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By using the theory of calculus on time scales and M-matrix theory, the unique existence theorem
of solution of almost periodic differential equations on almost periodic time scales is established.
The result can be used to a large of dynamic systems.

1. Introduction

It is well known that in Celestial mechanics, almost periodic solutions and stable solutions to
differential equations or difference equations are intimately related. In the same way, stable
electronic circuits, ecological systems, neural networks, and so on exhibit almost periodic
behavior. A vast amount of researches have been directed toward studying these phenomena,
we refer the readers to [1–5] and the references therein.

Also, the theory of calculus on time scales (see [6] and references cited therein)was ini-
tiated by Stefan Hilger in his Ph.D. thesis in 1988 [7] in order to unify continuous and discrete
analysis, and it has a tremendous potential for applications and has received much attention
since his foundational work (see, e.g., [8–12]). Therefore, it is practicable to study that on time
scales which can unify the continuous and discrete situations.

Recently, the conceptions of almost periodic time scales and almost periodic functions
on almost periodic time scales have been established, one can see [8]. Consider the following
almost periodic system:

xΔ(t) = A(t)x(t) + f(t), t ∈ T, (1.1)
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where T is an almost periodic time scale,A(t) is an almost periodic matrix function, f(t) is an
almost periodic vector function. The authors in [8] only proved the existence of almost peri-
odic solution for system (1.1) (see Lemma 2.13 in [8]), but the uniqueness has not been con-
sidered. However, the unique existence theorem of solution usually plays an important role
in applications, so, the theories need to be explored.

The main purpose of this paper is by using the theory of calculus on time scales and
M-matrix theory to establish the unique existence theorem of solution of system (1.1).

2. Preliminaries

The basic theories of calculus on time scales, one can see [6]. In order to obtain the unique
existence theorem of solution of system (1.1), we first make the following preparations.

Lemma 2.1 (see [6]). Let g : T × R → R be a function with

g(t, x1) ≤ g(t, x2), ∀t ∈ T, x1 ≤ x2. (2.1)

Let υ,ω : T → R be differentiable with

υΔ(t) ≤ g(t, υ(t)), ωΔ(t) ≥ g(t, ω(t)), ∀t ∈ (t0,+∞)
T
. (2.2)

Then,

υ(t0) < ω(t0), t0 ∈ T, (2.3)

implies

υ(t) < ω(t), ∀t ∈ (t0,+∞)
T
. (2.4)

Theorem 2.2. If the following conditions satisfy:

(1)

D+xΔ
i (t) ≤

n∑

j=1

aijxj(t) +
n∑

j=1

bijxj(t), t ∈ [t0,+∞)
T
, i, j = 1, 2, . . . , n, (2.5)

where aij ≥ 0 (i /= j), bij ≥ 0,
∑n

i=1 xi(t0) > 0, xi(t) = sups∈[t−τ0,t]T

xi(s), and τ0 > 0 is a
constant;

(2) M̃ := −(aij + bij)n×n is an M-matrix;

then there exists constants γi > 0 and a > 0, such that the solutions of inequality (1) satisfy

xi(t) ≤ γi

⎛

⎝
n∑

j=1

xj(t0)

⎞

⎠e�a(t, t0), ∀t ∈ (t0,+∞)
T
, i = 1, 2, . . . , n. (2.6)
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Proof. Assume that

G(t, x(t), x(t)) =
(
g1(t, x(t), x(t)), g2(t, x(t), x(t)), . . . , gn(t, x(t), x(t))

)
, (2.7)

where

gi(t, x(t), x(t)) =

⎛

⎝
n∑

j=1

aijxi(t) +
n∑

j=1

bijxi(t)

⎞

⎠, i = 1, 2, . . . , n. (2.8)

By condition (1), then

D+xΔ
i (t) ≤ gi(t, x(t), x(t)), ∀t ∈ [t0,+∞)

T
, i = 1, 2, . . . , n. (2.9)

By condition (2), there exist constants ξ > 0 and di > 0 (i = 1, 2, . . . , n) such that

n∑

j=1

(
aij + bij

)
di < −ξ, i = 1, 2, . . . , n. (2.10)

Choose 0 < a 	 1, such that

adi +
n∑

j=1

(
aijdi + bijdiea(t, t − τ0)

)
< 0, ∀t ∈ [t0,+∞)

T
, i = 1, 2, . . . , n. (2.11)

If t ∈ [t0 − τ0, t0]T
, choose F 
 1, such that

Fdie�a(t, t0) > 1, i = 1, 2, . . . , n. (2.12)

For any ε > 0, let

qi(t) = Fdi

⎛

⎝
n∑

j=1

xj(t0) + ε

⎞

⎠e�a(t, t0), i = 1, 2, . . . , n. (2.13)

From (2.11), for any t ∈ [t0,+∞)
T
, we have

D+qΔi (t) = (�a)Fdi

⎛

⎝
n∑

j=1

xj(t0) + ε

⎞

⎠e�a(t, t0)

