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A predator-prey system with disease in the predator is investigated, where the discrete delay 7 is
regarded as a parameter. Its dynamics are studied in terms of local analysis and Hopf bifurcation
analysis. By analyzing the associated characteristic equation, it is found that Hopf bifurcation
occurs when 7 crosses some critical values. Using the normal form theory and center manifold
argument, the explicit formulae which determine the stability, direction, and other properties of
bifurcating periodic solutions are derived.

1. Introduction

Many models in ecology can be formulated as system of differential equations with time
delays. The effect of the past history on the stability of system is also an important problem
in population biology. Recently, the properties of periodic solutions arising from the Hopf
bifurcation have been considered by many authors [1-4].

May [5] first proposed and discussed the delayed predator-prey system

dx
dt

% = y(O)[-r2 + any(t) - any ()],

= x(t)[r1 — anx(t— 1) — any ()],
(1.1)

where x(t) and y(t) can be interpreted as the population densities of prey and predator at
time ¢, respectively; 7 > 0 is the feedback time delay of the prey to the growth of the species
itself; 7, > 0 denotes the intrinsic growth rate of the prey, and r, > 0 denotes the death rate of
the predator; the parameter a;;(i, j = 1,2) are all positive constants. System (1,1) shows that,
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in the absence of predator species, the prey species are governed by the well-known delayed
logistic equation dx/dt = x(t)[r1 — aj1x(t — T)] and the predator species will decrease in the
absence of the prey species.There has been an extensive literature dealing with system (1,1) or
the system similar to (1.1), regarding boundedness of solutions, persistence, local and global
stabilities of equilibria, and existence of nonconstant periodic solutions [6-9].

Recently, Faria [7] investigated the stability and Hopf bifurcation of the following
system with instantaneous feedback control and two different discrete delays:

% = x(t) [n —anx(t) —anpy(t - Tl)]
(1.2)
% = y(t) [—rz +anx(t—m) - azzy(t)],

where 71 > 0 and 7 > 0. But, as pointed out by Kuang [8], in view of the fact that in real
situations, instantaneous responses are rare, and thus, more realistic models should consist
of delay differential equations without instantaneous feedbacks. Based on this idea, in the
present paper, we combine the model (1.1) and (1.2) and consider the following delayed
prey-predator system with a single delay:

6;—1( =X(t) [ —-nX({t-T1)-pSt-1)]
% = S(t)[~c1 + kpX(t —T) — oI(t)] + yI(t) (1.3)
dI
= =1O[oSth) —ca-v],

where X, S, I denote, respectively, the population of prey species, susceptible predator
species and infected predator species. In addition, the coefficients r1, 72, p, k, o, c1, ¢ in
model (1.3) are all positive constants and their ecological meaning are interpreted as follows:
r1 denotes the intrinsic growth rate of prey and r;/r, denotes the carrying capacity of prey;
p, k, c1 and ¢, represent the predating coefficient of predator to prey, absorbing rate of
predator to prey, and the death rate of susceptible and infected predator, respectively.

The main purpose of this paper is to investigate the effects of the delay on the
dynamics of model (1.3) with the following initial conditions:

X(t) =¢1(t) >0, S(t) = ¢ao(t) >0, I(t) = ¢3(t) >0, te[-1,0]

(1.4)
(1(0),¢2(1), §2(1)) € C([-r, 01, %),

where 2R8/+ = {(x,y,2) | x 20,y > 0,z > 0}. We will take the delay 7 as the bifurcation
parameter and show that when 7 passes through a certain critical value, the positive
equilibrium loses its stability and a Hopf bifurcation will take place. Furthermore, when 7
takes a sequence of critical values containing the above critical value, the positive equilibrium
of system (1.3) will undergo a Hopf bifurcation. In particular, by using the normal form
theory and the center manifold, the formulae determining the direction of Hopf bifurcation
and the stability of bifurcating periodic solutions are also obtained.
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The organization of this paper is as follows. In Section 2, we discuss the stability of the
positive solutions and the existence of the Hopf bifurcations. In Section 3, the direction of the
Hopf bifurcation and the stability of bifurcated periodic solutions are obtained by using the
normal form theory and the center manifold theorem. In Section 4, we do some numerical
simulations to validate our theoretical results.

