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Wolfram divided the 256 elementary cellular automata rules informally into four classes using
dynamical concepts like periodicity, stability, and chaos. Rule 14, which is Bernoulli στ -shift rule
and is a member of Wolfram’s class II, is said to be simple as periodic before. Therefore, it is
worthwhile studying dynamical behaviors of rule 14, whether it possesses chaotic attractors or not.
In this paper, the complex dynamical behaviors of rule 14 of one-dimensional cellular automata are
investigated from the viewpoint of symbolic dynamics. We find that rule 14 is chaotic in the sense
of both Li-Yorke and Devaney on its attractor. Then, we prove that there exist fixed points in rule
14. Finally, we use diagrams to explain the attractor of rule 14, where characteristic function is used
to describe that all points fall into Bernoulli-shift map after two iterations under rule 14.

1. Introduction

Cellular automata (CA) was first introduced by von Neumann in 1951 [1]. CA is a mathe-
matical model consisting of large numbers of simple identical components with local
interactions [2]. The simple components act together to produce complex global behavior.
CA performs complex computation with high degree of efficiency and robustness. Therefore,
many applications of CA have been reported, especially in cryptography [3, 4] and image
processing [5, 6].

Here, we will only consider Boolean automata for which the cellular state x ∈ {0, 1}. A
cellular automata consists of a number of cells which evolve by a simple local rule (identical
rule). The value of each cell in the next stage is determined by the values of the cell and
its neighbor cells in the current stage under the local rule [4]. The identical rule contained
in each cell is essentially a finite-state machine, usually specified in the form of a rule table,
with an entry for every possible neighborhood of a cell consists of itself and the adjacent cells
[7]. The cellular array is d-dimensional, where d = 1, 2, 3 is used in practice. In this paper,
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Table 1: The truth table of Boolean function of rule 14.

xi−1xixi+1 [f14(x)]i xi−1xixi+1 [f14(x)]i
000 0 100 0
001 1 101 0
010 1 110 0
011 1 111 0

we will concentrate on d = 1. For a one-dimensional CA, a cell is connected to r local
neighbors (cells) on either side where r is referred to as the radius. A one-dimensional CA has
n cells linked in a line or in a circle. Denote the value in the ith cell at the tth stage by xi[t]. For
2-state 3-neighborhood CA (r = 1), the evolution of ith cell can be represented as a function
of the present states of (i − 1)th, (i)th, and (i + 1)th. The local function fi is a deterministic
function to determine the next-stage value of the ith cell, xi[t + 1] = fi(xi−1[t], xi[t], xi+1[t]).
For example, the rule 14 is a one-dimensional CA, and its rule table is shown in Table 1. Thus,
we have f(000) = 0, f(001) = 1, f(010) = 1, f(011) = 1, f(100) = 0, f(101) = 0, f(110) = 0,
and f(111) = 0.

In 1980s, Wolfram proposed CA as models for physical systems which exhibit complex
or even chaotic behaviors based on empirical observations, and he divided the 256 ECA
(binary one-dimensional CAwith radius 1) rules informally into four classes using dynamical
concepts like periodicity, stability, and chaos [8–10]. However, some authors [11–14] found
that some rules of Bernoulli στ -shift rules are chaotic in the sense of both Li-York and
Devaney, where these rules were said to be simple as periodic by Wolfram. Rule 24 is
belonging to Bernoulli στ -shift rules. Therefore, we need to research the rule 24 and to find its
some new dynamical properties. The rest of the paper is organized as follows. In Section 2, the
Boolean function of rule 14 is also presented, and the expressions of its attractors are given. In
Section 3, the dynamical behaviors of rule 14 are studied. In Section 4, characteristic function
is used to describe that all points fall into Bernoulli-shift map after several iterations under
rule 14, and Lameray diagram is used to show clearly the iterative process of an attractor.
Section 5 presents some conclusions.

