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Copyright q 2012 Jiqiang Jiang et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper investigates the existence of positive solutions for a class of singular p-Laplacian fourth-
order differential equations with integral boundary conditions. By using the fixed point theory in
cones, explicit range for λ and μ is derived such that for any λ and μ lie in their respective interval,
the existence of at least one positive solution to the boundary value system is guaranteed.

1. Introduction

Boundary value problems for ordinary differential equations arise in different areas of
applied mathematics and physics and so on. Fourth-order differential equations boundary
value problems, including those with the p-Laplacian operator, have their origin in beam
theory [1, 2], ice formation [3, 4], fluids on lungs [5], brain warping [6, 7], designing special
curves on surfaces [8], and so forth. In beam theory, more specifically, a beam with a small
deformation, a beam of a material that satisfies a nonlinear power-like stress and strain law,
and a beam with two-sided links that satisfies a nonlinear powerlike elasticity law can be
described by fourth order differential equations along with their boundary value conditions.
For more background and applications, we refer the reader to the work by Timoshenko [9]
on elasticity, the monograph by Soedel [10] on deformation of structure, and the work by
Dulcska [11] on the effects of soil settlement. Due to their wide applications, the existence and
multiplicity of positive solutions for fourth-order (including p-Laplacian operator) boundary
value problems has also attracted increasing attention over the last decades; see [12–33] and



2 Discrete Dynamics in Nature and Society

references therein. In [28], Zhang and Liu studied the following singular fourth-order four-
point boundary value problem

(
φp

(
u′′(t)
))′′ = f(t, u(t)), 0 < t < 1,

u(0) = u(1) − au(ξ) = u′′(0) = u′′(1) − bu′′(η
)
= 0,

(1.1)

where φp(x) = |x|p−2x, p > 1, 0 < ξ, η < 1, 0 ≤ a, b < 1, f ∈ C((0, 1) × (0,∞), (0,∞)), f(t, x)
may be singular at t = 0 and/or t = 1 and x = 0. The authors gave sufficient conditions for the
existence of one positive solution by using the upper and lower solution method, fixed point
theorems, and the properties of the Green function.

In [32], Zhang et al. discussed the existence and nonexistence of symmetric positive
solutions of the following fourth-order boundary value problem with integral boundary
conditions:

(
φp

(
u′′(t)
))′′ = w(t)f(t, u(t)), 0 < t < 1,

u(0) = u(1) =
∫1

0
g(s)u(s)ds,

φp

(
u′′(0)

)
= φp

(
u′′(1)

)
=
∫1

0
h(s)φp

(
u′′(s)

)
ds,

(1.2)

where φp(x) = |x|p−2x, p > 1, w ∈ L1[0, 1] is nonnegative, symmetric on the interval [0, 1], f :
[0, 1] × [0,+∞) → [0,+∞) is continuous, f(1 − t, x) = f(t, x) for all (t, x) ∈ [0, 1] × [0,+∞),
and g, h ∈ L1[0, 1] are nonnegative, symmetric on [0, 1].

Motivated by the work of the above papers, in this paper, we study the existence of
positive solutions of the following singular fourth-order boundary value systemwith integral
boundary conditions:

(
φp1

(
u′′(t)
))′′ = λp1−1a1(t)f1(t, u(t), v(t)), 0 < t < 1,

(
φp2

(
v′′(t)
))′′ = μp2−1a2(t)f2(t, u(t), v(t)),

u(0) = u(1) =
∫1

0
u(s)dξ1(s),

φp1

(
u′′(0)

)
= φp1

(
u′′(1)

)
=
∫1

0
φp1

(
u′′(s)

)
dη1(s),

v(0) = v(1) =
∫1

0
v(s)dξ2(s),

φp2

(
v′′(0)

)
= φp2

(
v′′(1)

)
=
∫1

0
φp2

(
v′′(s)

)
dη2(s),

(1.3)

where λ and μ are positive parameters, φpi(x) = |x|pi−2x, pi > 1, φqi = φ−1
pi , 1/pi + 1/qi = 1,

ξi, ηi : [0, 1] → R
+ (i = 1, 2) are nondecreasing functions of bounded variation, and
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the integrals in (1.3) are Riemann-Stieltjes integrals, f1 : [0, 1] × R
+
0 × R

+ → R
+ and

f2 : [0, 1] × R
+ × R

+
0 → R

+ are two continuous functions, and f1(t, x, y) may be singular
at x = 0 while f2(t, x, y) may be singular at y = 0; a1, a2 : (0, 1) → R

+ are continuous and
may be singular at t = 0 and/or t = 1, in which R

+ = [0,+∞), R+
0 = (0,+∞).

Compared to previous results, our work presented in this paper has the following new
features. Firstly, our study is on singular nonlinear differential systems, that is, a1 and a2 in
(1.3) are allowed to be singular at t = 0 and/or t = 1, meanwhile f1(t, x, y) is allowed to be
singular at x = 0 while f2(t, x, y) is allowed to be singular at y = 0, which bring about many
difficulties. Secondly, the main tools used in this paper is a fixed-point theorem in cones,
and the results obtained are the conditions for the existence of solutions to the more general
system (1.3). Thirdly, the techniques used in this paper are approximation methods, and a
special cone has been developed to overcome the difficulties due to the singularity and to
apply the fixed-point theorem. Finally, we discuss the boundary value problem with integral
boundary conditions, that is, system (1.3) including fourth-order three-point, multipoint and
nonlocal boundary value problems as special cases. To our knowledge, very few authors
studied the existence of positive solutions for p-Laplacian fourth-order differential equation
with boundary conditions involving Riemann-Stieltjes integrals. Hence we improve and
generalize the results of previous papers to some degree, and so it is interesting and important
to study the existence of positive solutions for system (1.3).