2. Stability of Positive Equilibrium and Hopf Bifurcation

System (1.3) has a unique positive equilibrium E*(X*, S*, I*) provided that the condition
(Hy) or1 > (c2 + y)p, kplori —p(c2 +y)] > oair

is satisfied, where

_on -p(ca+ y), P +y = (o) kplori —p(c2 +7)] - ocira

X* ,
o1 o 02ry(c2 +2y)
(2.1)
Linearizing system (1.2) at E* gives the following linear system:
d
d—lf =-nX'U{t-17)-pX*'V(t-T1)
dV * * * *
=5 = kpS*U(t-71) - (c1 + oI* = kpX*)V(t) - (65" - y)W (2.2)
aw .
7 =ol"V.
The characteristic matrix of this system (2.2) is
L+ rXre™T pX*e‘“ 0
—kpS*e™™ A+ (c1+ol* —kpX*) oS -7 ). (2.3)
0 -ol* A

Thus, the characteristic equation of system (2.2) is given by
M+ (1 +ol* — kpX*)\2 + (O'ZS*I* - 0}/1*)1 + 1 X e A% + (¢ + oI* - kpX*))erX*e‘)”
+ <025*I* - oyI*)mX*e*)‘T +kp*S*X*Ae 7 = 0.
(2.4)
Let
di = c1 +oI* —kpX*, d, = 0*S*'I* - oy I, dz = nX*, dy = (c1 + oI" — kpX* ) X",

ds = <0'25*1* - oyI*)er*, de = kpzS*X*.
(2.5)
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Then we rewrite (2.4) as:
(ﬁ+mﬁ+@@dﬁ@gﬁ4m+@+%mmea (2.6)
Obviously, iw(w > 0) is a root of (2.6) if and only if w satisfies

(—iw3 —diw? + dziw) (cos wT + isinwT) — dsw? + dyiw + ds + dgiw(cos wt — isinwT) = 0.

(2.7)
Separating the real and imaginary parts, we have
—diw? cos wT + <w3 —dyw + d6w> sinwrt = d3w? — ds
(2.8)
<—w3 + dow + d6w> cos wT — diw? sin wt = —dyw.
By calculating, we have obtained
Sinwr = d3w5 + (d1d4 - d2d3 - d3d6 - d5)w3 + (d2d5 + d5d6)w
wb + (df = 2dy)w* + (d5 — d2) w? 9
(d4 - dldg)w4 + (d1d5 + d4d6 - d2d4)w2 ‘
COS WT = .

Wb + (df = 2dy)wt + (d - d2)w?

Let el = d%—Zdz, ey = d%—dé, e3 = d3, ey = d1d4—d2d3—d3d6—d5, e5 = d2d5+d5d6, €6 = d4—d1d3,
ey = dids + dydg — dody. Then sin wT, cos wT can be written as

w(esw* + ey + e5)

sinwTt = 5 I > (2.10)
w® + ejw* + ew
eew* + eyw?
COSWT = — 1 7 (2.11)
w® + e1w* + erw
As sin*wT + cos?wT = 1, so we have
W'+ frw® + fru° + faw* + faw® + f5 =0, (2.12)

_ 2 £ _ 2 2 £ _ 2 f _ 2 2
where f1 = 2e1 —e3, f» = e] +2ex—2e3es —e;, f3 = 2e1ex —2ezes —2ese7 — €5, fu = e5—2eses —e3,

f5 =63
Denote z = w?, then (2.12) becomes

25 + f124 + f223 + f322 + f4Z + f5 =0. (213)



Discrete Dynamics in Nature and Society 5

Let
G(z) =2° + fiz' + o2° + f32° + faz + f5. (2.14)
Since lim; _, vG(z) = +o0 and f5 < 0, then we can get the following conclusion.

(Hy) Equation (2.13) has at least one positive real root.

Without loss of generality, we assume that it has five positive roots, defined by z1, z»,
z3, 24, z5, respectively. Then (2.13) has five positive roots

wlzﬁ, WQZﬁ, w3:ﬁ, W4=ﬁ, w5:\/5. (215)

By (2.11), we have

2
esw; + ey

COS Wi T = ﬁ. (2.16)

w + erwy + en

Thus, if we denote
¢»_ 1 eowi + €, .

T, = —jarccos( ———————— ) +2jr ¢, (2.17)

wi wy +e1wi + e

wherek =1,...,5, j=0,1,..., then iwy is a pair of purely imaginary roots of (2.6) with Igj).