2. Preliminaries

For simplicity, some notations about symbolic dynamics can refer to [11, 14].
In this paper, we will use some notations about CA as follows.
Chua et al. [15] mentioned that each rule has three globally equivalent local rules

determined by three corresponding global transformations, namely, left-right transformation
T†, global complementation T , and left-right complementation T ∗. Each equivalence class
is identified by εκm, where κ is complexity index, and m is index of κth class. In [16], the
authors presented that 112 rules of 256 local rules were Bernoulli στ -shift rules. Each of the 112
Bernoulli στ -shift rules has an ID code BN[α, β, τ], where α denotes the number of attractors of
ruleN, β denotes the slope of the Bernoulli στ -shift map, and τ denotes the relevant forward
time-τ . Hence, the space-time evolution of any one of the 112 rules on their attractors can be
uniquely predicted by two parameters: β = ± 2σ and τ . For example, the attractors of rule 14
are (β = −1/2, σ = −1, τ = 1) and (β = 2, σ = 1, τ = 1).

It follows from [17] that the Boolean function of rule 14 is

[
f14(x)

]
i = xi−1 · xi ⊕ xi−1 · xi · xi+1, (2.1)
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for ∀x ∈ SZ, i ∈ Z, where “·”, “−”, and “⊕” stand for “AND”, “NOT”, and “XOR” logical
operation, respectively. Sometimes, “·” is omitted for simplicity. The truth table of Boolean
function of rule 14 is shown in Table 1.

The subsets denoted by Λ14
1 , Λ14

2 are derived from the parameters of rule 14: β = −1/2,
σ = −1, and τ = 1 and β = 2, σ = 1, and τ = 1, respectively, that is,

Λ14
1 =

{
x ∈ SZ | [f14(x)

]
i = xi−1, ∀i ∈ Z

}
,

Λ14
2 =

{
x ∈ SZ | [f14(x)

]
i = xi+1, ∀i ∈ Z

}
.

(2.2)

3. Dynamical Behaviors of f14 on Two Subsystems

In this section, we investigate the complexity and chaotic dynamic behaviors of f14. In order
to give our results, some definitions need be introduced.

Definition 3.1 (see [18]). A square {0, 1} matrix A is irreducible if for every pair of indices i
and j, there is an n such that An

ij > 0.

Definition 3.2 (see [18]). A square {0, 1} matrix A is aperiodic if there exists N, such that
An

ij > 0, n > N, ∀i, j.

Definition 3.3 (see [18]). Suppose that g : X → Y is a continuous mapping, where X is a
compact topological space. g is said to be topologically mixing if, for any two open sets U,
V ⊂ X, ∃N > 0, such that gn(U) ∩ V /= ∅, ∀n ≥ N.

Definition 3.4 (see [13]). Let (X, f) and (Y, g) be compact spaces, we say f and g are
topologically conjugate if there is a homeomorphism h : X → Y , such that h ◦ f = g ◦ h.

Based on the above definitions, we investigate the complexity behaviors of f14 on two
subsystems as follows.

Proposition 3.5. For rule 14, there exists a subset Λ14
1 ⊂ SZ which satisfies f14|Λ14

1
= ς141 ◦

T |Λ14
1
= Γ14|Λ14

1
if and only if ∀x = (. . . , x−1, x0, x1, . . .) ∈ Λ14

1 , and xi−1, xi, and xi+1 cannot be 0
simultaneously, ∀i ∈ Z.

Proof. (Necessity) Suppose that there exists a subset Λ14
1 ∈ SZ such that f14|Λ14

1
= Γ14|Λ14

1
, then

∀x = (. . . , x−1, x0, x1, . . .) ∈ Λ14
1 , and we have [f14(x)]i = xi−1, ∀x ∈ Z.