The rest of this paper is organized as follows. In Section 2, we present some lemmas
that are used to prove our main results. In Section 3, the existence of positive solution for
system (1.3) is established by using the fixed point theory in cone. Finally, in Section 4, one
example is also included to illustrate the main results.

Definition 1.1. A vector (u, v) ∈ (C2[0, 1]∩C4(0, 1))×(C2[0, 1]∩C4(0, 1)) is said to be a positive
solution of system (1.3) if and only if (u, v) satisfies (1.3) and u(t) > 0, v(t) ≥ 0 or u(t) ≥ 0,
v(t) > 0 for any t ∈ (0, 1).

Let K be a cone in a Banach space E. For 0 < r < R < +∞, let Kr = {x ∈ K : ‖x‖ < r},
∂Kr = {x ∈ K : ‖x‖ = r}, and Kr,R = {x ∈ K : r ≤ ‖x‖ ≤ R}. The proof of the main theorem
of this paper is based on the fixed point theory in cone. We list one lemma [34, 35] which is
needed in our following argument.

Lemma 1.2. Let K be a positive cone in real Banach space E and T : Kr,R → K a completely
continuous operator. If the following conditions hold

(i) ‖Tx‖ ≤ ‖x‖ for x ∈ ∂KR;

(ii) there exists e ∈ ∂K1 such that x /= Tx+me for any x ∈ ∂Kr andm > 0. Then T has a fixed
point in Kr,R.

Remark 1.3. If (i) and (ii) are satisfied for x ∈ ∂Kr and x ∈ ∂KR, respectively. Then Lemma 1.2
is still true.

2. Preliminaries and Lemmas

The basic space used in this paper is E = C[0, 1] × C[0, 1]. Obviously, the space E is a Banach
space if it is endowed with the norm as follows:

‖(u, v)‖ := ‖u‖ + ‖v‖, ‖u‖ = max
0≤t≤1

|u(t)|, ‖v‖ = max
0≤t≤1

|v(t)| (2.1)
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for any (u, v) ∈ E. Denote C+[0, 1] = {u ∈ C[0, 1] : u(t) ≥ 0, 0 ≤ t ≤ 1}. For convenience, we
list the following assumptions:

(H1) a1, a2 : (0, 1) → R
+ are continuous and

0 < Li :=

(∫1

0
e(s)ai(s)ds

)qi−1
< +∞, i = 1, 2, (2.2)

where e(s) = s(1 − s), s ∈ [0, 1].

(H2) ξi, ηi : [0, 1] → R
+ (i = 1, 2) are nondecreasing functions of bounded variation, and

αi ∈ [0, 1), βi ∈ [0, 1), where

αi =
∫1

0
dξi(s), βi =

∫1

0
dηi(s), i = 1, 2. (2.3)

(H3) f1 : [0, 1] × R
+
0 × R

+ → R
+, f2 : [0, 1] × R

+ × R
+
0 → R

+ are continuous and satisfy

f1
(
t, x, y

) ≤ g1(t, x) + h1
(
t, y
)
, ∀(t, x, y) ∈ [0, 1] × R

+
0 × R

+,

f2
(
t, x, y

) ≤ g2(t, x) + h2
(
t, y
)
, ∀(t, x, y) ∈ [0, 1] × R

+ × R
+
0 ,

(2.4)

where g1, h2 : [0, 1] ×R+
0 → R+ are continuous and nonincreasing in the second variable, and

g2, h1 : [0, 1] × R+ → R+ are continuous and for any constant r > 0,

0 <

∫1

0
e(s)a1(s)g1(s, r)ds < +∞, 0 <

∫1

0
e(s)a2(s)h2(s, r)ds < +∞. (2.5)

Similar to the proof of Lemmas 2.1 and 2.2 in [32], the following two lemmas are valid.

Lemma 2.1. If (H2) holds, then for any y ∈ L(0, 1), the boundary value problem

−x′′(t) = φqi

(
y(t)
)
, 0 < t < 1,

x(0) = x(1) =
∫1

0
x(s)dξi(s)

(2.6)

has a unique solution

x(t) =
∫1

0
Hi(t, s)φqi

(
y(s)
)
ds, (2.7)

where

Hi(t, s) = G(t, s) +
1

1 − αi

∫1

0
G(τ, s)dξi(τ), i = 1, 2,

G(t, s) =

{
s(1 − t), 0 ≤ s ≤ t ≤ 1,
t(1 − s), 0 ≤ t ≤ s ≤ 1.

(2.8)
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Lemma 2.2. If (H2) holds, then for any z ∈ L(0, 1), the boundary value problem

−y′′(t) = z(t), 0 < t < 1,

y(0) = y(1) =
∫1

0
y(s)dηi(s)

(2.9)

has a unique solution

y(t) =
∫1

0
Ki(t, s)z(s)ds, (2.10)

where

Ki(t, s) = G(t, s) +
1

1 − βi

∫1

0
G(τ, s)dηi(τ), i = 1, 2. (2.11)

Remark 2.3. For t, s ∈ [0, 1], we have

e(t)e(s) ≤ G(t, s) ≤ e(s) or e(t) ≤ max
t∈[0,1]

e(t) =
1
4
. (2.12)

Remark 2.4. If (H2) holds, it is easy to testifyHi(t, s) defined by (2.8) that:

ρie(s) ≤ Hi(t, s) ≤ γie(s) ≤ 1
4
γi < γi, t, s ∈ [0, 1], i = 1, 2, (2.13)

where

γi =
1

1 − αi
, ρi =

∫1
0 e(τ)dξi(τ)

1 − αi
, i = 1, 2. (2.14)

Remark 2.5. From (2.11), we can prove that the properties of Ki(t, s) (i = 1, 2) are similar to
those ofHi(t, s) (i = 1, 2).

