4.2) can synchronize the drive system (4.1).

Proof. The proof is similar to that of Theorem 4.1. After some computations, we have

1
2

(
λ + λ

)
=

εH
(
(1/2)A + 1/2AH

)
ε

εHε

≤ 1
εHε

[∣
∣
∣εH1

∣
∣
∣,
∣
∣
∣εH2

∣
∣
∣,
∣
∣
∣εH3

∣
∣
∣

]
P[|ε1|, |ε2|, |ε3|]T ,

(4.18)

where

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

L − a − k1
3
2
L 0

3
2
L −b 0

0 0 −(c + k3)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (4.19)

Matrix P must be negative definite; if the following inequalities hold:

L − a − k1 < 0,

−b(L − a − k1) − 9
4
L2 < 0,

b(c + k3)(L − a − k1) +
9
4
L2(c + k3) < 0,

(4.20)

then one obtains

L − a < k1 < L − a +
9
4b

L2, k3 < −c. (4.21)

Therefore, real parts of all eigenvalues λ are negative; according to the stability theorem of
fractional-order systems, error system (4.6) is asymptotically stable. This means that the slave
system (4.2) can asymptotically synchronize the master system (4.1).
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Figure 2: The time response of the states for stabilizing system (3.7) to P1(k1 = −9, k2 = −5, k3 = −2).

Remark 4.3. References [22, 23] presented control of the model by using sliding mode control
and nonlinear control, respectively, but with no consideration of synchronization. In contrast,
control cost of linear control is low.

Remark 4.4. Response time of control and synchronization could be adjusted with suitable
state feedback gains and error feedback gains in allowed limits.

5. Numerical Simulations

In this section, to verify theoretical results obtained in the previous section, the corresponding
numerical simulations will be performed and an improved predictor-corrector algorithm is
applied (see the appendix). In all simulations, fractional-order (α1, α2, and α3) is chosen as
(0.86, 0.92, and 0.95) to ensure the existence of chaos in system (2.5).

Chaos Control

The parameters of system (2.5) are selected as a = 3, b = 0.1, and c = 1. The initial
values of controlled system (3.7) are chosen as (x(0), y(0), z(0)) = (3, 1, 4), respectively.
Based on Theorem 3.1, we chose state feedback gain (k1, k2, k3) as (−9,−5,−2), under these
conditions, roots of (3.11) are λ1 = −5.1, λ1 = −2.5 + 0.866i, and λ1 = −2.5 − 0.866i.
Controlled system (3.7) is asymptotically stable at P1. Figure 2 shows that the controlled
system (3.7) can be stabilized to P1. When state feedback gain (k1, k2, k3) = (0,−3, 0) and
(−2, 0, 0), roots (λ1, λ2, λ3) of (3.16) and (3.18) are (−2.8256,−0.1372−0.6371i,−0.1372+0.6371i)
and (−2.8256, −0.1372 + 0.6371i, −0.1372 − 0.6371i), respectively. According to Theorem 3.4,
controlled system (3.7) will stabilize at P2. Figures 3 and 4 display the simulation results,
respectively. When the parameters of the controlled system (3.7) are selected as above, based
on Theorem 3.6, P3 is stabilized. Figures 5 and 6 display the stabilization of the equilibrium
point P3 for state feedback gain (0, −8, 0) and (−2, 0, 0), respectively.



Discrete Dynamics in Nature and Society 15

0 2 4 6 8 10
0

2

4

Time (s)

x

0

2

4

Time (s)

y

−5

0

5

Time (s)

z

0 2 4 6 8 10

0 2 4 6 8 10

Figure 3: The time response of the states for stabilizing system (3.7) to P2(k1 = 0, k2 = −3, k3 = 0).

0 2 4 6 8 10
0

2

4

Time (s)

x

0 2 4 6 8 10
0

2

4

Time (s)

y

0 2 4 6 8 10
−5

0

5

Time (s)

z

Figure 4: The time response of the states for stabilizing system (3.7) to P2(k1 = −2, k2 = 0, k3 = 0).

