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New 4(3) pairs Diagonally Implicit Runge-Kutta-Nyström (DIRKN) methods with reduced
phase-lag are developed for the integration of initial value problems for second-order ordinary
differential equations possessing oscillating solutions. TwoDIRKNpairs which are three- and four-
stage with high order of dispersion embedded with the third-order formula for the estimation of
the local truncation error. These new methods are more efficient when compared with current
methods of similar type and with the L-stable Runge-Kutta pair derived by Butcher and Chen
(2000) for the numerical integration of second-order differential equations with periodic solutions.

1. Introduction

In many scientific areas of engineering and applied sciences such as celestial mechanics,
quantum mechanics, elastodynamics, theoretical physics and chemistry, and electronics,
oscillatory problems of second-order ordinary differential equations (ODEs) can be found.
An oscillatory problems of second-order ODEs have the following form:

y′′ = f
(
t, y
)
, y(t0) = y0, y′(t0) = y′

0. (1.1)

Anm-stage Runge-Kutta-Nyström (RKN)method for the numerical integration of the
IVP is given by

yn+1 = yn + hy′
n + h2

m∑

i=1

bif(tn + cih, Yi) (1.2)

y′
n+1 = y′

n + h
m∑

i=1

b′if(tn + cih, Yi), (1.3)
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Table 1: m-stage DIRKN pair.

c1 λ̂

c2 a21 λ̂

c3 a31 a32 λ̂
...

...
...

... λ̂

cm am,1 am,2 . . . am,m−1 λ̂

b1 b2 . . . bm−1 bm
b

′
1 b

′
2 . . . b

′
m−1 b

′
m

b̂1 b̂2 . . . b̂m−1 b̂m
b̂

′
1 b̂

′
2 . . . b̂

′
m−1 b̂

′
m

where

Yi = yn + cihy
′
n + h2

m∑

j=1

aijf
(
tn + cih, Yj

)
. (1.4)

The RKN parameters aij , bj , b
′
j , and cj are assumed to be real and m is the number of

stages of the method. Introduce the m-dimensional vectors c, b, and b′ and m × m matrix
A, where c = [c1, c2, . . . , cm]

T , b = [b1, b2, . . . , bm]
T , b′ = [b′1, b

′
2, . . . , b

′
m]

T , and A = [aij],
respectively. The latter contains the class of Diagonally Implicit RKN (DIRKN) methods
for which all the entries in the diagonal of A are equal. An embedded r(s) pair of DIRKN
methods is based on the method (c,A, b, b′) of order r and the other DIRKN method
(c,A, b̂, b̂′) of order s (s < r) and can be expressed in Butcher notation by the table of
coefficients (see Table 1).

Several authors in their papers have developed numerical methods for this class of
problems, for example, van der Houwen and Sommeijer [1, 2], Sideridis and Simos [3],
Garcı́a et al. [4], and Senu et al. [5]. Next, Van de Vyver [6] and Senu et al. [7] obtained
explicit RKN method with minimal phase lag. Franco [8] have developed explicit hybrid
method for periodic IVPs. For implicit RKN methods, see for example, van der Houwen and
Sommeijer [2], Sharp et al. [9]. Imoni et al. [10] and Al-Khasawneh et al. [11] have developed
general purpose of DIRKN methods with variable stepsize which is not related to dispersion
property. Another classes of numerical methods for solving (1.1) are exponentially fitted or
phase fitted in which the period or frequency is known in advance (see e.g., [12–21]).

Most of the numerical methods developed for solving (1.1) are in constant stepsize
(see [1–3, 6, 22, 23]). In this paper, the development of efficient DIRKNmethods with reduced
phase-lag in variable stepsize is studied. The strategies introduced in Dormand et al. [24]
and Simos [18] for finding the optimized pair is used and also new implementation code is
discussed in this paper.

In this paper, dispersion relations are developed and used together with algebraic
conditions to be solved explicitly. In the following section, the construction of the new 4(3)
pairs of DIRKN method is described. Its coefficients are given using the Butcher tableau
notation. Finally, numerical tests on second-order differential equation problems possessing
an oscillatory solutions are performed.
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Figure 1: Efficiency curves for Problem 1.

2. Analysis of Phase-Lag and Stability

In this section, we will discuss the analysis of phase-lag for RKNmethod. The first analysis of
phase-lag was carried out by Bursa and Nigro [25], then followed by Gladwell and Thomas
[26] for the linear multistep method, and for explicit and implicit Runge-Kutta(-Nyström)
methods by van der Houwen and Sommeijer [1, 2].