Lemma 2.6. For x > 0, y > 0, we have

φqi

(
x + y

) ≤
{
2qi−1
[
φqi(x) + φqi

(
y
)]
, qi ≥ 2

φqi(x) + φqi

(
y
)
, 1 < qi < 2

,

≤ 2qi−1
[
φqi(x) + φqi

(
y
)]
, qi > 1, i = 1, 2,

(2.15)

φqi(x) > φqi

(
y
)
> φqi(0) = 0, x > y > 0, qi > 1, i = 1, 2. (2.16)

Proof. The proof of this lemma is easy, and we omit it.
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Let

K =
{
(u, v) ∈ C+[0, 1] × C+[0, 1] : u, v are concave on [0, 1],

min
t∈[0,1]

u(t) ≥ Λ‖u‖, min
t∈[0,1]

v(t) ≥ Λ‖v‖
}
,

(2.17)

where

Λ = min

⎧
⎨

⎩
ρ1σ

q1−1
1

γ1ν
q1−1
1

,
ρ2σ

q2−1
2

γ2ν
q2−1
2

⎫
⎬

⎭
, σi =

∫1
0 e(s)dηi(s)

1 − βi
, νi =

1
1 − βi

, i = 1, 2. (2.18)

It is easy to see that K is a cone of E. For any 0 < r < R, let Kr,R = {(u, v) ∈ K : r <
‖u‖ < R, r < ‖v‖ < R}.

Remark 2.7. By the definition of ρi, σi, γi, νi (i = 1, 2), we have 0 < Λ < 1.
To overcome singularity, we consider the following approximate problem of (1.3):

(
φp1

(
u′′(t)
))′′ = λp1−1a1(t)f1n(t, u(t), v(t)), 0 < t < 1,

(
φp2

(
v′′(t)
))′′ = μp2−1a2(t)f2n(t, u(t), v(t)),

u(0) = u(1) =
∫1

0
u(s)dξ1(s),

φp1

(
u′′(0)

)
= φp1

(
u′′(1)

)
=
∫1

0
φp1

(
u′′(s)

)
dη1(s),

v(0) = v(1) =
∫1

0
v(s)dξ2(s),

φp2

(
v′′(0)

)
= φp2

(
v′′(1)

)
=
∫1

0
φp2

(
v′′(s)

)
dη2(s),

(2.19)

where n is a positive integer and

f1n(t, u, v) = f1
(
t,max

{
u, n−1

}
, v
)
, f2n(t, u, v) = f2

(
t, u,max

{
v, n−1

})
. (2.20)

Clearly, fin ∈ C([0, 1] × R
+ × R

+,R+) (i = 1, 2).
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By Lemmas 2.1 and 2.2, for each n ∈ N, λ > 0, μ > 0, let us define operators Aλ
n : K →

C[0, 1], Bμ
n : K → C[0, 1], and Tn : K → E by

Aλ
n(u, v)(t) = λ

∫1

0
H1(t, s)φq1

(∫1

0
K1(s, τ)a1(τ)f1n(τ, u(τ), v(τ))dτ

)

ds, (2.21)

B
μ
n(u, v)(t) = μ

∫1

0
H2(t, s)φq2

(∫1

0
K2(s, τ)a2(τ)f2n(τ, u(τ), v(τ))dτ

)

ds, (2.22)

and Tn(u, v) = (Aλ
n(u, v), B

μ
n(u, v)), respectively.

Lemma 2.8. Assume that (H1)–(H3) hold, then for each λ > 0, μ > 0, n ∈ N, Tn : Kr,R → K is a
completely continuous operator.

Proof. Let λ > 0, μ > 0, and n ∈ N be fixed. For any (u, v) ∈ K, by (2.21), we have

(
Aλ

n(u, v)
)′′
(t) = −λφq1

(∫1

0
K1(t, τ)a1(τ)f1n(τ, u(τ), v(τ))dτ

)

≤ 0,

Aλ
n(u, v)(0) = Aλ

n(u, v)(1)

= λ

∫1

0
H1(0, s)φq1

(∫1

0
K1(s, τ)a1(τ)f1n(τ, u(τ), v(τ))dτ

)

ds ≥ 0,

(2.23)

which implies thatAλ
n is nonnegative and concave on [0, 1]. Similarly, by (2.22)we can obtain

that Bμ
n is nonnegative and concave on [0, 1]. For any (u, v) ∈ K and t ∈ [0, 1], it follows from

(2.13) that

Aλ
n(u, v)(t) = λ

∫1

0
H1(t, s)φq1

(∫1

0
K1(s, τ)a1(τ)f1n(τ, u(τ), v(τ))dτ

)

ds

≤λγ1νq1−11

∫1

0
e(s)φq1

(∫1

0
e(τ)a1(τ)f1n(τ, u(τ), v(τ))dτ

)

ds.

(2.24)

Thus

∥∥∥Aλ
n(u, v)

∥∥∥ ≤ λγ1ν
q1−1
1

∫1

0
e(s)φq1

(∫1

0
e(τ)a1(τ)f1n(τ, u(τ), v(τ))dτ

)

ds. (2.25)
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On the other hand, by (2.13) and (2.18), we have

Aλ
n(u, v)(t) = λ

∫1

0
H1(t, s)φq1

(∫1

0
K1(s, τ)a1(τ)f1n(τ, u(τ), v(τ))dτ

)

ds

≥λρ1σq1−1
1

∫1

0
e(s)φq1

(∫1

0
e(τ)a1(τ)f1n(τ, u(τ), v(τ))dτ

)

ds

≥ρ1σ
q1−1
1

γ1ν
q1−1
1

∥∥
∥Aλ

n(u, v)
∥∥
∥ ≥ Λ

∥∥
∥Aλ

n(u, v)
∥∥
∥.

