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This paper examines the propagation behavior of computer virus under human intervention. A
dynamical model describing the spread of computer virus, under which a susceptible computer
can become recovered directly and an infected computer can become susceptible directly, is pro-
posed. Through a qualitative analysis of this model, it is found that the virus-free equilibrium is
globally asymptotically stable when the basic reproduction number R0 ≤ 1, whereas the viral equi-
librium is globally asymptotically stable if R0 > 1. Based on these results and a parameter analysis,
some appropriate measures for eradicating the spread of computer virus across the Internet are
recommended.

1. Introduction

Due to their striking features such as destruction, polymorphism, and unpredictability [1, 2],
computer viruses have come to be one major threat to our work and daily life [3, 4]. With
the rapid advance of computer and communication technologies, computer virus programs
are becoming increasingly sophisticated so that developing antivirus software is becoming
increasingly expensive and time-consuming [5]. Dynamical modeling of the spread process
of computer virus is an effective approach to the understanding of behavior of computer
viruses because, on this basis, some effective measures can be posed to prevent infection. In
the past decade or so, a number of epidemicmodels (SEIRmodel [6, 7], SEIRSmodel [8], SIRS
model [9–15], SEIQV model [16], SEIQRS model [17] and SAIR model [4], were simply
borrowed to depict the spread of computer virus.

In reality, human intervention plays an important role in slowing down the propa-
gation of computer viruses or preventing the breakout of computer viruses, under which
a susceptible computer can become recovered directly, and an infected computer can become
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susceptible directly. To our knowledge, however, all the previous models did not consider the
effect of human intervention.

In this paper, a new computer virus propagation model, which incorporates the above
mentioned effects of human intervention, is proposed. The dynamics of this model are inves-
tigated. Specifically, the virus-free equilibrium is globally asymptotically stable when the
basic reproduction number R0 ≤ 1, whereas the viral equilibrium is globally asymptotically
stable if R0 > 1. Based on these results and a parameter analysis, some effective strategies for
eradicating computer viruses are advised.

The subsequent materials of this paper are organized as follows: Section 2 formulates
the model; Section 3 shows the global stability of the virus-free equilibrium; Section 4
proves the global stability of the viral equilibrium; Some policies are posed in Section 5 for
controlling virus spread; finally, this work is summarized in Section 6.

2. Assumptions and Model Formulation

At any given time, computers all over theworld are classified as internal or external depending
on whether it is currently accessing to the Internet or not, and all internal computers are
further categorized into three classes: (1) susceptible computers, that is, virus-free computers
having no immunity; (2) infected computers; (3) recovered computers, that is, virus-free
computers having immunity. At time t, let S(t), I(t), and R(t) denote the concentrations
(i.e., percentages) of susceptible, infected, and recovered computers in all internal computers,
respectively. Then S(t) + I(t) + R(t) ≡ 1. Without ambiguity, S(t), I(t), and R(t) will be
abbreviated as S, I, and R, respectively.

Our model is based on the following assumptions.

(A1) All newly accessed computers are virus-free. Furthermore, due to the effect of
newly accessed computers, at any time the percentage of susceptible computers
increases by δ.

(A2) At any time an internal computer is disconnected from the Internet with probability
δ.

(A3) Due to the effect of previously infected computers, at any time the percentage of
infected computers increases by βSI, where β is a positive constant.

(A4) Due to the effect of cure, at any time an infected computer becomes recovered with
probability γ1, or becomes susceptible with probability γ2.

(A5) Due to the loss of immunity, at any time a recovered computer becomes susceptible
with probability α2.

(A6) Due to the availability of new vaccine, at any time a susceptible computer becomes
recovered with probability α1I.

This collection of assumptions can be schematically shown in Figure 1, from which one can
derive the following model describing the propagation of computer virus:

Ṡ = δ − α1SI − δS + γ2I − βSI + α2R,

İ = βSI − γ2I − δI − γ1I,

Ṙ = γ1I + α1SI − δR − α2R,

(2.1)

with initial conditions S(0) ≥ 0, I(0) ≥ 0 and R(0) ≥ 0.
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Figure 1: The transfer diagram of the SIRS model.