The phase-lag analysis of the method (1.2)-(1.3) is investigated using the homoge-
neous test equation

y′′ = (iν)2y(t). (2.1)

By applying the general method (1.2)-(1.3) to the test equation (2.1) yields
[
yn+1

hy′
n+1

]
= D

[
yn

hy′
n

]
, z = νh,

D(H) =

[
1 −HbT (I +HA)−1e 1 −HbT (I +HA)−1c
−Hb

′T (I +HA)−1e 1 −Hb
′T (I +HA)−1c

]

,

(2.2)
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Figure 2: Efficiency curves for Problem 2.

where H = z2, e = [1 · · · 1]T , c = [c1 · · · cm]T . Here D(H) is the stability matrix of the RKN
method and its characteristic polynomial

ξ2 − tr
(
D
(
z2
))

ξ + det
(
D
(
z2
))

= 0 (2.3)

is the stability polynomial of the RKN method. Solving the difference system (2.2), the
computed solution is given by

yn = 2|c|∣∣ρ∣∣n cos(ω + nφ
)
. (2.4)

The exact solution of (2.1) is given by

y(tn) = 2|σ| cos(χ + nz
)
. (2.5)

Equations (2.4) and (2.5) led to the following definition.
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Figure 3: Efficiency curves for Problem 3.

Definition 2.1 (phase-lag). Apply the RKN method (1.2)-(1.3) to (1.1). Next, we define the
phase-lag ϕ(z) = z − φ. If ϕ(z) = O(zq+1), then the RKN method is said to have phase-lag
order q. Additionally, the quantity α(z) = 1−|ρ| is called amplification error. If α(z) = O(zv+1),
then the RKN method is said to have dissipation order v.

Let us denote

R
(
z2
)
= trace(D), S

(
z2
)
= det(D). (2.6)

From Definition 2.1, it follows that

ϕ(z) = z − cos−1
(

R
(
z2
)

2
√
S(z2)

)

,
∣∣ρ
∣∣ =
√
S(z2). (2.7)



6 Discrete Dynamics in Nature and Society

10.80.60.40.20

0

−2

−4

−6

−8

−10

200000150000100000500000

0

−2

−4

−6

−8

−10

Function evaluations

DIRK4(3)Butcher
DIRKN4(3)Imoni

DIRKN4(3)Raed
DIRKN4(3)8New
DIRKN4(3)6New

lo
g 1

0(
M

A
X

E
)

lo
g 1

0(
M

A
X

E
)

Time (seconds)

Figure 4: Efficiency curves for Problem 4.

Let us denote R(z2) and S(z2) in the following form:

R
(
z2
)
=

2 + α1z
2 + · · · + αmz

2m

(
1 + λ̂z2

)m ,

S
(
z2
)
=

1 + β1z
2 + · · · + βmz

2m

(
1 + λ̂z2

)m ,

(2.8)

where λ̂ = 2λ2 is diagonal element in the Butcher tableau.
Based on the functions R(z2) and S(z2) defined as (2.8), a few properties of the

functions R and S are summarized in the following theorem which is introduced by Van
der Houwen and Sommeijer [2]. The development of dispersion relations is according to the
following theorem.
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Theorem 2.2. (1) The functions R(z2) and S(z2) are consistent, dispersive, and dissipative of orders
r, q, and v, respectively,

eiz
[
2 cos(z) − R

(
z2
)]

+ S
(
z2
)
− 1 = O

(
zr+2
)

R
(
z2
)
− 2
√
S(z2) cos(z) = O

(
zq+2
)

S
(
z2
)
− 1 = O

(
zv+1
)
.

(2.9)

(2) An RKN method of algebraic order r, dispersion of order q, and dissipation order v possess
functions R and S that are consistent, dispersive, and dissipative of orders r, q, and v.

(3) If S(z2) ≡ 1, then the order of consistency and dispersion of R and S is equal.

Proof (see Van der Houwen and Sommeijer [2]). Based on the above theorem, the dispersion
relations are developed. For m = 3, r = 4 the dispersion relation of order six (q = 6) in
terms of αi and βi is

order 6 β3 − α3 = −8λ6 + 12λ4 +
1
360

− λ2

2
(2.10)

and for the dispersion relations up to order eight (q = 8) form = 4, r = 4 are given by

order 6 α3 − β3 = 32λ6 − 24λ4 +
2λ2

3
− 1
360

, (2.11)

order 8
1
2
α3 − β4 + α4 = 16λ8 − 10λ4 +

14λ2

45
− 3
2240

. (2.12)

The following quantity is used to determine the dissipation constant of the formula.

(i) for m = 3

1 − ∣∣ρ∣∣ =
(
3λ2 − 1

2
β1

)
z2 −

(
15
2
λ4 +

1
2
β2 − 3

2
β1λ

2 − 1
8
β1

2
)
z4

−
(
−35
2
λ6 − 3

2
β2λ

2 +
15
4
β1λ

4 − 1
4
β1β2 +

3
8
β1

2λ2 +
1
2
β3 +

1
16

β1
3
)
z6 +O

(
z8
)
.

(2.13)

(ii) for m = 4

1 − ∣∣ρ∣∣ =
(
4λ2 − 1

2
β1

)
z2 +

(
−12λ4 − 1

2
β2 +

1
8
β1

2 + 2β1λ2
)
z4

+
(
1
4
β1β2 − 1

2
β1

2λ2 + 2 β2λ
2 − 1

2
β3 − 1

16
β1

3 + 32λ6 − 6β1λ4
)
z6 +O

(
z8
)
.

