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Recently, some interesting and new identities are introduced in (Hwang et al., Communicated).

From these identities, we derive some new and interesting integral formulae for the Bernoulli
polynomials.

1. Introduction

As is well known, the Bernoulli polynomials are defined by generating functions as follows:

t & "
- lext - ZOB"(X)E’ (1.1)
=

(see [1-11]). In the special case, x = 0, B,(0) = B, are called the nth Bernoulli numbers. The
Euler polynomials are also defined by

2
et +1

[ee) tn
et = gEt = ZEn(x)ﬁ (1.2)
n=0 :

with the usual convention about replacing E”(x) by E, (x) (see [1-11]). From (1.1) and (1.2),
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we can easily derive the following equation:

t 4 t/ 2 t 2e*t
—e¥ =< +
et -1 2\et+1 et -1 et +1

(1.3)
S < /n t
= WZ:O §<k>BkEn_k(x) —
By (1.1) and (1.3), we get
L /n
Bu(x) = 35( ) Bei), (€ Zo=NU (0)) 1.4

k#1

From (1.1), we have

By (x) = Z (7) Bix™. (1.5)

-0

Thus, by (1.5), we get

n-1
4 Bu(x)=n), (" ; 1) Bix" ! = uB, 1 (x). (1.6)

dx e

It is known that E,, (0) = E, are called the nth Euler numbers (see [7]). The Euler polynomials
are also given by

En(x) = (E+x)" = i <’l’> Eix", (1.7)

1=0

(see [6]). From (1.7), we can derive the following equation:
A p ()= nni "VEx" ! = nE,y (x) (1.8)
dx n = - i 1 = n-1 . .

By the definition of Bernoulli and Euler numbers, we get the following recurrence formulae:
Ey=1, En(l) +E, = 260,71, By=1, Bn(l) -B, = 61/,1, (19)

where &,k is the kronecker symbol (see [5]). From (1.6), (1.8), and (1.9), we note that

1 1
60n 2En+1
= —7 = — 1.10
J‘o B, (x)dx 1 fo E,(x)dx 1 (1.10)
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where n € Z,. The following identity is known in [5]:

S 3@ s 1) o 1)’”(7) G)%

j=01=0

+ ii((a +b+ )" T (a+ 1)~ (a+ b)m—jak—l> <m> <ll<> Bji141(x) (1.11)

Py Ji j+l+1

=(x+a)*(x+a+b)", wherea,bel.

From the identities of Bernoulli polynomials, we derive some new and interesting integral
formulae of an arithmetical nature on the Bernoulli polynomials.

2. Integral Formulae of Bernoulli Polynomials

From (1.1) and (1.2), we note that

o) gm
<%Bm (x) %> 2.1)

Therefore, by (1.2) and (2.1), we obtain the following theorem.

Theorem 2.1. For n € Z.., one has
En(x) = —2§n: (”) g () (2.2)
n = n- ' '
i 1)1+1

Let us take the definite integral from 0 to 1 on both sides of (1.4): forn > 2,

" /n E, i X n E, ka1
- B—rkl_ _ 5B E, -2 B ——rokt
0=-23, (k) K k1 -2 <k> k41 (2.3)

k#1 k#1
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By (2.3), we get

Therefore, by (2.4), we obtain the following theorem.

Theorem 2.2. For n € N, with n > 2, one has

Letustake k =m,a=0,and b= -2in (1.11). Then we have

m

SSiom (D)0 S ()OS

j=01=0
m—i M ]+m+1(x) m m
—Z( 2y () L = a2

It is easy to show that

1 1/2
f x"™(x =2)"dx = ZI (2t -2)"(2t)"dt
0 0

= (-1)™2%m <2 Im tm(1 - t)’”dt> = (-1)™2%m f t"™(1 - t)"dt
0 0

mim!  (-1)"22m 1

=D D T 2 (Zmy

Let us consider the integral from 0 to 1 in (2.6):

Sh Y m-1 [ M m 1 3 (_1)m22m
;;0%(_1) <f><l>j+l+1_(2m+1)(z;ln) (m eN).

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)
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By (2.6) and (2.8), we get
2 & ; Bjii1
(5
]Zz(:) g(;( ) j L)j+1+1

_ m—j ]+m+1> BiEjimi2-k
ZZ( 2) < >]+m+1z< j+m+2-k

k#1

(_1)m+122m 1

P (272"), for m € N.