Chaos Synchronization

When the parameters of system (2.5) are chosen as a = 3, b = 0.1, and c = 1, select the
initial values of the drive and the response systems as (xm(0), ym(0), zm(0)) = (4,−3, 2) and
(xs(0), ys(0), zs(0)) = (−3, 2, 4), respectively. For error feedback gain (k1, k2, k3) = (12, 9,−2),
simulation result of the synchronization between systems (4.1) and (4.2) is shown in Figure 7.
The synchronization error states between systems (4.1) and (4.2) and displayed in Figure 8.
When error feedback gains k1 = 8, k2 = 0, and k3 = −2, it can be seen that the derive
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Figure 5: The time response of the states for stabilizing system (3.7) to P3(k1 = 0, k2 = −8, k3 = 0).
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Figure 6: The time response of the states for stabilizing system (3.7) to P3(k1 = −2, k2 = 0, k3 = 0).

system (4.1) and the response system (4.2) achieve the synchronization in Figure 9. Figure 10
displays the error state time response between systems (4.1) and (4.2).

6. Conclusion

In this paper, based on the stability theory of fractional-order systems and Routh-Hurwitz
stability condition, some sufficient conditions for control and synchronization of the fraction-
al-order chaotic financial system by linear feedback control have been derived. Finally, num-
erical simulations are provided to verify the effectiveness of the results obtained. The results



Discrete Dynamics in Nature and Society 17

0 2 4 6 8 10

−5

0

5

Time (s)

x
m
,x

s

xm

xs

0 2 4 6 8 10

−5

0

5

Time (s)

y
m
,y

s

ym

ys

0 2 4 6 8 10

−5

0

5

Time (s)

z
m
,z

s

zm
zs

Figure 7: Synchronization states of systems (4.1) and (4.2) (k1 = 12, k2 = 9, k3 = −2).
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Figure 9: Synchronization states of systems (4.1) and (4.2) (k1 = 8, k2 = 0, k3 = −2).

are economical, reliable and efficient. It is noted that the method applied in the paper can also
be extended to other fractional-order chaotic systems.

Appendix

An improved predictor-corrector algorithm [31] for fractional-order differential equations
is presented in brief. In comparison with the classical one-step Adams-Bashforth-Moulton
algorithm, the numerical approximation of the improved algorithm is more accurate and the
computational cost is lower.

The following differential equation:

dαx

dtα
= f(t, x), 0 ≤ t ≤ T,

x(k) = x
(k)
0 , k = 0, 1, 2, . . . , [α] − 1,

(A.1)

is equivalent to the Volterra integral equation [32]

x =
[α]−1∑

k=0

x
(k)
0

tk

k!
+

1
Γ(α)

∫ t

0

f(τ, x)

(t − τ)1−α
dτ. (A.2)
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Figure 10: Synchronization error states of systems (4.1) and (4.2) (k1 = 8, k2 = 0, k3 = −2).

Set h = T/N, tn = nh (n = 0, 1, 2, . . . ,N). Then the above equation can be discretized as fol-
lows:

xh(tn+1) =
[α]−1∑

k=0

x
(k)
0

tk

k!
+

hα

Γ(α + 2)
f
(
tn+1, x

ρ

h(tn+1)
)
+

hα

Γ(α + 2)

n∑

j=0

aj,n+1f
(
tj , xh

(
tj
))
, (A.3)

where

aj,n+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nα+1 − (n − α)(n + 1)α+1, j = 0,
(
n − j + 2

)α+1 +
(
n − j

)α+1 − 2
(
n − j + 1

)a+1
, 1 ≤ j ≤ n,

1, j = n + 1,

x
ρ

h(tn+1) =
[α]−1∑

k=0

x
(k)
0

tkn+1
k!

+
1

Γ(α)

n∑

j=0

bj,n+1f
(
tj , xh

(
tj
))
,

(A.4)

in which, bj,n+1 = hα/α((n − j + 1)α − (n − j)α).
The error estimate e is Max |x(tj)−xh(tj)| = O(hρ)(j = 0, 1, . . . ,N), where ρ = Min(2, 1+

α).
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