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Cho et al. [Comput. Math. Appl. 61(2011), 1254–1260] studied common fixed point theorems on
cone metric spaces by using the concept of c-distance. In this paper, we prove some coupled fixed
point theorems in ordered cone metric spaces by using the concept of c-distance in cone metric
spaces.

1. Introduction

Many fixed point theorems have been proved for mappings on cone metric spaces in the
sense of Huang and Zhang [1]. For some more results on fixed point theory and applications
in cone metric spaces, we refer the readers to [2–15]. Recently, Bhaskar and Lakshmikantham
[16] introduced the concept of a coupled coincidence point of a mapping F fromX×X intoX

and a mapping g from X into X and studied fixed point theorems in partially ordered metric
spaces. For some more results on couple fixed point theorems, refer to [17–23].

Recently, Cho et al. [7] introduced a new concept of c-distance in cone metric spaces,
which is a cone version ofw-distance of Kada et al. [24] (see also [25]) and proved some fixed
point theorems for some contractive type mappings in partially ordered cone metric spaces
using the c-distance.

In this paper, we prove some coupled fixed point theorems in ordered cone metric
spaces by using the concept of c-distance.
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2. Preliminaries

In this paper, assume that E is a real Banach space. Let P be a subset of E with int (P)/= ∅.
Then P is called a cone if the following conditions are satisfied:

(1) P is closed and P /= {θ};
(2) a, b ∈ R+, x, y ∈ P implies ax + by ∈ P ;

(3) x ∈ P ∩ −P implies x = θ.

For a cone P , define the partial ordering � with respect to P by x � y if and only if
y − x ∈ P . We write x ≺ y to indicate that x � y but x /=y, while x � y stand for y − x ∈ int P .

It can be easily shown that λ int (P) ⊆ int(P) for all positive scalars λ.

Definition 2.1 (see [1]). Let X be a nonempty set. Suppose that the mapping d : X × X → E
satisfies the following conditions:

(1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, y) � d(x, z) + d(y, z) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 2.2 (see [1]). Let (X, d) be a cone metric space. Let (xn) be a sequence in X and
x ∈ X.

(1) If, for any c ∈ X with θ � c, there exists N ∈ N such that d(xn, x) � c for all
n ≥ N, then (xn) is said to be convergent to a point x ∈ X and x is the limit of (xn).
We denote this by limn→∞xn = x or xn → x as n → ∞.

(2) If, for any c ∈ E with θ � c, there exists N ∈ N such that d(xn, xm) � c for all
n,m ≥ N, then (xn) is called a Cauchy sequence in X.

(3) The space (X, d) is called a complete cone metric space if every Cauchy sequence is
convergent.

Definition 2.3 (see [7]). Let (X,�) be a partially ordered set, and let F : X × X → X be
a function. Then the mapping F is said to have the mixed monotone property if F(x, y) is
monotone nondecreasing in x and is monotone nonincreasing in y; that is,

x1 � x2 implies F
(
x1, y

) � F
(
x2, y

)
(2.1)

for all y ∈ X and

y1 � y2 implies F
(
x, y2

) � F
(
x, y1

)
(2.2)

for all x ∈ X.

Definition 2.4 (see [7]). An element (x, y) ∈ X × X is called a coupled fixed point of a mapping
F : X ×X → X if F(x, y) = x and F(y, x) = y.



Discrete Dynamics in Nature and Society 3

Recently, Cho et al. [7] introduced the concept of c-distance on conemetric space (X, d)
which is a generalization of w-distance of Kada et al. [24].

Definition 2.5 (see [7]). Let (X, d) be a cone metric space. Then a function q : X × X → E is
called a c-distance on X if the following are satisfied:

(q1) θ � q(x, y) for all x, y ∈ X;

(q2) q(x, z) � q(x, y) + q(y, z) for all x, y, z ∈ X;

(q3) for any x ∈ X, if there exists u = ux ∈ P such that q(x, yn) � u for each n ≥ 1, then
q(x, y) � uwhenever (yn) is a sequence in X converging to a point y ∈ X;

(q4) for any c ∈ E with θ � c, there exists e ∈ E with 0 ≤ e such that q(z, x) � e and
q(z, y) � c imply d(x, y) � c.