If xi = 1, then xi−1xi ⊕xi−1xixi+1 = 1⊕xi−1 ⊕0 = xi−1, so we get xi−1 = 0, xi+1 = 0; xi−1 = 0,
xi+1 = 1; xi−1 = 1, xi+1 = 0; xi−1 = 1, xi+1 = 1; if xi = 0, then xi−1xi ⊕ xi−1xixi+1 = 0 ⊕ xi−1xi+1, so
we get xi+1 = 1, xi−2 = 1; if xi−1 = 1, then xi+1 = 1 or xi+1 = 0.

(Sufficiency) Suppose that there exists a subset Λ14
1 ⊂ SZ, ∀x ∈ Λ14

1 , xi−1, xi, and xi+1

cannot be 0 simultaneously, ∀i ∈ Z. This yields that xi−1 +xi +xi+1 = 1. Thus, (xi−1 +xi +xi+1)⊕
xi−1 = xi−1, namely, xi−1xi ⊕ xi−1xixi+1 = xi−1. Therefore, we have proven that f14(x) = Γ14(x),
∀x ∈ Λ14

1 .

Remark 3.6. A condition of bit strings according to Bernoulli στ -shift evolution under f14 is
obtained in Proposition 3.5. From Proposition 3.5, we can know that a bit string belonging
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to Λ14
1 is evolved on the basis of shifting the bit string to the right by 1 bit and then

complementing (changing 0 to 1 and changing 1 to 0) to obtain the next bit string after one
iteration under f14.

Remark 3.7. From the definition of subsystem, we know that (Λ14
1 , f14) are subsystems of

(SZ, f14).

Proposition 3.8. Γ14 = ς14 ◦ T = T ◦ ς14.

Proposition 3.9. ς14 : SZ → SZ and Γ14 : SZ → SZ are not topologically conjugate.
(Λ14

1 , ς14) is topologically mixing if and only if (Λ14
1 ,Γ14) is topologically mixing.

The topological entropy ent(&14|Λ14
1
) = ent(Γ14|Λ14

1
).

Proof. (a) Suppose that ς14 and Γ14 are topologically conjugate, we give a proof by contradic-
tion. Since ς14 and Γ14 are topologically conjugate, then there exists a homeomorphism h such
that h ◦ ς14 = Γ14 ◦h, so we have h ◦ ς14 = T ◦ ς14 ◦h. Because of h ◦ ς14 = ς14 ◦h, then we obtain
that T is identical map, which leads to a contradiction.

(b) Let any nonempty open sets U,V ⊂ Λ14
1 .

(Sufficiency)Assume that Γ14|Λ14
1
is topologically mixing, then there existsN1 > 0, such

that (Γ14|Λ14
1
)n(U) ∩ V /= ∅, ∀n ≥ N1. Since T is a homeomorphism, T(V ) is also a nonempty

open set in Λ14
1 , hence there exists N2 > 0, such that (Γ14|Λ14

1
)n(U) ∩ T(V )/= ∅, ∀n ≥ N2.

Therefore, T
−1
((Γ14|Λ14

1
)n(U) ∩ T(V ))/= ∅, ∀n ≥ N2. Then, we show that there exists a N > 0

such that (ς14|Λ14
1
)n(U) ∩ V /= ∅, ∀n ≥ N. Let N = max(N1,N2).

(i) If n = 2k, k ∈ Z+, then
(
ς14 |Λ14

1

)n
(U) ∩ V = T

n ◦
(
ς14|Λ14

1

)n
(U) ∩ V

= T ◦ ς |Λ14
1
◦ · ◦ T ◦ ς |Λ14

1︸ ︷︷ ︸
n=2k

(U) ∩ V

=
(
Γ14 |Λ14

1

)n
(U) ∩ V /= ∅.

(3.1)

(ii) If n = 2k + 1, k ∈ Z+, then
(
ς14 |Λ14

1

)n
(U) ∩ V = T

−1 ◦ T
((

ς14 |Λ14
1

)n
(U) ∩ V

)

= T
−1 ◦

(
T ◦

(
ς14 |Λ14

1

)n
(U) ∩ T(V )

)

= T
−1 ◦

((
Γ14 |Λ14

1

)n
(U) ∩ T(V )

)
/= ∅.