Define

_ 0 _ : (0) —
To=Ty, = ker{rll,l.?S}{Tk }r Wo = Wi - (2.18)

Note that when 7 = 0, (2.6) becomes

B+bA?+(a+d)L+c=0. (2.19)

By Routh-Hurwitz criterion, we know that all the roots of (2.19) have negative real parts, that
is, the positive equilibrium E* is locally asymptotically stable for 7 = 0.
In order to give the main results, it is necessary to make the following assumption:

(Hs) [d(Red)/dT],_q, #0.



6 Discrete Dynamics in Nature and Society

Differentiating two sides of (2.6) in respect to 7, we get

<dA>_1 3 (312 +2d1\ + dz)t)e“ + T()L3 + dl)LZ + dz)t)ejw +2d3A +dy + d667AT — d@)ﬂ'efl‘r
dr - AN+ diA? + dz)t)e“ + dg\2e\7

B (3./\2 +2d1A + dg.)t)e’h +2d3\ +dy + dﬁe‘“ T
B —X(A3 + di A2 + dod)e + dgA2e 7 A

B (3)L2 +2d1 A + dz)t)eh +2d3A +dy + d6€7)n- T

dg)t?’ + d4)L2 + d5)t + Zdé)tze_’h- A

(-3w? + dy + dg) cos wT — 2dyw sinwT + d4

 (—daw? - 2dgw? cos wt) + i(—dsw’ + dsw + 2dgw? sin wt)

[(-3w? + dy — dg) sinwT + 2diw cos wt + 2d3w)]

(~dyw? — 2dgw? cos wt) + i(—dsw? + dsw + 2dgw? sin wt)

(2.20)
Let
2 2
Q= <—d4w2 — 2dew? cos w7> + (—d3w3 + dsw + 2dgw? sin wr) >0 (2.21)
A\
= [(—3w2 +dp + d(,> Ccos wT — 2dw sin wt + d4] [—d4w2 — 2dew? cos wT]
+ [(—3w2 +dy — d6> sin wt + 2djw cos wt + 2d3w] [—d3w3 + dsw + 2dew? sin wT].
(2.22)
Noting that
d(Re \) - di\ 7!
n [ i ]T_TU =sgn [Re <d_7'> . (2.23)
T=T)

Now, we can employ a result from Ruan and Wei [10] to analyze (2.6), which is, for the con-
venience of the reader, stated as follows.

Lemma 2.1 (see [2]). Consider the exponential polynomial

P()L, e, ..., e‘“”‘) ="+ pgo))ﬁ‘_l +oeo 4 pfl(l)l)u + pflo) + [pﬁl))cn_l +ot pflljl)t + pf,l) e i
4+ oo+ [pim)kn—l + .04 psili)t + p'(,lm)]e—)t’l'm,

(2.24)
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where 7, > 0 = 1,2,...,m) and p;i) (i =12...,mj = 1,2,...,m) are constants. As
(11,72, ..., Tm) vary, the sum of the order of the zeros of P(\, e m, ..., e ™) on the open right half
plane can change only if a zero appears on or crosses the imaginary axis.

Form Lemma 2.1, it is easy to obtain the following theorem.

Theorem 2.2. Suppose the condition, (H), (H,), and (Hj3) are satisfied, then one has the following
results:

(i) if T € [0, 79), then the positive equilibrium E* of (1.2) is locally asymptotically stable and
unstable when T > Ty,

(ii) system (1.2) undergoes a Hopf bifurcation at the positive equilibrium E* when T = T (k =
0,1,2,...), where Ty is defined by (2.17).

3. Stability and Direction of Hopf Bifurcation

In this section, we will derive the explicit formulae determining the properties of the Hopf
bifurcation at the critical value using the normal form theory and center manifold theorem
introduced by Hassard et al. [11].