The basic reproduction number, R0, is defined as the average number of susceptible com-
puters that are infected by a single infected computer during its life span. From the above
model, one can derive the basic reproduction number R0 as

R0 =
β

γ1 + γ2 + δ
. (2.2)

Because S + I + R ≡ 1, system (2.1) simplifies to the following planar system:

Ṡ = δ − α1SI − δS + γ2I − βSI + α2(1 − S − I),

İ = βSI − γ2I − δI − γ1I,
(2.3)

with initial conditions S(0) ≥ 0 and I(0) ≥ 0. Clearly, the feasible region for this system is
Ω = {(S, I) : S ≥ 0, I ≥ 0, S + I ≤ 1}, which is positively invariant.

3. The Virus-Free Equilibrium and Its Stability

System (2.3) always has a virus-free equilibrium E0(1, 0). Next, let us consider its global stabi-
lity by means of the Direct Lyapunov Method.

Theorem 3.1. E0 is globally asymptotically stable with respect to Ω if R0 ≤ 1.

Proof. Let V (t) = I(t), then

V ′(t)
∣
∣
(2.3) = İ = βSI − γ2I − δI − γ1I

= βI

(

S − γ1 + γ2 + δ

β

)

= βI

(

S − 1
R0

)

.

(3.1)

Because R0 ≤ 1 and S + I ≤ 1, we have V ′(t)|(3) ≤ 0. Moreover, V ′(t)|(3) = 0 if and only if
(S, I) = (1, 0). Thus, the claimed result follows from the LaSalle Invariance Principle.
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Figure 2: Evolutions of S(t) and I(t) for the system with β = 0.3, δ = 0.1, α1 = 0.2, α2 = 0.4, γ1 = 0.1 and
γ2 = 0.2, provided S(0) = 0.5 and I(0) = 0.4.

Example 3.2. Consider a system of the form (2.3) and with β = 0.3, δ = 0.1, α1 = 0.2, α2 = 0.4,
γ1 = 0.1, and γ2 = 0.2. Then R0 = 0.75 < 1. By Theorem 3.1, the virus-free equilibrium is
globally asymptotically stable. Figure 2 demonstrates how S(t) and I(t) evolve with time t if
S(0) = 0.5 and I(0) = 0.4.

4. The Viral Equilibrium and Its Stability

When R0 > 1, it is easy to verify that system (2.3) has a unique viral equilibrium E∗(S∗, I∗),
where

S∗ =
δ + γ1 + γ2

β
=

1
R0

, I∗ =
(δ + α2)(R0 − 1)

α1 +
(

δ + γ1 + α2
)

R0
> 0. (4.1)

First, consider the local stability of E∗.

Theorem 4.1. E∗ is locally asymptotically stable if R0 > 1.

Proof. For the linearized system of system (2.3) at E∗, the corresponding Jacobian matrix is

JE∗ =

(−α2 − δ − (

α1 + β
)

I∗ −(α2 + γ1 + δ + α1S
∗)

βI∗ 0

)

. (4.2)

The characteristic equation of JE∗ is

λ2 + k1λ + k2 = 0, (4.3)
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where

k1 =
(

α1 + β
)

I∗ + α2 + δ > 0,

k2 =
(

α2 + γ1 + δ + α1S
∗)βI∗ > 0.

(4.4)

It follows from the Hurwitz criterion that the two roots of (4.3) have negative real parts.
Hence, the claimed result follows.

We are ready to study global stability of E∗. LetΩ′ = Ω−E0, then we have as following.

Theorem 4.2. E∗ is globally asymptotically stable with respect to Ω′ if R0 > 1.

Proof. From system (2.3), we have

δ − α1S
∗I∗ − δS∗ + γ2I

∗ − βS∗I∗ + α2(1 − S∗ − I∗) = 0. (4.5)

Note that

1
β

(
α2 − γ2
S∗ + α1

)

+ 1 =
1
β

(
α2 + γ1 + δ

S∗ + α1

)

> 0. (4.6)

Define the Lyapunov function as

V (t) =
∫S

S∗

x − S∗

x
dx + (d + 1)

∫ I

I∗

x − I∗

x
dx, (4.7)

where d = (1/β)((α2 − γ2)/S∗ + α1). Then

V ′(t)
∣
∣
(2.3) =

(

1 − S∗

S

)