(3.2)

(Necessity) Suppose that ς14|Λ14
1
is topologically mixing, then there exists an N1 > 0,

such that (ς14|Λ14
1
)n(U) ∩ V /= ∅, ∀n ≥ N1. Since T is a homeomorphism, T(U) is also a

nonempty open set in Λ14
1 , hence for open sets T(U) and V , there exists an N2 > 0, such

that (ς14|Λ14
1
)n ◦ T(U) ∩ V /= ∅. Let N = max (N1,N2).
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(i) If n = 2k, k ∈ Z+, then

(
Γ14 |Λ14

1

)n
(U) ∩ V = T

n ◦
(
ς14 |Λ14

1

)n
(U) ∩ V

=
(
ς14 |Λ14

1

)n
(U) ∩ V /= ∅.

(3.3)

(ii) If n = 2k + 1, k ∈ Z+, then

(
Γ14 |Λ14

1

)n
(U) ∩ V = T ◦

(
ς14 |Λ14

1

)n
(U) ∩ V

=
(
ς14 |Λ14

1

)n ◦ T(U) ∩ V /= ∅.
(3.4)

(c) (Γ14|Λ14
1
)2 = (T ◦ ς14|Λ14

1
)
2
= (T)

2 ◦ (ς14|Λ14
1
)2 = (ς14|Λ14

1
)2.

Hence, ent(ς14|Λ14
1
) = ent(Γ14|Λ14

1
). The proof is complete.

Because of f14|Λ14
1
= Γ14|Λ14

1
, the following corollaries are immediate.

Corollary 3.10. ς14|Λ14
1
and f14|Λ14

1
are not topologically conjugate.

Corollary 3.11. (Λ14
1 , ς14) is topologically mixing if and only if (Λ14

1 , f14) is topologically mixing.

Corollary 3.12. The topological entropy ent(&14|Λ14
1
) = ent(f14|Λ14

1
).

Remark 3.13. By Proposition 3.5, we know that the determinative block system of Λ14
1 is P1 =

{r0, r1, r2, r3, r4, r5, r6}, where r0 = (001), r1 = (010), r2 = (011), r3 = (100), r4 = (101), r5 = (110),
and r6 = (111). We have Λ14

1 = ΛP1 .

Let 	1 = {(rr ′) | r = (b0b1b2), r ′ = (b′0b
′
1b

′
2) ∈ P1, ∃1 ≤ j ≤ 2 such that bj /= b′j−1}. 	1

is considered as the excluded block system [19] Λ	1 , where Λ	1 = {r = (. . . r−1, r0, r1 . . .) ∈
P1 | ri ∈ P1, riri+1/≺	1, ∀i ∈ Z}. Obviously, ς14 : Λ	1 → Λ	1 , ς14(. . . , r−1r̂0r1, . . .) →
(. . . , r̂−1r0r1, . . .). Therefore, it is easy to calculate the transition matrix B1 of the ς|Λ	1

as

B1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1

1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (3.5)
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Figure 1: The corresponding graph G14
1 of the matrix B1.

where B1 = (B1
ij)|P1|×|P1|

B1
ij =

⎧
⎨

⎩

1, rirj ≺ 	1,

0, else.
(3.6)

Obviously, B1 is a square {0, 1}matrix. A square {0, 1}matrix corresponds to a directed
graph. The vertices of the graph are the indices for the rows and columns of B1. There is an
edge from vertex i to vertex j if B1

ij = 1. A square {0, 1} matrix A is irreducible if and only
if the corresponding graph is strongly connected. If ΛA is a two-order subshift of finite type,
then it is topologically mixing if and only if A is irreducible and aperiodic [18].

We give the corresponding graph G14
1 of matrix B1 in Figure 1, where vertices are the

elements of set P1. It is obvious that G14
1 is a strongly connected graph.