Without loss of generality, let 7 = 7¢ + y, where 7 is defined by (2.17), y € R, then
system (1.3) can be rewritten as

w' () = Ly (u) + f (u, ur), (3.1)

where u(t) = (u1 (), ux(t), us())" = U(rt), V(rt), W ()" € R®, u,(0) = u(t + 6) and L, :
C — R% f:RxC — R®are given, respectively, by

0 0 0 u1¢(0)
L, (u) = (Tk + y) <0 kpX* —c1 —ol* —0S5* + Y> <u2t(0)>

0 ol* 0 uz:(0)
3.2)
-nX* -pX* 0 uy(-1)
+ (Tkc + p) < kpS* 0 0> <u2t(—1)>,
0 0 0/ \usx(-1)
—Tzult(o)ult(—l) - Pult(o)u2t(_1)
flpu) = (1 + ) < kpuot (0)uy(—1) — ouze(0)uz:(0) > (3.3)
oz (0)us (0)

By the Riesz representation theorem, there exists a function #(6, t) of bounded variation for
6 € [-1,0], such that

0
L.($) = L dn(6,u)p(6) for ¢ € ([—1,0],R3). (3.4)
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In fact, we can choose

0 0 0
n(6, 1) = (1 + p) <0 kpX* -c1 - ol* —0S* + y) 6(0)

0 ol* 0
(3.5)
-nX* -pX* 0
- (Tk+‘u)<kp5* 0 O>6(9+1),
0 0 O
where 6 denote the Dirac delta function. For ¢ € C([-1,0], R3), define
WO 0 €[-1,0),
AWe=1
[ anGs.mas, oo, 56)
-1
0, 0 e[-1,0),
R =
) ) { o ot
Then system (3.1) is equivalent to
u'(t) = A(p)ur + R(p)uy. (3.7)
For ¢ € C([0,1], (R®)"), define
e, s€ 1],
A= 0 3.8
f w(-t)dn(t,0), s=0 o)
-1
and a bilinear inner product
0 6
(95.4@) =090 - [ [ Fe-0anop@a (39)

where 7(0) = 7(6,0).

Then A(0) and A* are adjoint operators. By the discussion in Section 2, we know
that +iwyT, are eigenvalues of A(0). Hence, they are also eigenvalues of A*. We first need
to compute the eigenvectors of A(0) and A* corresponding to w7, and —iwyTk, respectively.
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Suppose g(0) = (1,a;, az)" ™ is the eigenvector of A(0) corresponding to iwyTy,
then A(0)q(0) = iwytkq(0). It follows from the definition of A(0) and (3.2), (3.4) and (3.5),
we have

it + 1y X e W0 pX*eiwom 0 0
| —kpX*e ™  jwy—kpX* +c1+ol* 0S* -y Jq0)=( 0 ). (3.10)
0 —-olI* iwy 0

For g(-1) = q(0)e~"™, then we obtain

iwg + ry X*e ot
aq=——
1 p X *e*w)o‘l‘o

4

, 3.11)
oI (iwg + r X*e o™

7= iwo (pX*e~iwom)

On the other hand, suppose that g*(s) = J (1, a}, a5)e™™ is the eigenvector of A* correspond-
ing to —iwoTk, by the similar method, we have

o = —iwy + er*ei“’OTO
1 klj)(*einﬁ)

, (3.12)
—oI* (—iwy + rX*e' ™)

iwy (kpX*eiwom)

*_
(12—

In order to assure (g*(s),q(0)) = 1, we need to determine the value of J. From (3.9), we have
<q*(5)/ 4(9» = 7(1/ ET,E;) (11 ai, a2)T

0 0
B J’ f J(L,a, @) e ™ (&~ 0)dn(0) (1, ar, az)" e ¢dg
-1 §:O

0 (3.13)
= 7{1 +aja; + aa, — .[1 (1,EI,E;)Geionkedq(G)(l, ai, az)T}
= 7{1 +a1a) + aa, + Tk <—r2X* - a1 pX* + kpS*a_’{> e iwok }
Therefore, we can choose | as
J- : 619

—_— —_—k _* i °
1+ aia] + axa, + 7% (—er* - a1 pX* + kpS*a1>e 1o Tk

Next we will compute the coordinate to describe the center manifold Cy at p = 0. Let u; be the
solution of (3.1) with y = 0. Define

z(t) = {q", w), W(t,0) = u;(0) — z(£)q(0) — z(£)g* (0) = u;(6) — 2Re{z(t)q(6)}. (3.15)
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On the center manifold Cy, we have
W(t,0) =W(z(t),z(t),0), (3.16)

where

-2
W(z(t),Z(t),0) = wzo(e)%2 + Wi (0)2Z + Woz(e)% P (3.17)

z and z are local coordinates of center manifold Cy in the direction of g* and g*. Note that W
is real if u; is real. We consider only real solutions. For solution u; € Cy of (3.7), since u = 0,
we have

Z'(t) ={(q",u'(t)) = (q", Auy + Ruy) = (q*, Auy) + (q*, Ruy) = (A*q*,us) + (g%, Ruy)

=iwytkz + G (0)f(0), W(z,Z,0) + 2Re{zq(0)} £ iworiz + 4" (0) fo(z, Z).