≥ −aFdi

⎛

⎝
n∑

j=1

xj(t0) + ε

⎞

⎠e�a(t, t0)

>
n∑

j=1

(
aijdi + bijdiea(t, t − τ0)

)
F

⎛

⎝
n∑

j=1

xj(t0) + ε

⎞

⎠e�a(t, t0)
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=
n∑

j=1

aijdiF

⎛

⎝
n∑

j=1

xj(t0) + ε

⎞

⎠e�a(t, t0)

+
n∑

j=1

bijdiF

⎛

⎝
n∑

j=1

xj(t0) + ε

⎞

⎠e�a(t − τ0, t0)

≥
n∑

j=1

aijqi(t) +
n∑

j=1

bijqi(t)

= gi
(
t, q(t), q(t)

)
, i = 1, 2, . . . , n,

(2.14)

that is,

D+qΔi (t) > gi
(
t, q(t), q(t)

)
, ∀t ∈ [t0,+∞)

T
, i = 1, 2, . . . , n. (2.15)

For t ∈ [t0 − τ0, t0]T
, by (2.12), we can get

qi(t) = Fdi

⎛

⎝
n∑

j=1

xj(t0) + ε

⎞

⎠e�a(t, t0) >
n∑

j=1

xj(t0) + ε, i = 1, 2, . . . , n. (2.16)

Let xi(t) ≤
∑n

j=1 xj(t0) + ε, t ∈ [t0 − τ0, t0]T
, then

qi(t0) > xi(t0), i = 1, 2, . . . , n. (2.17)

Together with (2.9), (2.15), and (2.17), by Lemma 2.1, we can get

xi(t) < qi(t) = Fdi

⎛

⎝
n∑

j=1

xj(t0) + ε

⎞

⎠e�a(t, t0), ∀t ∈ (t0,+∞)
T
, i = 1, 2, . . . , n. (2.18)

Let ε → 0+, Fdi = γi, then

xi(t) ≤ γi

⎛

⎝
n∑

j=1

xj(t0)

⎞

⎠e�a(t, t0), ∀t ∈ (t0,+∞)
T
, i = 1, 2, . . . , n. (2.19)

The proof is completed.

Definition 2.3. The almost periodic solution x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)

T of (1.1) is said to be exponen-
tially stable, if there exists a positive α such that for any δ ∈ [t0 − τ0, t0]T

, τ0 > 0, there exists
N = N(δ) ≥ 1 such that for any solution x = (x1, x2, . . . , xn)

T satisfying

‖x − x∗‖ ≤ N
∥∥φ − x∗∥∥e�α(t, δ), t ∈ [t0,+∞)

T
, (2.20)

where φ(s), s ∈ [t0 − τ0, t0]T
, is the initial condition.
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3. Unique Existence Theorem

In this section, we will establish the unique existence theorem of solution of system (1.1)
based on the theory of calculus on time scales and M-matrix theory. The conceptions of
almost periodic time scales and almost periodic functions on almost periodic time scales,
one can see [8].

Definition 3.1 (see [8]). Let x ∈ R
n, and let A(t) be an n × n rd-continuous matrix on T, the

linear system

xΔ(t) = A(t)x(t), t ∈ T, (3.1)

is said to admit an exponential dichotomy on T if there exist positive constants k, α, projection
P , and the fundamental solution matrix X(t) of (3.1), satisfying

∣∣∣X(t)PX−1(σ(s))
∣∣∣
0
≤ ke�α(t, σ(s)), s, t ∈ T, t ≥ σ(s),

∣∣∣X(t)(I − P)X−1(σ(s))
∣∣∣
0
≤ ke�α(σ(s), t), s, t ∈ T, t ≤ σ(s),

(3.2)

where | · |0 is a matrix norm on T.

Lemma 3.2 (see [8]). If the linear system (3.1) admits exponential dichotomy, then system (1.1) has
a bounded solution x(t) as follows:

x(t) =
∫ t

−∞
X(t)PX−1(σ(s))f(s)Δs −

∫+∞

t

X(t)(I − P)X−1(σ(s))f(s)Δs, (3.3)

where X(t) is the fundamental solution matrix of (3.1).

Let A(t) = (aij(t))n×n, A = (sup(aij(t)))n×n, 1 ≤ i, j ≤ n, t ∈ T.

Lemma 3.3. Assume that the conditions of Lemma 3.2 hold, if −A is an M-matrix, then the almost
periodic solution of system (1.1) is globally exponentially stable and unique.

Proof. According to Lemma 3.2, we know that (1.1) has an almost periodic solution x∗ = (x∗
1,

x∗
2, . . . , x

∗
n)

T . Suppose that x = (x1, x2, . . . , xn)
T be an arbitrary solution of (1.1). Then, system

(1.1) can be written as

(x(t) − x∗(t))Δ = A(t)x(t) −A(t)x∗(t). (3.4)

Assume that the initial condition of (1.1) is φ(s) = (φ1(s), . . . , φn(s))
T , s ∈ [t0 − τ0, t0]T

,

τ0 > 0, then the initial condition of (3.4) is φ̂(s) = φ(s) − x∗(s), s ∈ [t0 − τ0, t0]T
.