Carefully observing Figure 1, we find that there are several strongly connected
subgraphs: r0 → r1 → r3 → r0, r0 → r1 → r4 → r1 → r3 → r0, r0 → r2 → r5 → r3 → r0,
r0 → r2 → r6 → r5 → r4 → r1 → r3 → r0, r1 → r4 → r1, r2 → r5 → r4 → r2,
r2 → r6 → r5 → r4 → r2, r6 → r6, and so forth. The elements of Λ14

P1
will be composed

by all vertices of those strongly connected subgraphs, respectively. For example, if x1 ∈ Λ14
P1
,

x1 is composed by vertices of subgraph r1 → r4 → r1, then we have r0, r2, r3, r5, and r6/≺x1,
and all vertices of the subgraph will occur in x1 if |x1| = 2k, k = 1, 2, . . .. If x2 ∈ Λ142

P1
and x2

is composed by vertices of subgraph r2 → r5 → r4 → r2, then we have r0, r1, r3, and r6/≺x2,
and all vertices of the subgraph will occur in x2 if |x2| = 3k. Therefore, we can deduce the
elements of set Λ14

1 via the corresponding strongly connected graph of matrix B1.
Based on the above analysis, we have the following proposition.

Proposition 3.14. (a) ς14 : Λ14
1 → Λ14

1 and ς14 : Λ	1 → Λ	1 are topologically conjugate.
(b) ς14|Λ14

1
is topologically mixing.

(c) The topological entropy ent(&14|Λ14
1
) = 0.6094.
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Proof. (a) Define

h : Λ14
1 −→ Λ	1 ,

x =
(
. . . , x−1,

∗
x0, x1, . . .

)
�−→

(
. . . , r−1,

∗
r0, r1, . . .

)
,

(3.7)

where ri = (xixi+1xi+2), ∀i ∈ Z. In fact, by the definition of Λ	1 , we have h(x) ∈ Λ	1 , ∀x ∈ Λ14
1 ;

thus, h(Λ14
1 ) ⊆ h(Λ	1). Then, it is easy to check that h is homeomorphism and h ◦ ς14|Λ14

1
→

ς14|Λ	1
◦ h. Therefore, ς14|Λ14

1
and ς14|Λ	1

are topologically conjugate.

(b) Because (B1)n > 0, ∀n ≥ 4, the transition matrix B1 of subshift of finite type ς is
irreducible and aperiodic. By [18, 19], ς14|Λ14

1
is topologically mixing.

(c) Because two topological conjugate systems have the same topological entropy, and
the topological entropy ς14 on Λ	1equals log ρ(B

1), where ρ(B1) is the spectral radius of the
transition matrix B14

1 of the subshift Λ	1 . So ent(ς14|Λ14
1
) = log ρ(B1) = 0.6094.

Remark 3.15. By Corollaries 3.11 and 3.12, we know that (Λ14
1 , f14) is topologically mixing and

ent(f14 |Λ14
1
) = 0.6094.

Theorem 3.16. f14 is chaotic in the sense of both Li-Yorke and Devaney on Λ14
1 .

Proof. It follows from [19] that the positive topological entropy implies chaos in the sense
of Li-Yorke, and a system with topologically mixing property has chaotic properties in
different senses such as Devaney. Therefore, ruleN = 14 possesses very rich and complicated
dynamical properties on Λ14

1 .

Proposition 3.17. For rule 14, there exists a subset Λ14
2 ⊂ SZ which satisfies f14|Λ14

2
= υ14|Λ14

2
if and

only if ∀x = (. . . , x−1, x0, x1, . . .) ∈ Λ14
2 , and xi−1, xi, and xi+1 have the following relations:

(i) if xi = 1, then xi−1 = 0, xi+1 = 1, and xi+2 = 0; xi−1 = 1, xi+1 = 0, and xi+2 = 0,

(ii) if xi = 0, then xi−1 = 0, xi+1 = 0; xi−1 = 1, xi+1 = 0; xi−1 = 0, xi+1 = 1, and xi+2 = 1.