Cho et al. [7] noticed the following important remark in the concept of c-distance on
cone metric spaces.

Remark 2.6 (see [7]). Let q be a c-distance on a cone metric space (X, d). Then

(1) q(x, y) = q(y, x) does not necessarily hold for all x, y ∈ X,

(2) q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

The following lemma is crucial in proving our results.

Lemma 2.7 (see [7]). Let (X, d) be a cone metric space, and let q be a c-distance on X. Let (xn) and
(yn) be sequences in X and x, y, z ∈ X. Suppose that (un) is a sequence in P converging to θ. Then
the following hold:

(1) if q(xn, y) � un and q(xn, z) � un, then y = z;

(2) if q(xn, yn) � un and q(xn, z) � un, then (yn) converges to a point z ∈ X;

(3) if q(xn, xm) � un for each m > n, then (xn) is a Cauchy sequence in X;

(4) If q(y, xn) � un, then (xn) is a Cauchy sequence in X.

3. Main Results

In this section, we prove some coupled fixed point theorems by using c-distance in partially
ordered cone metric spaces.

Theorem 3.1. Let (X,�) be a partially ordered set, and suppose that (X, d) is a complete cone metric
space. Let q be a c-distance on X, and let F : X ×X → X be a continuous function having the mixed
monotone property such that

q
(
F
(
x, y

)
, F

(
x∗, y∗)) � k

2
(
q(x, x∗) + q

(
y, y∗)) (3.1)

for some k ∈ [0, 1) and all x, y, x∗, y∗ ∈ X with (x � x∗) ∧ (y � y∗) or (x � x∗) ∧ (y � y∗). If there
exist x0, y0 ∈ X such that x0 � F(x0, y0) and F(y0, x0) � y0, then F has a coupled fixed point (u, v).
Moreover, one has q(v, v) = θ and q(u, u) = θ.
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Proof. Let x0, y0 ∈ X be such that x0 � F(x0, y0) and F(y0, x0) � y0. Let x1 = F(x0, y0) and
y1 = F(y0, x0). Since F has the mixed monotone property, we have x0 � x1 and y1 � y0.
Continuing this process, we can construct two sequences (xn) and (yn) in X such that

xn = F
(
xn−1, yn−1

) � xn+1 = F
(
xn, yn

)
,

yn+1 = F
(
yn, xn

) � yn = F
(
yn−1, xn−1

)
.

(3.2)

Let n ∈ N. Now, by (3.1), we have

q(xn, xn+1) = q
(
F
(
xn−1, yn−1

)
, F

(
xn, yn

))

� k

2
(
q(xn−1, xn) + q

(
yn−1, yn

))
,

q(xn+1, xn) = q
(
F
(
xn, yn

)
, F

(
xn−1, yn−1

))

� k

2
(
q(xn, xn−1) + q

(
yn, yn−1

))
.

(3.3)

From (3.3), it follows that

q(xn, xn+1) + q(xn+1, xn) � k

2
(
q(xn−1, xn) + q

(
yn−1, yn

)
+ q(xn, xn−1) + q

(
yn, yn−1

))
. (3.4)

Similarly, we have

q
(
yn, yn+1

)
+ q

(
yn+1, yn

) � k

2
(
q(xn−1, xn) + q

(
yn−1, yn

)
+ q(xn, xn−1) + q

(
yn, yn−1

))
. (3.5)

Thus it follows from (3.4) and (3.5) that

q(xn, xn+1) + q(xn+1, xn) + q
(
yn, yn+1

)
+ q

(
yn+1, yn

)

� k
(
q(xn−1, xn) + q

(
yn−1, yn

)
+ q(xn, xn−1) + q

(
yn, yn−1

))
.

(3.6)

Repeating (3.6) n-times, we get

q(xn, xn+1) + q(xn+1, xn) + q
(
yn, yn+1

)
+ d

(
yn+1, yn

)

� kn(q(x1, x0) + q
(
y1, y0

)
+ q(x0, x1) + q

(
y0, y1

))
.