Therefore, by (2.9), we obtain the following theorem.

Theorem 2.3. For m € N, one has
i i(_l)m,j (m) <m> Bjii11
213 j L)j+1+1
1 3 /ivm+1\ BeEjimirk
= m-j ] _kEjrmi2k
ZZ( 2) < >]+m+1z< k >j+m+2—k
k#1

(-1
2m+1  (2m)’

Lemma 2.4. Let a,b € Z. For m, k € 7., one has

$ Stanbenm e (7)o

=0 1=0

m k
+ 3.3 (a+b)"Ta"! <’7> <’;>Ej+l(x) =2(x+a+b)"(x+a)k,

7=01=0

(see [5]).

Letustake k =m, a=1,b=-2in Lemma 2.4. Then we have

gzm_l (1111) Eme(x) + i Em](—l)m‘j <1;1> (T) Eju(x) = 2<x2 - 1>m.

=0 1=0

Taking integral from 0 to 1 in (2.12), we get

el ml+1 m-1 Eja (' "
—2%2 <l>m+l+1_2zz( D) < )( >]+l+1 2J0<x2_1> dx.

7=01=0

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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It is easy to show that

0

! m i [ 2k —1)"2m
f <x2‘1> dx=(-1) g<2k+l) - (27(11 +)1)(2,;;1)' 214)

Thus, by (2.13) and (2.14), we get

i i(‘l)m_l (T) <77> ]Ii]% - _iszl <7711> mEElf1 i (2(;111";)1(2 j,; y @D

=0 1=0 1=0

Therefore, by (2.2) and (2.15), we obtain the following theorem.

Theorem 2.5. For m € Z., one has
‘ j L)j+1+1 (2m+1)(2,2”)

j=0 1=0
i 1 "+ 1+ 1\ Exn
=S (MY~ 2B ks
g <l>m+l+1k2=0< k >k+1 ok

(2.16)

3. p-Adic Integral on Z, Associated with Bernoulli and Euler Numbers

Let p be a fixed odd prime number. Throughout this section, Z,, Q,, and C, will denote the
ring of p-adic integers, the field of p-adic rational numbers, and the completion of algebraic
closure of Q, respectively. Let v, be the normalized exponential valuation of C, with |p|, =
p™»® = 1/p. Let UD(Z,) be the space of uniformly differentiable functions on Z,. For f €
UD(Zy), the bosonic p-adic integral on Z, is defined by

17
I(f) = f f(X)du(x) = lim — 3" f(x), (3.1)
Zp néoop =0
(see [8]). Thus, by (3.1), we get
[ A@due = [ f@due+ 70, (32)
Z, Z,

where f1(x) = f(x +1),and f'(0) = df (x)/dx|.=0. Let us take f(y) = e!**¥). Then we have

X t X - tn
J et +y)d‘u(y) = . 1et = ZB”(x)ﬁ' (3.3)
n=0 .

p
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From (3.3), we have

[ Grwyaw) =B, [ vdu) =B,
z, z,

From (1.2), we can derive the following integral equation:
n-1
I(fu) = I(f) + 2.f'G) (nEN).
i=0
Thus, from (3.4) and (3.5), we get

J‘ (x+n)"du(x) = I x™dp(x) + mnz_lim‘l.
z, z i=0

P

From (3.6), we have

n-1
By(n) = By =m>i"" (meL,).
i=0

The fermionic p-adic integral on Z, is defined by Kim as follows [6, 7]:

p -1
L) = [ @ = lim 57D

Let fi(x) = f(x +1). Then we have

Li(f1) = = L1(f) +2£(0),
Li(f2) = = Ia(f1) +2f1(0) = =11 (f1) +2f (1)
= (-1)’La(f) +2(-1)* ' £(0) + 2f (1).

Continuing this process, we obtain the following equation:

n-1
Li(fa) = (-1)"L1(f) +2Z(—1)”’Hf(l), where f,(x) = f(x +n).
1=0

Thus, by (3.10), we have

n-1
(c+m)"dp_i(x) = (-1)" | x™dp_1(x) + 22(-1)”‘“1’".