Let P2 = {r0, r1, r2, r3, r4} be a new state set, where r0 = (000), r1 = (001), r2 = (011),
r3 = (100), and r4 = (110).

Remark 3.18. From the definition of subsystem, we know that (Λ14
2 , f14) is subsystem of

(SZ, f14).
The transition matrix of subshift (Λ142

2 , υ14) is

B2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 1 0 0 0

0 0 1 0 0

0 0 0 0 1

1 1 0 0 0

0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (3.8)

We give the corresponding graph G14
2 of matrix B2 in Figure 2, where vertices are the

elements of set P2.
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0

0
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1

Figure 2: The corresponding graph G14
2 of the matrix B2.

Proposition 3.19. (a) f14|Λ14
2
is topologically mixing.

(b) The topological entropy ent(f14|Λ14
2
) = 0.3223.

Theorem 3.20. f14 is chaotic in the sense of both Li-Yorke and Devaney on Λ14
2 .

Theorem 3.21. For rule 14, there exist fixed points of f14.

Proof. A example is given as follows. Let

y =

⎛

⎜
⎝. . . 0, 1, 0, 1, 0, 1

︸ ︷︷ ︸
repetition of (0,1)

, 0, 1,
∗
0, 1, 0, 1, 0, 1, 0, 1 . . .︸ ︷︷ ︸

repetition of (0,1)

⎞

⎟
⎠. (3.9)

By Table 1, we have

f14
(
y
)
=

⎛

⎜
⎝. . . 0, 1, 0, 1, 0, 1

︸ ︷︷ ︸
repetition of (0,1)

, 0, 1,
∗
0, 1, 0, 1, 0, 1, 0, 1 . . .︸ ︷︷ ︸

repetition of (0,1)

⎞

⎟
⎠ = y. (3.10)

Therefore, there exists a set of fixed points of rule 14.

Remark 3.22. By Theorem 3.21, we know that rule 14 has garden of Eden [20] (An bit string is
said to be a garden of Eden of rule N if and only if it does not have a predecessor under the
local rule transformation fN) in the finite case. By definition of garden of Eden, the incoming
and outgoing bit strings are the same in a garden of Eden, while the basin of attraction of an
attractor Λ must contain, at least, one point not belonging to Λ. However, in this paper, we
consider garden of Eden as a kind of special attractor. Then, we find that (000), (001), (010),
(011), (100), (101), (110), or (111) ≺ Λ14 = Λ14

1 ∪Λ14
2 . Furthermore, we guess that all initial bit

strings after sufficient iterations will belong to Λ14 under rule f14.

4. Characteristic Function of Rule 14

First, we give a definition on global characteristic function [16]. Given any local rule N, and
binary configuration x = [x0x1 · xI−1xI] for CA, where xi ∈ {0, 1}, then we can uniquely
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Figure 3: All points fall into Bernoulli-shift map after seven iterations under rule 14, where I = 13.

associate the Boolean string x with the binary expansion of a real number 0•x0x1 · xI−1xI on
the unit interval [0, 1],

x = [x0x1 · xI−1xI] �−→ φ = 0•x0x1 · xI−1xI, (4.1)

where φ =
∑I

i=0 2
−(i+1)xi is the decimal form of Boolean string x = [x0x1 · xI−1xI]. The CA’

characteristic function χN of rule N is defined as

χN : Q[0, 1] −→ Q[0, 1], i.e. φn = χ1
N

(
φn−1

)
, (4.2)

whereQ denotes rational numbers. By [19], the express of characteristic function of rule 14 is

χ1
14 =

I∑

i=0

δ

[
−2xi−1 + xi + xi+1 − 1

2

]
2−(i+1), (4.3)

where

δ{w} =

⎧
⎨

⎩

1, w > 0,

0, w ≤ 0.
(4.4)

In order to transform every concrete bit string into abstract decimal digit, we use
characteristic function χN . Next, we plot the characteristic function diagram for rule 14.
We choose I = 14. Figure 3 describes that all points fall into Bernoulli-shift map after eight
iterations under rule 14, which shows thatΛ14 is global attractor of f14. The phenomenon also
shows that the prediction in Remark 3.22 is correct. Two sets Λ14

1 and Λ14
2 can also be found

in Figure 3. The dots in the two straight lines, whose slope is −1/2, are in the set Λ14
1 ; the dots

in the two straight lines, whose slope is 2, are in the set Λ14
2 .