Ṡ + (d + 1)
(

1 − I∗

I

)

İ

=
(

1 − S∗

S

)
[

δ − α1SI − δS + γ2I − βSI + α2(1 − S − I)
]

+ (d + 1)
(

1 − I∗

I

)
(

βSI − γ2I − δI − γ1I
)

=
(

1 − S∗

S

)
[

δ − α1SI − δS + γ2I − βSI + α2(1 − S − I)
]

+ (d + 1)
(

1 − I∗

I

)(

1 − S∗

S

)

βSI
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=
(

1 − S∗

S

)
[

α1S
∗I∗ − α1SI + δ(S∗ − S) + γ2(I − I∗)

+α2(S∗ − S) + α2(I∗ − I) + βdSI + βdS∗I∗ − β(d + 1)SI∗
]

=
(

1 − S∗

S

)[

(S∗ − S)
(

α1I
∗ + δ + α2 + βI∗

)

+ (I − I∗)
(

βd − α1
)
(

S − α2 − γ2
βd − α1

)]

= − (S∗ − S)2

S

(

δ + α2 + βI∗ − α2 − γ2
S∗ I +

α2 − γ2
S∗ I∗ + α1I

∗
)

.

(4.8)

If α2 ≤ γ2, because βI∗ + ((α2 − γ2)/S∗)I∗ = ((α2 + γ1 + δ)/S∗)I∗ > 0, thus

δ + α2 + βI∗ − α2 − γ2
S∗ I +

α2 − γ2
S∗ I∗ + α1I

∗ > 0. (4.9)

If α2 > γ2, from (4.5) we get

(

δ + α2 + βI∗ +
α2 − γ2
S∗ I∗ + α1I

∗
)

S∗

α2 − γ2

=
(

δ + α2 + βI∗ +
α2 − γ2
S∗ I∗ + α1I

∗
)

S∗

α2 − γ2

+
[

δ − α1S
∗I∗ − δS∗ + γ2I

∗ − βS∗I∗ + α2(1 − S∗ − I∗)
] 1
α2 − γ2

=
δ + α2

α2 − γ2
> 1 > I.

(4.10)

Hence, we have

δ + α2 + βI∗ − α2 − γ2
S∗ I +

α2 − γ2
S∗ I∗ + α1I

∗ > 0. (4.11)

Furthermore, it is easy to see that V ′(t)|(2.3) ≤ 0, and V ′(t)|(2.3) = 0 if and only if (S, I) = (S∗, I∗).
Hence, the claimed result follows from the LaSalle invariance principle.

Example 4.3. Consider a system of the form (2.3) and with β = 0.3, δ = 0.1, α1 = 0.2, α2 = 0.4,
γ1 = 0.1, and γ2 = 0.05. Then R0 = 1.2 > 1. It follows from Theorem 4.2 that the viral equilib-
rium is globally asymptotically stable. Figure 3 displays how S(t) and I(t) evolve with time t
if S(0) = 0.5 and I(0) = 0.4.

5. Discussions

As was indicated in the previous two sections, in order to eradicate computer viruses, one
should take actions to keep R0 below one.
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Figure 3: Evolutions of S(t) and I(t) for the system with β = 0.3, δ = 0.1, α1 = 0.2, α2 = 0.4, γ1 = 0.1, and
γ2 = 0.05, provided S(0) = 0.5 and I(0) = 0.4.

From (2.2), it is easy to see that R0 is increasing with β, and is decreasing with γ1, γ2,
and δ, respectively. This implies that prevention is more important than cure, and higher
disconnecting rate from the Internet contributes to the suppression of virus diffusion.

As a consequence, it is highly recommended that one should regularly update the
antivirus software even if their computer is not noticeably infected, and timely disconnect
the computer from the Internet whenever this connection is unnecessary. Also, filtering and
blocking suspicious messages with firewall is rewarding.

6. Conclusions

By considering the possibility that an infected computer becomes susceptible as well as the
possibility that a susceptible computer becomes recovered, a new computer virus propaga-
tion model has been proposed. The dynamics of this model has been fully studied. On this
basis, some effective measures for controlling the spread of computer viruses across the Inter-
net have been posed.
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