(3.18)

We rewrite this equation as
Z'(t) = iwotiz(t) + g(z,2), (3.19)

where
. _ z2 _ Z 22z 3.20
8(z2) =7 (0)fo(z,2) = g5 +gnzZ+gn 7 +gn 7+ (3.20)

Noticing u¢(0) = W(t,0) + zq(0) + zq(0) and q(0) = (1, a1, a)Tei™f we have

_ Z2 _ 2
u(0) =z +Z+ w2%>(0)3 +Ww(0)2z + WSQ(O)7 +oee,
Z2 2
1y (0) = a1z + @z + Wz‘é)(O)7 +W20)zz+ w2 0%+,

2 =2
u3(0) = arz + @Z + W§§>(0)% + W02z + W (0)% T (3.21)

. . 2 _2
up(~1) = e z 4 ginniz 4 W (—1)% + WD (-1)zz+ W) (—1)% boen,

2 =
uy(-1) = e ajz + " @z + Wéé)(—l)% + Wl(f)(—l)zi + Wé?(—l)% e
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It follows together with (3.3), that
8(z,2) = q°(0) fo(z,2) =4 (0) fo(0, uy).

B —1au1 (0)ur(—1) — puys (0)ua (—1)
7 J(1,a7,a3) | kpuo (0)u1r(~=1) — ouz (0)us:(0)
ou (0)ust(0)

=2
_ka{r2[2+z+w§;><o>— w<1><0>zz+Wé?<o>%+---]
* I:e_i“’”kz + e Z + Wz((l))(—l)— Wy (-1)zz + W) (- 1)_ ]
+p [z +z+ WY (0)— + W (0)z2z + w“)(O)— +- ]
. o — — ) z2 (2)
* e gz + e Az + Wy, (—1)? 1 (Dzz+ Wo (= 1)_
- z
+ 1 Ja; {kp [alz +@z+ wéﬁ’(O)— W(Z)(O)zz + (g) (O)E +e ]
N |:€ 1onkZ + elonkz + W(l)( 1)— + W(l)( 1)ZZ + W(l)( 1)_ +- ]
2
-0 [alz iz w05 WOz w05 ]
- 2 2 1
x| @z + @z + wz‘g)(o)7 + W (0)2Z + Wy )5+ }

-2
+Tk]E;{O' amz+ @z + W( )(0)— + W(Z)(O)Zz+ Wéi)(O)% o

-2
*|az+ @z + WS >(0)— + WP (0)2z + ng)(O)% b

L

(3.22)
Comparing the coefficients with (3.20), we have
g0 = 27 ] [—rze"""OTk — pae ™ + Gikpaje ™ - @ioaray + ayoa; az],
Q= TJ{e‘i‘"OTk (-r2 — pay + aikpar) + "™ (1, — pay + arkpai) (3.23)

—E;O’alaz - E;O'El ap + E§oalﬁz + E;O‘El ap },
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p = 273 ] [—12€" ™ — pa "™ + ajkpa, ™
0 1

—doama + a;oalaz],

g1 = T {2 (WP (<1) + Wi (1) + Wi (@)™ + 2w (0)e ™)
~p(2WD (1) + W (-1) + @WL (0)e™ ™ +2a W} (0)e ™)
+a@kp (2 WiY (<1) + Wy (-1) + Wy ()€™ + 2WD (0)e ™ )
~ o (2 WL (0) + @W (0) + BWS (0) + 2a:W,7(0) )

+E§o<2a1Wﬁ’)(0) + W 0) +@mW 0) + 20, W (0))}

(3.24)
Since there are Wy, (0) and Wi1(0) in g1, we need to determine them.
From (3.7) and (3.15), we have
W =u,-2zq9-273
AW - 2Re{q (0) foq(0)} +fo, 0=0
where
z? Z
G(2,%,0) = Gu(0) 5 + G (0)zZ+ Gua(0) 5 + -+ (3.26)