(3.7)

Thus we have

q(xn, xn+1) � kn(q(x1, x0) + q
(
y1, y0

)
+ q(x0, x1) + q

(
y0, y1

))
,

q
(
yn, yn+1

) � kn(q(x1, x0) + q
(
y1, y0

)
+ q(x0, x1) + q

(
y0, y1

))
.

(3.8)
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Let m,n ∈ N withm > n. Since

q(xn, xm) �
m−1∑

i=n

q(xi, xi+1),

q
(
yn, ym

) �
m−1∑

i=n

q
(
yi, yi+1

)
,

(3.9)

and k < 1, we have

q(xn, xm) � kn

1 − k

(
q(x1, x0) + q

(
y1, y0

)
+ q(x0, x1) + q

(
y0, y1

))
,

q
(
yn, ym

) � kn

1 − k

(
q(x1, x0) + q

(
y1, y0

)
+ q(x0, x1) + q

(
y0, y1

))
.

(3.10)

From Lemma 2.7 (3), it follows that (xn) and (yn) are Cauchy sequences in (X, d). Since X is
complete, there exist u, v ∈ X such that xn → u and yn → v. Since F is continuous, we have

xn+1 = F
(
xn, yn

) −→ F(u, v),

yn+1 = F
(
yn, xn

) −→ F(v, u).
(3.11)

By the uniqueness of the limits, we get u = f(u, v) and v = F(v, u). Thus (u, v) is a coupled
fixed point of F.

Moreover, by (3.1), we have

q(u, u) = q(F(u, v), F(u, v)) � k

2
(
q(u, u) + q(v, v)

)
,

q(v, v) = q(F(v, u), F(v, u)) � k

2
(
q(v, v) + q(u, u)

)
.

(3.12)

Therefore, we get

q(u, u) + q(v, v) � k
(
q(v, v) + q(u, u)

)
. (3.13)

Since k < 1, we conclude that q(u, u) + q(v, v) = θ, and hence q(u, u) = θ and q(v, v) = θ. This
completes the proof.

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, suppose that any two elements x and y
in X are comparable. Then the coupled fixed point has the form (u, u), where u ∈ X.

Proof. As in the proof of Theorem 3.1, there exists a coupled fixed point (u, v) ∈ X × X. Here
u = F(u, v) and v = F(v, u). By the additional assumption and (3.1), we have

q(u, v) = q(F(u, v), F(v, u)) � k

2
(
q(u, v) + q(v, u)

)
,

q(v, u) = q(F(v, u), F(u, v)) � k

2
(
q(v, u) + q(u, v)

)
.

(3.14)
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Thus we have

q(u, v) + q(v, u) � k
(
q(v, u) + q(u, v)

)
. (3.15)

Since k < 1, we get q(u, v) + q(v, u) = θ. Hence q(u, v) = θ and q(v, u) = θ. Let un = θ and
xn = u. Then

q(xn, u) � un,

q(xn, v) � un.
(3.16)

From Lemma 2.7 (1), we have u = v. Hence the coupled fixed point of F has the form (u, u).
This completes the proof.

Theorem 3.3. Let (X,�) be a partially ordered set, and suppose that (X, d) is a complete cone metric
space. Let q be a c-distance on X, and let F : X × X → X be a function having the mixed monotone
property such that

q
(
F
(
x, y

)
, F

(
x∗, y∗)) � k

4
(
q(x, x∗) + q

(
y, y∗)) (3.17)

for some k ∈ (0, 1) and all x, y, x∗, y∗ ∈ X with (x � x∗) ∧ (y � y∗) or (x � x∗) ∧ (y � y∗). Also,
suppose that X has the following properties:

(a) if (xn) is a nondecreasing sequence in X with xn → x, then xn � x for all n ≥ 1;

(b) if (xn) is a nonincreasing sequence in X with xn → x, then x � xn for all n ≥ 1.

Assume there exist x0, y0 ∈ X such that x0 � F(x0, y0) and F(y0, x0) � y0. If y0 � x0, then F has a
coupled fixed point.