(2.26)

This implies that

min
t∈[0,1]

Aλ
n(u, v)(t) ≥ Λ

∥
∥∥Aλ

n(u, v)
∥
∥∥. (2.27)

Similar to (2.27), we also have

min
t∈[0,1]

B
μ
n(u, v)(t) ≥ Λ

∥∥∥B
μ
n(u, v)

∥∥∥. (2.28)

Therefore, Tn(K) ⊂ K.
Next, we prove that Tn : Kr,R → K is completely continuous. Suppose (um, vm) ∈

Kr,R and (u0, v0) ∈ Kr,R with ‖(um, vm) − (u0, v0)‖ → 0 (m → ∞). We notice that t ∈
[0, 1] fin(t, um(t), vm(t)) − fin(t, u0(t), v0(t)) → 0 (m → ∞). Using the Lebesgue dominated
convergence theorem, we have

∣∣∣∣∣
φ
p1−1
q1

(∫1

0
K1(s, τ)a1(τ)f1n(τ, um(τ), vm(τ))dτ

)

−φp1−1
q1

(∫1

0
K1(s, τ)a1(τ)f1n(τ, u0(τ), v0(τ))dτ

)∣∣∣∣∣

≤ ν1

∫1

0
e(τ)a1(τ)

∣∣f1n(τ, um(τ), vm(τ)) − f1n(τ, u0(τ), v0(τ))
∣∣dτ −→ 0, m −→ ∞.

(2.29)

Therefore,

∥∥∥Aλ
n(um, vm) −Aλ

n(u0, v0)
∥∥∥

≤ λγ1

∫1

0
e(s)

∣∣∣∣∣
φq1

(∫1

0
K1(s, τ)a1(τ)f1n(τ, um(τ), vm(τ)dτ)

)

−φq1

(∫1

0
K1(s, τ)a1(τ)f1n(τ, u0(τ), v0(τ))dτ

)∣∣∣∣∣
ds −→ 0, m −→ ∞.

(2.30)
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Similarly, we also have

∥
∥
∥B

μ
n(um, vm) − B

μ
n(u0, v0)

∥
∥
∥ −→ 0, m −→ ∞. (2.31)

So Aλ
n : Kr,R → C[0, 1] and B

β
n : Kr,R → C[0, 1] are continuous. Therefore, Tn : Kr,R → K is

also continuous.
Let D ⊂ Kr,R be any bounded set, then for any (u, v) ∈ D, we have (u, v) ∈ K, r ≤

‖u‖ ≤ R, r ≤ ‖v‖ ≤ R, and then 0 < Λr ≤ u(τ) ≤ R, 0 < Λr ≤ v(τ) ≤ R for any τ ∈ [0, 1]. By
(H3), we have

Lr :=

(∫1

0
e(τ)a1(τ)g1(s, rΛ)dτ

)q1−1
< +∞. (2.32)

It is easy to show that Aλ
n(D) is uniformly bounded. In order to show that Tn is a compact

operator, we only need to show that Aλ
n(D) is equicontinuous. By the uniformly continuity

of H1(t, s) on [0, 1] × [0, 1], for all ε > 0, there is δ > 0 such that for any t1, t2, s ∈ [0, 1] and
|t1 − t2| < δ, we have

|H1(t1, s) −H1(t2, s)| < ε. (2.33)

This together with (2.15) and (2.32) implies

∣∣∣Aλ
n(u, v)(t1) −Aλ

n(u, v)(t2)
∣∣∣

≤ λ

∫1

0
|H1(t1, s) −H1(t2, s)|φq1

(∫1

0
K1(s, τ)a1(τ)f1n(τ, u(τ), v(τ))dτ

)

ds

< ελν
q1−1
1 φq1

(∫1

0
e(τ)a1(τ)

[
g1
(
τ,max

{
u(τ), n−1

})
+ h1(τ, v(τ))

]
dτ

)

≤ ελν
q1−1
1 φq1

(∫1

0
e(τ)a1(τ)

[
g1(τ, rΛ) + h1(τ, v(τ))

]
dτ

)

≤ ελν
q1−1
1 2q1−1

[

φq1

(∫1

0
e(τ)a1(τ)g1(τ, rΛ)dτ

)

+ φq1

(∫1

0
e(τ)a1(τ)h1(τ, v(τ))dτ

)]

≤ ελν
q1−1
1 2q1−1

⎡

⎢
⎣Lr + L1

⎛

⎝max
τ∈[0,1]
y∈[rΛ,R]

h1
(
τ, y
)
⎞

⎠

q1−1
⎤

⎥
⎦, |t1 − t2| < δ, (u, v) ∈ D.

(2.34)

This means thatAλ
n(D) is equicontinuous. By the Arzela-Ascoli theorem,Aλ

n(D) is a relatively
compact set and that Aλ

n : Kr,R → C[0, 1] is a completely continuous operator.
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In the same way, we can show that Bμ
n : Kr,R → C[0, 1] is also completely continuous,

and so Tn : Kr,R → K is completely continuous. Now since λ, μ, and n are given arbitrarily,
the conclusion of this lemma is valid.

3. Main Results

For notational convenience, we denote by

Mi = 6
(
ρiσ

qi−1ΛLi

)−1
, Ni =

(
γiν

qi−1
i Li

)−1
, i = 1, 2,

fα
1 =

⎛

⎜
⎝lim sup

x→α
sup
t∈[0,1]
y∈R+

f1
(
t, x, y

)

φp1(x)

⎞

⎟
⎠

q1−1

, fα
2 =

⎛

⎝lim sup
y→α

sup
t∈[0,1]
x∈R+

f2
(
t, x, y

)

φp2

(
y
)

⎞

⎠

q2−1

,

f1α =

⎛

⎝lim inf
x→α

inf
t∈[0,1]
y∈R+

f1
(
t, x, y

)

φp1(x)

⎞

⎠

q1−1

, f2α =

(

lim inf
y→α

inf
t∈[0,1]
x∈R+

f2
(
t, x, y

)

φp2

(
y
)

)q2−1
,

(3.1)

where α denotes 0 or ∞. The main results of this paper are the following.