Substituting the corresponding series into (3.25) and comparing the coefficients, we have
(A(0) - 2iwoTiI) W2 (0) = -G20(0),  A(0)W11(0) = -G (6). (3.27)
From (3.20) and (3.25), we have, for 6 € [-1,0)
G(z,%,6) = -7 (0) foq(6) ~ 4" (0)f,4(6) = ~g(2,2)4(6) - (2, 2)§(6). (3.28)
Comparing the coefficients with (3.26), we have

Goo(0) = — §209(0) — g1,9(0), (3.29)
G11(0) = - g119(0) - §,,9(0). (3.30)

From (3.27), (3.29) and the definition of A(0), we have

Wi (6) = 2iconmcWan(6) + £204(6) + 50,7 (6)- (331)
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Notice that g(8) = (1, a1, a;)" ™, hence

. . . . |
Wy (0) = ;‘ii?kq(o)ezwo’rw X ejﬁq(o)e—lwone " EleZmJoTkG,

where E; = (E @ Eiz), E§3))T € R? is a constant vector. Similarly, we obtain

igll iwoTiO i§11 - —iwoTKO
W- = — 0Tk _oll 0Tk E
11(0) = q(0)e + wOqu(O)e + Ey,

13

(3.32)

(3.33)

where E, = (E (1), Eéz), Ef) )T € R®is a constant vector. In the following, we will seek the values

of E; and E;. From the definition of A(0) and (3.27), we have
0
[ dn@Wan(®) =2iemWn(0) - Gao0),
-1
0
[ an@wue) =-cuo),
-1

where 7(0) = 7(0, 0).
By (3.25), when 0 = 0, we have

G(z,%,0) = 2Re{g"(0) foq(0)} + fo

= —7°(0) f0q(0) - 4°(0) £,G(0) + fo = -g(2,2)q(0) - §(2,2)3(0) + fo.

So we obtain

z
2

2 =2 2 =2
G20(0) 5 + G11(0)zz + GOZ(Q)% +---= —q(0) (gzo% +g1zz + goz% + -

2 >
_ _z _ _ _ z
-4(0) <820? T 8nzz+ Sy T

By (3.37), we have

_rze_iw()‘l?k —_ pale_iwo‘rk
G20(0) = — £204(0) — §,9(0) + 27| kpaje™™ —caya, ),

oaiay

—-r2 —pRe{a;}
G11(0) = - g119(0) —5,,9(0) + 27| kpRe{a1} —oRe{miar} ).
O'Re{alﬁz}

)

>+f0.

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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Noticing that

0
<ionkI —’[ ei“’UTkedq(Q))q(O) =0,
-1

(3.40)
0
<—iw0TkI - j eionkedq(9)>ﬁ(0) =0.
1
So, substituting (3.32) and (3.38) into (3.34), we have
0 . —Tze_iWO‘L.-k _ pale—iwo'rk
<2inTkI - j ez“"‘”"edn(e)>E1 =21\ kpaje ™™ —ocaya; . (3.41)
-1 oaiay
That is
ity + 1 X*e W pX*eiwomk 0 —Trye Wk — pgqeTioTk
—kpS*e ™ iwy — kpX* +c1 +ol* 0S* -y |E1 =2 kpaje % —cajay ).
0 —-olI* 2iwy oaay
(3.42)
Let
ity + 1 X* e o pX*e ok 0
Ly=| -kpS*e7™™  2iwy—kpX* +c1+0ol* oS*—y|. (3.43)
0 -ol* 2iwy
It follows that
) _rze—ingk _ Pale—ingk px* e—ionk 0
E;l) = kpaje ™™ — gajay  2iwy — kpX* + ¢ +ol* 0S* -y,
1 caiap —olI* 2iwq
2iwy + 1 X*e 0Tk —pyeT 0Tk — pgq e 0Tk 0
Eiz) =T —kpS*eiwom kpaie ™™ — gaja, oS*-vy|, (3.44)
1 0 caa; 2iwo
2 21(,00 + rZX*e‘i“’OTk pX*e_ionk _rze—iw(]’rk _ pale—iwo'rk
Ef) = —kpS*te T 2iwy — kpX* +c1 + oI kpaje ™ — cajay
! 0 —-ol* oaa