Let V (t) = |x(t)− x∗(t)|, the upper right derivativeD+VΔ(t) along the solutions of sys-
tem (3.4) is as follows:

D+VΔ(t) = sgn(x(t) − x∗(t))(x(t) − x∗(t))Δ ≤ AV (t) + 0V (t), (3.5)

where 0 is an n × n-matrix with all its elements are zeros.
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Since −(A + 0) = −A is an M-matrix, according to Theorem 2.2, then there exist cons-
tants α > 0, γ0 > 0, for any δ ∈ [t0 − τ0, t0]T

,

∣∣xi(t) − x∗
i (t)

∣∣ ≤ γ0

[
sup

δ∈[t0−τ0,t0]T

∣∣φi(δ) − x∗
i (δ)

∣∣
]
e�α(t, t0)

≤ γ0
e�α(t0, δ)

[
sup

δ∈[t0−τ0,t0]T

∣∣φi(δ) − x∗
i (δ)

∣∣
]
e�α(t, δ),

(3.6)

where t ∈ [t0,+∞)
T
, i = 1, 2, . . . , n.

Then, there exists a positive number η > e�α(t0, δ)/γ0, such that

‖x − x∗‖ ≤ N
∥∥φ − x∗∥∥e�α(t, δ), t ∈ [t0,+∞)

T
, (3.7)

where N = N(δ) = ηγ0/e�α(t0, δ) > 1, ‖x‖ = max1≤i≤nsupt∈[t0,+∞)
T

|xi(t)|.
FromDefinition 2.3, the almost periodic solution x∗ = (x∗

1, x
∗
2, . . . , x

∗
n)

T is globally expo-
nentially stable. Thus, the almost periodic solution of system (1.1) is globally exponentially
stable.

In (3.7), let t → +∞, then e�α(t, δ) → 0, so, we can get x = x∗. Hence, the almost perio-
dic system (1.1) has a unique almost periodic solution. The proof is completed.

Together with Lemmas 3.2 and 3.3, we can get the following theorem.

Theorem 3.4. If the linear system (3.1) admits an exponential dichotomy, −A is an M-matrix, then
system (1.1) has a unique almost periodic solution x(t), and

x(t) =
∫ t

−∞
X(t)PX−1(σ(s))f(s)Δs −

∫+∞

t

X(t)(I − P)X−1(σ(s))f(s)Δs, (3.8)

where X(t) is the fundamental solution matrix of (3.1).

Lemma 3.5 (see [8]). Let ci(t) be an almost periodic function on T, where ci(t) > 0, −ci(t) ∈ R+, for
all t ∈ T, and

min
1≤i≤n

{
inf
t∈T

ci(t)
}

= m̃ > 0, (3.9)

then the linear system

xΔ(t) = diag(−c1(t),−c2(t), . . . ,−cn(t))x(t) (3.10)

admits an exponential dichotomy on T.
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Corollary 3.6. In system (1.1), if A(t) = diag(−a11(t),−a22(t), . . . ,−ann(t)), t ∈ T, and min1≤i≤n
{inft∈Taii(t)} = â > 0, then system (1.1) has a unique almost periodic solution x(t), and

x(t) =
∫ t

−∞
X(t)PX−1(σ(s))f(s)Δs −

∫+∞

t

X(t)(I − P)X−1(σ(s))f(s)Δs, (3.11)

where X(t) is the fundamental solution matrix of (3.1).

Proof. Obviously, −A is an M-matrix, since A(t) = diag(−a11(t),−a22(t), . . . ,−ann(t)), t ∈ T,
and min1≤i≤n{inft∈T aii(t)} = â > 0. By Lemma 3.5, the linear system (3.1) admits an expo-
nential dichotomy. According to Theorem 3.4, it is easy to see that the almost periodic system
(1.1) has exactly one almost periodic solution. The proof is completed.

Remark 3.7. As an application, consider system (1.1) in paper [8], by using fixed-point theo-
rem, the authors in [8] proved (1.1) has a unique almost periodic solution, one can see
Theorem 3.2 in [8] for more detail. However, from the proof of Theorem 3.2 in paper [8], one
can see that (3.5) is a solution of system (3.4), but the uniqueness cannot be determined, so,
the proof of Theorem 3.2 in paper [8] is questionable. Our results obtained in this paper can
solve the problem. By Corollary 3.6, one can get system (3.4) has exactly one solution as (3.5)
in [8], then by the same method in [8], under the conditions of Theorem 3.2, system (1.1) has
a unique almost periodic solution. Also, the results can be used to other neural networks.
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