Zyp Zyp 1=0

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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Let us take f(y) = e!**¥). By (3.9), we get

2evt &
tHx+y) — — L
fz,, () = g = SE (312)

From (3.2), we have the Witt’s formula for the nth Euler polynomials and numbers as follows:
f (x +y)"dp1(y) = En(x), f y'du1(y) = En, whereneZ..  (3.13)
z, z,
By (3.11) and (3.13), we get
n-1
En(n) = (-1)" (Em + ZZ(—l)lll’”), (meZ,neN). (3.14)
1=0

Let us consider the following p-adic integral on Z:

Ki= [ Bdue = 3(7) B fzp xldp(x)

Zp 1=0

(3.15)
=y <7> B, ;B
1=0
From (1.4) and (3.15), we have
nin n-k n-k .
K; = ;<k>Bk§Erz—k—l< I ) IZ X d//l(x)

k#1 = v

(3.16)

SE (O pas

Therefore, by (3.15) and (3.16), we obtain the following theorem.

Theorem 3.1. For n € Z., one has

LRI QUL "

<0 1=0
#1

= k:
k
Now, we set

K, = J‘Z By (x)dp_y (x) = Z (’;) B..iE:. (3.18)

P 1=0
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By (1.4), we get

-2

k#

n-k
> BkZEn—k—l
1=0

it

>~

n—

k#1

(n

-k
1 > ’[ xld#—l (x)
ZP
(Z) (n ; k) ByE,_x-1E;.
0 1=0

Therefore, by (3.18) and (3.19), we obtain the following theorem.

Theorem 3.2. Forn € Z., one has

Let us consider the following integral on Z,:

Ks = j E,(x)dp-1(x) = i(?)En—l IZ xldp_1(x) = i<7> E, E;.

Zy

1=0

From (2.2), we have
K;=- z":Em < )g( _l> -l kf xFdpy (x)

n n-l
n\ /n—-1\ Ei
% pard 1 kK J1+1

Therefore, by (3.21) and (3.22), we obtain the following theorem.

Theorem 3.3. Forn € Z., one has

Now, we set

)BkEn—k—zEl-

1=0

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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By (2.2), we get

n n-l
n\ /n-1\ Ei1
Ky=-2> ( Z) ( . >mBn_l_kBk. (3.25)

1=0 k=0

Therefore, by (3.24) and (3.25), we obtain the following corollary.

Corollary 3.4. For n € Z,, we have

n n n-l
n _ n\ /n—1\ E
E(;<Z>EIBI——2 <1>< r )mBn_,_kBk. (3.26)

1=
Let us assume that a, b, ¢, d € Z. From Lemma 2.4 and (3.13), we note that

fz ((a+b+1)+ (x+y))"((a+1) + (x+y))dpu1(y)
+_[Z ((a+b)+ (x+y))"((a+ (x+v)dus(y) (3.27)
=2(x+a+b)"(x+a)".

By (3.27), we get

2(x+a+b)m(x+a)k:f ((a+b—c+1)+(x+c+y))m((a—c+1)+(x+c+y))kd‘u_1(y)
ZP

; fz (a+b-d)+ (x+y+d)"((a=d)+ (x+y+d)) dus (y).

P

(3.28)
Thus, by (3.28) and (3.13), we obtain the following lemma (see [5]).
Lemma 3.5. Let a,b,c,d € Z. For m, k € Z,, one has
ZZ(} ) <l>(a+b—c+ D™ (a-c+ 1) Ej(x +¢)
=0 1=0
(3.29)

m k i ~ k -
+ZZ(a+b—d) f(a—d)kl(’;?><l>15,»+,(x+d):2(x+a+b) (x + a)k.
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Let us consider the formula in Lemma 3.5 with d = ¢ — 1. Then we have

k

S b—c+1)"(a-c+ 1) (™) (< (E, E;. -1
%%(cw c+1)"T(a-c+1) <]><l>(]l(x+c)+ s(x+c-1)) 530

=2(x+a+b)"(x +a)k.

Taking '[ZP du(x) on both sides of (3.30),

LHS = ii(a+b—c+1)m—f(a_c+1)k-z<1;1> (,l(> j+l <]’+l)

=0 1=0 so\ S

x Ejii-s J; ((x+¢)° + (x+c-1)")du(x)

= Zi zk:(a +b-c+1)"T(a-c+1)*! <m> <k>]z+l (j - l) (3.31)

j=0 1=0 VANV = AN

x EjuisBs(c—1) + i Sa+b-cr1)" a1t (T) <k>

j=0 1=0 !