Similarly, we can get

1y X*e o pX*e Wk 0 -1, —pRe{a1}
~kpS*e7 ™ —kpX* +c1 +0l* 0S*—y |Ey=| kpRe{a1} -oRe{aiar} |, (3.45)

0 —ol* 0 o Ref{ajay}
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and hence
0 1 -1y —pRe{a1} ~ pX*e Wk 0
E," = N kpRe{a1} —oRe{aar} —kpX* +c1+0l* 0S5 —y|,
2 oRe{aa) —oI* 0
) 1 rQX*e‘i‘f’OTk -1, —pRe{a1} 0
Eé ) = o —kpS*e ™ kpRef{a;} —oRe{aia,} oS5* —y|, (3.46)
2 0 o Re{aiay} 0
. 1 rXre T pXreink -1 —pRe{a1}
EQ) = | kpsteTn 0 kpRe{a1) - oRe{aid) |,
2 0 —-olI* o Re{aiay}
where
r2X*e—inTk pX*e—ionk 0
Ly = |-kpS*e @™ —kpX* +c1 + oI* 0S* —y| =r2X* <0'ZS*I* - 01*}/) g0, (3.47)
0 —ol* 0

Therefore, we can determine W5y(0) and Wi;(0), hence we can obtain g»;. Thus, we can
compute these values

. 2
c1(0) = zwlm<g20811 —2|g11|2 - |g§| > * gzﬁ’
H2 Re{)t’(’l'k)}, (3~48)
P2 =2Re{c1(0)},

7, - _ImicO)}) + poIm{X (1)}
2= WoTk ’

which determine the qualities of bifurcating periodic solution in the center manifold at the
critical values 7y, so we have the following results.

Theorem 3.1. (i) py determines the directions of the Hopf bifurcation: if po > 0 (up < 0), then
the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solutions exist for T >
T (T < 7).

(ii) Po determines the stability of the bifurcating periodic solutions: the bifurcating periodic
solutions are stable (unstable) if f» <0 (B2 > 0).

(iii) T, determines the period of the bifurcating periodic solutions: the period increases
(decreases) if T, > 0 (T, < 0).
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Figure 1: When 7 = 1.11 < 7, the positive equilibrium E* = (2.8333,0.8333,1.8056) is asymptotically
stable. (a) shows the trajectories graphs of the system (4.1) with initial data X (t) =2, S1(t) =2, L(t) = 2.
(b) shows the phase portrait of system (4.1).

4. Discussion and Numerical Example

In this section,we present some numerical results of system (1.3) at different values of 7.
Form Section 3, we may determine the direction of a Hopf bifurcation and the stability of the
bifurcating periodic solutions. We consider the following system:

‘;_)f = X(#)[0.9 - 0.2X (t) - 0.45(t)]
Z—f = S(t)[-0.2 + 0.3X () — 0.6I(t)] + 0.21(t) (4.1)

dl
= = (1065t -03-02],

which has a positive equilibrium E* = (2.8333,0.8333,1.8056). Form (2.13) and (2.14), we
are easy to get at least one positive real root 0.5977. In addition, it is easy to show that
[d(Re))/dT],_, = 24377, the hypothesis of H; holds. Hence, E* satisfies the condition
of Theorem (2.2). When 7 = 0, the positive equilibrium E* = (2.8333,0.8333,1.8056) is
asymptotically stable. According to (2.18), we obtain 7p = 1.124, wy = 0.7731, (7)) =
0.3504 — 0.1448i. Form the formulae (3.48) in Section 3, it follows that ¢;(0) = -15.6822 +
2.8655i, pp = 44.7551 > 0, B, = -31.3764 < 0 and T, = 4.1602 > 0. Thus, E* is stable when
T < 79 as is illustrated by the computer simulations (see Figures 1(a) and 1(b)).

When 7 passes through the critical value 7y. E* loses its stability and a Hopf bifurcation
occurs, that is, a family of periodic solutions bifurcate from E*. Since g, > 0 and f, < 0,
the Hopf bifurcation is supercritical and the direction of the bifurcation is 7 > 75 and these
bifurcating periodic solutions from E* at 7y are stable,which are depicted in Figures 2(a) and

2(b).
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Figure 2: When 7 = 1.13 > 7y, bifurcation periodic solutions form E*. (a) shows the trajectory graphs of
system (4.1) with initial data x(t) = 2, y1(f) =2, y»(t) = 2. (b) shows the phase portrait of system (4.1).
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