Theorem 3.1. Assume that (H1)–(H3) hold. Then we have:

(C1) If f0
1 , f1∞, f

0
2 ∈ (0,∞) and M1/f1∞ < N1/f

0
1 , then for each λ ∈ (M1/f1∞,N1/f

0
1 ),

μ ∈ (0,N2/f
0
2 ), the system (1.3) has at least one positive solution.

(C2) If f0
1 , f

0
2 , f2∞ ∈ (0,∞) and M2/f2∞ < N2/f

0
2 , then for each λ ∈ (0,N1/f

0
1 ), μ ∈

(M2/f2∞,N2/f
0
2 ), the system (1.3) has at least one positive solution.

(C3) If f0
1 = 0, f1∞ = ∞, 0 < f0

2 < ∞, then for each λ ∈ (0,∞), μ ∈ (0,N2/f
0
2 ), the system

(1.3) has at least one positive solution.

(C4) If 0 < f0
1 < ∞, f0

2 = 0, f2∞ = ∞, then for each λ ∈ (0,N1/f
0
1 ), μ ∈ (0,∞), the system

(1.3) has at least one positive solution.

(C5) If f0
i = 0, fi∞ = ∞ (i = 1, 2), then for each λ ∈ (0,∞), μ ∈ (0,∞), the system (1.3) has at

least one positive solution.

(C6) If 0 < f0
1 < ∞, f1∞ = ∞ or f2∞ = ∞, 0 < f0

2 < ∞, then for each λ ∈ (0,N1/f
0
1 ),

μ ∈ (0,N2/f
0
2 ), the system (1.3) has at least one positive solution.

(C7) If f0
1 = 0, 0 < f1∞ < ∞, and f0

1 = 0, 0 < f2∞ < ∞, then for each λ ∈ (M1/f1∞,∞),
μ ∈ (0,∞) or λ ∈ (0,∞), μ ∈ (M2/f2∞,∞), the system (1.3) has at least one positive
solution.

Proof. We only prove the condition in which (C1) holds. The other cases can be proved
similarly.

Let λ ∈ (M1/f1∞,N1/f
0
1 ), μ ∈ (0,N2/(f0

2 )), choose ε1 > 0 such that f1∞ − ε1 > 0 and

M1

f1∞ − ε1
≤ λ ≤ N1

f0
1 + ε1

, 0 < μ ≤ N2

f0
2 + ε1

. (3.2)
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It follows from f0
i ∈ (0,∞) of (C1) that there exists r1 > 0 such that for any t ∈ [0, 1],

f1
(
t, x, y

) ≤
(
f0
1 + ε1

)p1−1
φp1(x) ≤

[
r1
(
f0
1 + ε1

)]p1−1
, 0 < x ≤ r1, y ≥ 0, (3.3)

f2
(
t, x, y

) ≤
(
f0
2 + ε1

)p2−1
φp2

(
y
) ≤
[
r1
(
f0
2 + ε1

)]p2−1
, x ≥ 0, 0 < y ≤ r1. (3.4)

Let Kr1 = {(u, v) ∈ K : ‖u‖ < r1, ‖v‖ < r1}. For any (u, v) ∈ ∂Kr1 , n > 1/r1, by (2.13), (3.3), we
have

∥
∥
∥Aλ

n(u, v)
∥
∥
∥ = max

t∈[0,1]
λ

∫1

0
H1(t, s)φq1

(∫1

0
K1(s, τ)a1(τ)f1n(τ, u(τ), v(τ))dτ

)

ds

≤ λγ1ν
q1−1
1 φq1

∫1

0

(
e(τ)a1(τ)

(
f0
1 + ε1

)p1−1φp1(u(τ))dτ
)

≤ λγ1ν
q1−1
1

(
f0
1 + ε1

)
L1r1

= λN−1
1

(
f0
1 + ε1

)
r1.

(3.5)

Similarly, we also have

∥∥∥B
μ
n(u, v)

∥∥∥ ≤ μN−1
2

(
f0
2 + ε1

)
r1. (3.6)

Therefore, we have

‖Tn(u, v)‖ =
∥∥∥Aλ

n(u, v)
∥∥∥ +
∥∥∥B

μ
n(u, v)

∥∥∥

≤
[
λN−1

1

(
f0
1 + ε1

)
+ μN−1

2

(
f0
2 + ε1

)]
r1

≤ 2r1 = ‖(u, v)‖.

(3.7)

On the other hand, by f1∞ > f1∞ − ε1 > 0, there exists R0 > 0 such that

f1
(
t, x, y

) ≥ (f1∞ − ε1
)p1−1φp1(x), t ∈ [0, 1], x ≥ R0, y ≥ 0. (3.8)

Let R1 > max{2r1,Λ−1R0}, KR1 = {(u, v) ∈ K : ‖u‖ < R1, ‖v‖ < R1}. Next, we take (ϕ1, ϕ2) =
(1, 1) ∈ ∂K1, and for any (u, v) ∈ ∂KR1 , m > 0, n ∈ N, we will show

(u, v)/=Aλ
n(u, v) +m

(
ϕ1, ϕ2

)
. (3.9)

Otherwise, there exist (u0, v0) ∈ ∂KR1 and m0 > 0 such that

(u0, v0) = Aλ
n(u0, v0) +m0

(
ϕ1, ϕ2

)
. (3.10)
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From (u0, v0) ∈ ∂KR1 , we know that ‖u0‖ = R1 or ‖v0‖ = R1. Without loss of generality, we
may suppose that ‖u0‖ = R1, then u0(τ) ≥ Λ‖u0‖ = ΛR1 > R0 for any τ ∈ [0, 1]. So, by (2.13),
(3.8), we have

u0(t) = λ

∫1

0
H1(t, s)φq1

(∫1

0
K1(s, τ)a1(τ)f1n(τ, u0(τ), v0(τ))dτ

)

ds +m0

≥λρ1σq1−1
1

∫1

0
e(s)φq1

(∫1

0
e(τ)a1(τ)f1n(τ, u0(τ), v0(τ))dτ

)

ds +m0

≥λρ1σq1−1
1

∫1

0
e(s)φq1

(∫1

0
e(τ)a1(τ)