Proof. As in the proof of Theorem 3.1, we can construct two Cauchy sequences (xn) and (yn)
in X such that

x0 � x1 � · · · � xn � · · · ,
y0 � y1 � · · ·yn � · · · .

(3.18)

Moreover, we have that (xn) converges to a point u ∈ X and (yn) converges to v ∈ X,

q(xn, xm) � kn

1 − k

(
q(x1, x0) + q

(
y1, y0

)
+ q(x0, x1) + q

(
y0, y1

))
,

q
(
yn, ym

) � kn

1 − k

(
q(x1, x0) + q

(
y1, y0

)
+ q(x0, x1) + q

(
y0, y1

))
(3.19)
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for each n > m ≥ 1. By (q3), we have

q(xn, u) � kn

1 − k

(
q(x1, x0) + q

(
y1, y0

)
+ q(x0, x1) + q

(
y0, y1

))
,

q
(
yn, v

) � kn

1 − k

(
q(x1, x0) + q

(
y1, y0

)
+ q(x0, x1) + q

(
y0, y1

))
,

(3.20)

and so

q(xn, u) + q
(
yn, v

) � 2kn

1 − k

(
q(x1, x0) + q

(
y1, y0

)
+ q(x0, x1) + q

(
y0, y1

))
. (3.21)

By the properties (a) and (b), we have

v � yn � y0 � x0 � xn � u. (3.22)

By (3.17), we have

q(xn, F(u, v)) = q
(
F
(
xn−1, yn−1

)
, F(u, v)

)

� k

4
(
q(xn−1, u) + q

(
yn−1, v

))
,

q
(
yn, F(v, u)

)
= q

(
F
(
yn−1, xn−1

)
, F(v, u)

)

� k

4
(
q
(
yn−1, v

)
+ q(xn−1, u)

)
.

(3.23)

Thus we have

q(xn, F(u, v)) + q
(
yn, F(v, u)

) � k

2
(
q(xn−1, u) + q

(
yn−1, v

))
. (3.24)

By (3.21), we get

q(xn, F(u, v)) + q
(
yn, F(v, u)

) � k

2
· 2k

n−1

1 − k

(
q(x1, x0) + q

(
y1, y0

)
+ q(x0, x1) + q

(
y0, y1

))

=
kn

1 − k

(
q(x1, x0) + q

(
y1, y0

)
+ q(x0, x1) + q

(
y0, y1

))
.

(3.25)

Therefore, we have

q(xn, F(u, v)) � kn

1 − k

(
q(x1, x0) + q

(
y1, y0

)
+ q(x0, x1) + q

(
y0, y1

))
,

q
(
yn, F(v, u)

) � kn

1 − k

(
q(x1, x0) + q

(
y1, y0

)
+ q(x0, x1) + q

(
y0, y1

))
.

(3.26)
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By using (3.20) and (3.26), Lemma 2.7 (1) shows that u = F(u, v) and v = F(v, u). Therefore,
(u, v) is a coupled fixed point of F. This completes the proof.

Example 3.4. Let E = C1
R[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞ and P = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1]}.

LetX = [0,+∞) (with usual order), and let d : X ×X → E be defined by d(x, y)(t) = |x−y|et.
Then (X, d) is an ordered cone metric space (see [7, Example 2.9]). Further, let q : X ×X → E
be defined by q(x, y)(t) = yet. It is easy to check that q is a c-distance. Consider now the
function F : X ×X → X defined by

F
(
x, y

)
=

⎧
⎨

⎩

1
8
(
x − y

)
, x ≥ y,

0, x < y.
(3.27)

Then it is easy to see that

q
(
F
(
x, y

)
, F(u, v)

) � 1
6
(
q(x, u) + q

(
y, v

))
(3.28)

for all x, y, u, v ∈ X with (x ≤ u) ∧ (y ≥ v) or (x ≥ u) ∧ (y ≤ v). Note that 0 ≤ F(0, 1) and
1 ≥ F(1, 0). Thus, by Theorem 3.1, it follows that F has a coupled fixed point in E. Here (0, 0)
is a coupled fixed point of F.
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