Two isles of Eden are shown in Figure 4. We find that the bit string y = ( . . . , 0, 1, . . .
︸ ︷︷ ︸

repetition of (0,1)

)

is isle of Eden, when the length |y| is even. Some attractors are shown in Figure 5. Figure 5(a)
shows that the period of attractor is 1; Figure 5(b) shows that the period of attractor is
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Figure 4: Two isles of Eden are shown, where |x| = 6.

(a) (b)

(c) (d)

Figure 5: Some attractors of rule 14, where I = 5, and the white pixel stands for 0 and black for 1.

six, where β = 2, σ = 1, and τ = 1; Figure 5(c) shows that the period of attractor is six,
where β = −1/2, σ = −1, and τ = 1; Figure 5(d) shows that after two iterations, the initial
string is attracted. We find that the possible periods of attractors are 1 and 6 if I = 5. By
Proposition 3.5, the attractors of Figures 4 and 5(c) belong to Λ14

1 . By Proposition 3.17, the
attractors of (a), (b), and (d) belong to Λ14

2 . There is a interesting phenomenon, that is,
Figure 5(d), where one iteration accords with Proposition 3.5; however, the two iterations
accord with Proposition 3.17, and the attractor belongs to Λ14

2 . The phenomenon shows that
these two propositions can switch in some situation. The bit string of attractor in Figure 5(c)
corresponds with strongly connected subgraph r0 → r2 → r5 → r4 → r1 → r3 → r0 in
Figure 1.

Next, we use Lameray diagram [21] to present our attractors. The diagrams show
clearly the iterative process of attractors. The evolution of characteristic function of period-
5 attractor is shown in Figure 6, where I = 4, and the values of characteristic function are
0.0938, 0.1875, 0.3750, 0.7500, and 0.5313, respectively. The five points fall into the time-1 map
(φn = χN(φn−1)) in Figure 5. Then we can associate this particular period-5 attractor of rule 14
as a period-5 point of a continuous map f : [0, 1] → [0, 1] which we know that it is chaotic
because “period-5” implies chaos based on Li-York theorem [22] and Sarkovskii theorem
[23]. According to Sarkovskii theorem, period-5 implies that the number of periods of f14 are
infinite.
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Figure 6: The evolution of characteristic function of the period-5 attractor, where the values of characteristic
function of the attractor are 0.0938, 0.1875, 0.3750, 0.7500, and 0.5313, respectively.

In recent years, associative memory was researched in many papers [24, 25]. It is
obvious that rule 14 can be used in associative memory. By strongly connected graph of rule
14, we can get the elements on its attractors. Then, we can choose a bit string which belongs
to an attractor as memory pattern. For example, bit string 110000 in Figure 5(b) can be chosen
as a memory pattern. Since there are infinite orbits, the storage capability is very large. The
associative memory model provides a solution to problem where time to recognize a pattern
is independent of the number of patterns stored.

5. Conclusion

In this paper, the dynamical behaviors of rule 14 of global equivalence class ε113 in ECA,
where rule 14 is Bernoulli στ -shift rule, are carefully investigated from, the viewpoint of
symbolic dynamics. We derive the conditions according to Bernoulli στ -shift evolution for
rule 14. Then, we prove that rule 14 is chaotic in the sense of both Li-Yorke and Devaney
on their attractors, respectively. We use diagrams to explain the attractor of rule 14, where
characteristic function and Lameray diagram are used to describe that all points fall into
Bernoulli-shift map after several iterations and to show clearly the iterative process of an
attractor, respectively.
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