(
f1∞ − ε1

)p1−1φp1(u0(τ)) dτ

)

ds +m0

≥λρ1σq1−1
1

∫1

0
e(s)φq1

(∫1

0
e(τ)a1(τ)

(
f1∞ − ε1

)p1−1(ΛR1)p1−1dτ

)

ds +m0

=
1
6
λρ1σ

q1−1
1

(
f1∞ − ε1

)
ΛR1L1 +m0

= λM−1
1

(
f1∞ − ε1

)
R1 +m0 > R1.

(3.11)

This implies that R1 > R1, which is a contradiction. This yields that (3.9) holds. By (3.7), (3.9),
and Lemma 1.2, for any n > 1/r1 and λ ∈ (M1/f1∞,N1/f

0
1 ), μ ∈ (0,N2/f

0
2 ), we obtain that

Tn has a fixed point (un, vn) in Kr1,R1 satisfying r1 < ‖un‖ < R1,r1 < ‖vn‖ < R1.
Let {(un, vn)}n≥n1

be the sequence of solutions of boundary value problems (2.19),
where n1 > 1/r1 is a fixed integer. It is easy to see that they are uniformly bounded. Next
we show that {un}n≥n1

are equicontinuous on [0, 1]. From (un, vn) ∈ Kr1,R1 , we know that
R1 ≥ un(τ) ≥ Λ‖un‖ ≥ Λr1, R1 ≥ vn(τ) ≥ Λ‖vn‖ ≥ Λr1, τ ∈ [0, 1]. For any ε > 0, by the
continuous ofH1(t, s) in [0, 1] × [0, 1], there exists δ1 > 0 such that for any t1, t2, s ∈ [0, 1] and
|t1 − t2| < δ1, we have

|H1(t1, s) −H1(t2, s)| < ε. (3.12)

This combining with (2.15), (2.32) implies that for any t1, t2 ∈ [0, 1] and |t1 − t2| < δ1, we have

|un(t1) − un(t2)|

≤ λ

∫1

0
|H1(t1, s) −H1(t2, s)|φq1

(∫1

0
K1(s, τ)a1(τ)f1n(τ, un(τ), vn(τ))dτ

)

ds

< ελν
q1−1
1 φq1

(∫1

0
e(τ)a1(τ)

[
g1
(
τ,max

{
un(τ), n−1

})
+ h1(τ, vn(τ))

]
dτ

)
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≤ ελν
q1−1
1 2q1−1

[

φq1

(∫1

0
e(τ)a1(τ)g1(τ, rΛ)dτ

)

+ φq1

(∫1

0
e(τ)a1(τ)h1(τ, v(τ))dτ

)]

≤ ελν
q1−1
1 2q1−1

⎡

⎢
⎣Lr + L1

⎛

⎝ max
τ∈[0,1]
y∈[r1Λ,R1]

h1
(
τ, y
)
⎞

⎠

q1−1
⎤

⎥
⎦.

(3.13)

Similarly, {vn}n≥n1
are also equicontinuous on [0, 1]. By the Ascoli-Arzela theorem,

the sequence {(un, vn)}n≥n1
has a subsequence being uniformly convergent on [0, 1]. From

Lemma 2.2, we know that

u′′
n(s) = λp1−1

∫1

0
K1(s, τ)a1(τ)f1n(τ, un(τ), vn(τ))dτ,

v′′
n(s) = μp2−1

∫1

0
K2(s, τ)a2(τ)f2n(τ, un(τ), vn(τ))dτ.

(3.14)

Since the properties of Ki(t, s) (i = 1, 2) are similar to those of Hi(t, s) (i = 1, 2), so (u′′
n, v

′′
n)

have the similar properties of (un, vn), that is, (u′′
n, v

′′
n) also has a subsequence being uniformly

convergent on [0, 1]. Without loss of generality, we still assume that {(un, vn)}n≥n1
itself

uniformly converges to (u, v) on [0, 1] and {(u′′
n, v

′′
n)}n≥n1

itself uniformly converges to (u′′, v′′)
on [0, 1], respectively. Since {(un, vn)}n≥n1

∈ Kr1,R1 ⊂ K, so we have un ≥ 0, vn ≥ 0. By (2.19),
we have

un(t) = un

(
1
2

)
+
(
t − 1

2

)
u′
n

(
1
2

)

−
∫ t

1/2
ds

∫ s

1/2
φq1

(
u
′′p1−1
n

(
1
2

)
+
(
s2 − 1

2

)
u
′′′p1−1
n

(
1
2

)

−
∫ s2

1/2
ds1

∫ s1

1/2
λp1−1a1(τ)f1n(τ, un(τ), vn(τ))dτ

)
ds2, t ∈ (0, 1),

(3.15)

vn(t) = vn

(
1
2

)
+
(
t − 1

2

)
v′
n

(
1
2

)

−
∫ t

1/2
ds

∫ s

1/2
φq2

(
v
′′p2−1
n

(
1
2

)
+
(
s2 − 1

2

)
v
′′′p2−1
n

(
1
2

)

−
∫ s2

1/2
ds1

∫s1

1/2
μp2−1a2(τ)f2n(τ, un(τ), vn(τ))dτ

)
ds2, t ∈ (0, 1).