—

X (] + l)E]'+1_1 (C - 1)
By the same method, we get
RHS =2 <m>bm*SJ‘ x +a) " Fdu(x
2(% ) ), e taut

(3.32)

= Zg <r;z> b" *Bgs(a).

Therefore, by (3.31) and (3.32), we obtain the following proposition.

Proposition 3.6. Let a,b,c € Z. Then one has

23 Y(a+b-c+1)Ia—c+ D) (’7) (’;)g (f N l>5j+,,s

=0 1=0 s\ S

m k _ ~ k -
><Bs(c—1)+ZZ(a+b—c+1) f(a—c+1)k’<’]’.l>< )(]+1)E,-+,_1(c—1)

j=0 I=0 !

- 22‘; (’:) b" Bk (a).

(3.33)
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Replacing c by ¢ + 1, we have

25 S @b a-o (") (¥) S (B0

=0 1=0 5=0

mk- _oym—j . k-1 k ) 3.34
+ZZ(;+1)(a+b )" 7(a-c) <].><1>E]+ls(c) (3.34)

7=01=0

= Zi <1:> b"°Bs.i(a).

5=0

From (3.4) and (3.7), we derive some identity for the first term of the LHS of (3.34).
The first term of the LHS of (3.34)

+ .
K <] K l> Ej+l—sBs
5=0 s

+2] i i(a +b-c)" I (a-c)k! (T) <’l‘) (j+1)(-1)°

1]
N
M=
M~
=
+
S
|
o)
3
.
=
|
o
-
L
N\
3
~
N
~

i-1
X <Ej+1_1 + 22(—1)6_1€j+1_1>

e=0

SEEE ()1 or-oa-e

(3.35)

m-1 k
X E]+l—sBs + 2mz Z (m]_ 1> <I;> (a +b- c)m_l_](a - C)k_lEj+l6C51
j=0 1=0
m k-1 .
+ ZkZ (m) (k ; 1> (a+b-0c)"7(a- C)kililEj+l5cz1
=0 1=0 \J
c-2
+ 4mZ(a +b-c+e)" Y a-c+e)6.=
e=0
c-2

+ 4kZ(a +b-c+e)™(a-c+e) 6,
e=0
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where

5. = 1 if c=k(mod 2),
=710 if c#k(mod 2).

The second term of the LHS of (3.34)

< 3 j k-1 gt 1
- 3 3G+ Db ia-o (") () v < Bt + 23, (1) i

7=0 1=0 i=0

5 3G b-o a0 (") ()

=0 1=0

+ 2(—1)CCZ_1(—1)i_1m(a +b—c+i)" N a-c+i)
i=0

+ 2(—1)021(—1)1'*1((1 +b—c+1)"k(a—c+i)!

i=0
3 3G b a0 (") ()

j=0 1=0
c-1 .

+2m(-1)° > (1) Na+b-c+ )" (a-c+i)f
i=0

c-1
+2k(-1) D (-1 @+ b-c+i)"(a-c+i)*
i=0

Therefore, by (3.34), (3.35), and (3.37), we obtain the following theorem.

Theorem 3.7. Let a,b,c € Z with ¢ > 1. Then one has

+ (—1)C§: zk:(] +)(a+b-c)"(a-c)! <r]n> (?)E]‘H—l

)

13

(3.36)

(3.37)
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c-1
+2mZ(a+b —c+e)"Ha-c+e)
e=0
c-1
+ ZkZ(a +b-c+e)(a-c+e)!
e=0
- 220 <’g> b B,k (a),
(3.38)
where
1 ifc= 2
Se=k = l.fc k(mod 2), (3.39)
0 if c£k(mod 2).
Remark 3.8. Here, we note that
c-2 c-1 )
4md (a+b-c+e)" ' (a-c+e)f 6= +2m(-1)° > (<) @+ b-c+i)"(a-c+i)
e=0 i=0
c-1
= 2mZ(a +b-c+e)" Ha-c+e)r.
e=0
(3.40)
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