(3.16)

From (3.15) and (3.16), we know that {u′
n(1/2)}n≥n1

, {v′
n(1/2)}n≥n1

, {u′′
n(1/2)}n≥n1

,
{v′′

n(1/2)}n≥n1
, {u′′′

n (1/2)}n≥n1
, {v′′′

n (1/2)}n≥n1
are bounded sets. Without loss of gener-

ality, we may assume (u′
n(1/2), v

′
n(1/2)) → (c1, d1), (u′′

n(1/2), v
′′
n(1/2)) → (c2, d2),
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(u′′′
n (1/2), v

′′′
n (1/2)) → (c3, d3) as n → ∞. Then by (3.15), (3.16), and the Lebesgue dominated

convergence theorem, we have

u(t) = u

(
1
2

)
+ c1

(
t − 1

2

)
−
∫ t

1/2
ds

∫s

1/2
φq1

(
c
p1−1
2 + c

p1−1
3

(
s2 − 1

2

)

−
∫ s2

1/2
ds1

∫ s1

1/2
λp1−1a1(τ)f1(τ, u(τ), v(τ))dτ

)
ds2, t ∈ (0, 1),

(3.17)

v(t) = v

(
1
2

)
+ d1

(
t − 1

2

)

−
∫ t

1/2
ds

∫ s

1/2
φq2(d

p2−1
2 + d

p2−1
3

(
s2 − 1

2

)

−
∫ s2

1/2
ds1

∫s1

1/2
μp2−1a2(τ)f2(τ, u(τ), v(τ))dτ)ds2 t ∈ (0, 1).

(3.18)

By (3.17) and (3.18), direct computation shows that

(
φp1

(
u′′(t)
))′′ = λp1−1a1(t)f1(t, u(t), v(t)),

(
φp2

(
v′′(t)
))′′ = μp2−1a2(t)f2(t, u(t), v(t)), 0 < t < 1.

(3.19)

On the other hand, (u, v) satisfies the boundary condition of (1.3). In fact, un(0) =
un(1) =

∫1
0 un(s)dξ1(s), vn(0) = vn(1) =

∫1
0 vn(s)dξ2(s), φp1(u

′′
n(0)) = φp1(u

′′
n(1)) =

∫1
0 φp1(u

′′
n(s))dη1(s), φp2(v

′′
n(0)) = φp2(v

′′
n(1)) =

∫1
0 φp2(v

′′
n(s))dη2(s), and so the conclusion

holds by letting n → ∞.

Theorem 3.2. Assume that (H1)–(H3) hold. Then we have:

(D1) If f10, f∞
1 , f∞

2 ∈ (0,∞) and M1/f10 < N1/f
∞
1 , then for each λ ∈ (M1/f10 ,N1/f

∞
1 ),

μ ∈ (0,N2/ f∞
2 ), the system (1.3) has at least one positive solution.

(D2) If f∞
1 , f20, f∞

2 ∈ (0,∞) and M2/f20 < N2/f
∞
2 , then for each λ ∈ (0,N1/f

∞
1 ), μ ∈

(M2/f20 ,N2/f
∞
2 ), the system (1.3) has at least one positive solution.

(D3) If f10 = ∞, f∞
1 = 0, 0 < f∞

2 < ∞, then for each λ ∈ (0,∞), μ ∈ (0,N2/(f∞
2 )), the system

(1.3) has at least one positive solution.

(D4) If 0 < f∞
1 < ∞, f20 = ∞, f∞

2 = 0, then for each λ ∈ (0,N1/f
∞
1 ), μ ∈ (0,∞), the system

(1.3) has at least one positive solution.

(D5) If fi0 = ∞, f∞
i = 0 (i = 1, 2), then for each λ ∈ (0,∞), μ ∈ (0,∞), the system (1.3) has at

least one positive solution.

(D6) If 0 < f∞
1 < ∞, f10 = ∞ or f20 = ∞, 0 < f∞

2 < ∞, then for each λ ∈ (0,N1/f
∞
1 ),

μ ∈ (0,N2/f
∞
2 ), the system (1.3) has at least one positive solution.

(D7) If f∞
1 = 0, 0 < f10 < ∞, and f∞

2 = 0, 0 < f20 < ∞, then for each λ ∈ (M1/f10 ,∞),
μ ∈ (0,∞) or λ ∈ (0,∞), μ ∈ (M2/f20,∞), the system (1.3) has at least one positive
solution.
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Proof. We may suppose that condition (D1) holds. Similarly, we can prove the other cases.
Let λ ∈ (M1/f10,N1/f

∞
1 ), μ ∈ (0,N2/f

∞
2 ). We can choose ε2 > 0 such thatN1 − ε2 > 0,

N2 − ε2 > 0 and

λf∞
1 < N1 − ε2, μf∞

2 < N2 − ε2. (3.20)

It follows from (D1) and (2.16) that there exists R∗
2 > 0 such that for any t ∈ [0, 1]

f1
(
t, x, y

) ≤
(
1
λ
(N1 − ε2)

)p1−1
φp1(x), x ≥ R∗

2, y ≥ 0, (3.21)

f2
(
t, x, y

) ≤
(
1
λ
(N2 − ε2)

)p2−1
φp2

(
y
)
, x ≥ 0, y ≥ R∗

2. (3.22)

Let R2 = Λ−1R∗
2, KR2 = {(u, v) ∈ K : ‖u‖ < R2, ‖v‖ < R2}. For any (u, v) ∈ ∂KR2 , n ∈ N, by

(2.13), (3.21), we have

∥∥∥Aλ
n(u, v)

∥∥∥ = max
t∈[0,1]

λ

∫1

0
H1(t, s)φq1

(∫1

0
K1(s, τ)a1(τ)f1n(τ, u(τ), v(τ))dτ

)

ds

≤ λγ1ν
q1−1
1 φq1

(∫1

0
e(τ)a1(τ)

(
1
λ
(N1 − ε2)

)p1−1
φp1(u(τ))dτ

)

≤ λγ1ν
q1−1
1

1
λ
(N1 − ε2)L1R2 < R2.

(3.23)

Similarly, by (3.22)we have ‖Bμ
n(u, v)‖ < R2. Therefore,

‖Tn(u, v)‖ =
∥∥∥Aλ

n(u, v)
∥∥∥ +
∥∥∥B

μ
n(u, v)

∥∥∥ ≤ 2R2 = ‖(u, v)‖, (u, v) ∈ ∂KR2 , n ∈ N. (3.24)

On the other hand, choose ε3 > 0 such thatM1+ε3 < λf10. By the condition f10 ∈ (0,∞)
of (D1) and (2.16), there exists r∗2 > 0 such that

f1
(
t, x, y

) ≥
(
1
λ
(M1 + ε3)

)p1−1
φp1(x), t ∈ [0, 1], 0 < x ≤ r∗2 , y ≥ 0. (3.25)

Let 0 < r2 < min{R2, r
∗
2}, Kr2 = {(u, v) ∈ K : ‖u‖ < r2, ‖v‖ < r2}. Next, we take (ϕ1, ϕ2) =

(1, 1) ∈ ∂K1, n > 1/r2 , and for any (u, v) ∈ ∂Kr2 ,m > 0, we will show

(u, v)/=Aλ
n(u, v) +m

(
ϕ1, ϕ2

)
. (3.26)
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Otherwise, there exist (u0, v0) ∈ ∂Kr2 and m0 > 0 such that

(u0, v0) = Aλ
n(u0, v0) +m0

(
ϕ1, ϕ2

)
. (3.27)

From (u0, v0) ∈ ∂Kr2 , we know that ‖u0‖ = r2 or ‖v0‖ = r2. Without loss of generality, we may
suppose that ‖u0‖ = r2, then u0(τ) ≥ Λ‖u0‖ ≥ Λr2 for any τ ∈ [0, 1]. So, we have

u0(t) = λ

∫1

0
H1(t, s)φq1

(∫1

0
K1(s, τ)a1(τ)f1n(τ, u0(τ), v0(τ))dτ

)

ds +m0

≥ λρ1σ
q1−1
1

∫1

0
e(s)φq1

(∫1

0
e(τ)a1(τ)f1n(τ, u0(τ), v0(τ))dτ

)

ds +m0

≥ λρ1σ
q1−1
1

∫1

0
e(s)φq1

(∫1

0
e(τ)a1(τ)

(
1
λ
(M1 + ε3)

)p1−1
φp1(u0(τ))dτ

)

ds +m0

≥ λρ1σ
q1−1
1

∫1

0
e(s)φq1

(∫1

0
e(τ)a1(τ)(M1 + ε3)p1−1(Λr2)p1−1dτ

)

ds +m0

=
1
6
λρ1σ

q1−1
1

1
λ
(M1 + ε3)Λr2L1 +m0 > r2.

(3.28)

This implies that r2 > r2, which is a contradiction. This yields that (3.26) holds. By (3.24),
(3.26), and Lemma 1.2, for any n > 1/r2 and λ ∈ (M1/f10,N1/f

∞
1 ), μ ∈ (0,N2/f

∞
2 ), we

obtain that Tn has a fixed point (un, vn) in Kr2,R2 and r2 < ‖un‖ < R2, r2 < ‖vn‖ < R2. The rest
of proof is similar to Theorem 3.1.

4. An Example

Example 4.1. We consider system (1.3) with p1 = 3/2, p2 = 7/3, a1(t) = 1/(t
√
(1 − t) , a2(t) =

1/((1 − t)
√
t),

f1(t, u, v) =
t2 + 1√

u
+ 1 + sin

(
v2 + v + t

)
, (t, u, v) ∈ [0, 1] × R

+
0 × R

+,

f2(t, u, v) = 2 + sin(u + ln(t + 1)) +
t4 + t + 3√

v
, (t, u, v) ∈ [0, 1] × R

+ × R
+
0 .

(4.1)
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Obviously, a1, a2 are singular at t = 0 and t = 1, f1(t, u, v) is singular at u = 0 and f2(t, u, v)
is singular at v = 0. Choose g1(t, u) = (t2 + 1)/

√
u, h1(t, v) = 1 + sin(v2 + v + t), g2(t, u) =

2 + sin(u + ln(t + 1)), and h2(t, v) = (t4 + t + 3)/
√
v. Let

ξ1(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, s ∈
[
0,

1
3

)
,

1
5
, s ∈

[
1
3
,
2
3

)
,

1
4
, s ∈

[
2
3
, 1
]
,

ξ2(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, s ∈
[
0,

1
2

)
,

1
7
, s ∈

[
1
2
,
3
4

)
,

1
3
, s ∈

[
3
4
, 1
]
,

η1(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, s ∈
[
0,

1
2

)
,

3
5
, s ∈

[
1
2
, 1
]
,

η2(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, s ∈
[
0,

1
2

)
,

4
7
, s ∈

[
1
2
, 1
]
.

(4.2)

By direct calculation, we have α1 = 1/4, α2 = 1/3, β1 = 3/5, β2 = 4/7,
∫1
0 e(s)ai(s)ds =

(2/3) (i = 1, 2). It is easy to check that f10 = f20 = ∞, f∞
1 = f∞

2 = 0, and the conditions (H1)–
(H3) and (D5) are satisfied. By Theorem 3.2, system (1.3) has at least one positive solution
provided λ, μ ∈ (0,+∞).

Remark 4.2. Example 4.1 not only implies that f1(t, u, v), f2(t, u, v) can be singular at u = 0
and v = 0, respectively, but also indicates that there is a large number of functions that satisfy
the conditions of Theorem 3.2. In addition, the condition (D5) is also easy to check.
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