(2.14)

Notice that the fourth-order method is already dispersive order four and dissipative
order five due to consistency of the method. Furthermore, dispersive order is even and
dissipative order is odd.
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Figure 5: Efficiency curves for Problem 5.

We next discuss the stability properties of method for solving (1.1) by considering the
scalar test problem (2.1) applied to the method (1.2)-(1.3), from which the expression given
in (2.2) is obtained. Eliminating y′

n and y′
n+1 in (2.2), we obtain a difference equation of the

form

yn+2 − R(H)yn+1 + S(H)yn = 0. (2.15)

The characteristic equation associated with (2.15) is given as in (2.3). Since our concerned
here is with the analysis of high-order dispersive RKN method, we therefore drop the
necessary condition of periodicity interval that is, S(H) ≡ 1. Hence, the method derived will
be with empty interval of periodicity. We now consider the interval of absolute stability of
RKNmethod. We therefore need the characteristic equation (2.3) to have roots with modulus
less than one so that approximate solution will converge to zero as n tends to infinity. For
convenience, we note the following definition adopted for method (2.2).

Definition 2.3. An interval (−Ha, 0) is called the interval of absolute stability of the method
(2.2) if for all H ∈ (−Ha, 0), |ξ1,2| < 1.
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Figure 6: Efficiency curves for Problem 6.

3. Construction of the Method

In the following, we will derive a three-stage fourth-order and a four-stage fourth-order
accurate DIRKN method with dispersive order six and eight, respectively, by taking into
account the dispersion relation in Section 2. The RKN parameters must satisfy the following
algebraic conditions to find fourth-order accuracy as given in Hairer and Wanner [27]:

order 1
∑

b′i = 1 (3.1)

order 2
∑

bi =
1
2
,

∑
b′ici =

1
2

(3.2)

order 3
∑

bici =
1
6
,

1
2

∑
b′ic

2
i =

1
6

(3.3)

order 4
1
2

∑
bic

2
i =

1
24

,
1
6

∑
b′ic

3
i =

1
24

,
∑

b′iaijcj =
1
24

(3.4)
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order 5
1
6

∑
bic

3
i =

1
120

,
∑

biaijcj =
1

120
,

1
24

∑
b′ic

4
i =

1
120

, (3.5)

1
4

∑
b′iciaijcj =

1
120

,
1
2

∑
b′iaijc

2
j =

1
120

. (3.6)

For most methods, the ci need to satisfy

1
2
c2i =

m∑

j=1

aij (i = 1, . . . , m). (3.7)

The following strategies are used for developing our new efficient pairs.

(1) The high-order DIRKN formula with high order of dispersion. Our aim is to find
the ratio κ (phase-lag order/algebraic order) as high as possible and the dissipation
constant is “small”.

(2) The following quantities as in [24] should be as small as possible:

(a) C(s+2) = ‖τ̂ (s+2) − τ (s+2)‖2/‖τ̂ (s+1)‖2 and C
′(s+2) = ‖τ̂ ′(s+2) − τ

′(s+2)‖2/‖τ̂ ′(s+1)‖2,
(b) B(s+2) = ‖τ̂ (s+2)‖2/‖τ̂ (s+1)‖2 and B

′(s+2) = ‖τ̂ ′(s+2)‖2/‖τ̂ ′(s+1)‖2,
where τ̂ (s+1) and τ̂

′(s+1) are called error coefficients for ŷn+1 and ŷ′
n+1, respec-

tively.

(3) The strategy to control the error is based on the phase-lag procedure first introduced
by Simos [18] and also see [19, 20]. A local error estimation at the point tn+1 is
determined by the expressions δn+1 = ŷn+1 − yn+1, δ

′
n+1 = ŷ′

n+1 − y′
n+1 where ŷn+1 and

ŷ′
n+1 are solutions using the third-order formula. These local error estimations can

be used to control the step size h by the standard formula [28, 29]

hn+1 = 0.9hn

(
Tol
Est

)1/(s+1)

, (3.8)

where 0.9 is a safety factor, Est =max {‖δn+1‖∞, ‖δ′
n+1‖∞} represents the local error

estimation at each step and Tol is the accuracy required which is the maximum
allowable local error. If Est < Tol, then the step is accepted, and we applied
the accepted procedure of performing local extrapolation (or higher-order mode)
meaning that the more accurate approximation will be used to advance the
integration. If Est ≥ Tol, then the step is rejected and the h will be updated using
formula (3.8).

3.1. The Three-Stage DIRKN Formula

3.1.1. The Fourth-Order Formula

In this section, we derive the fourth-order formula with dispersive order six and dissipative
order five. Sharp et al. [9] stated that fourth-order method with dispersive order eight does
not exist. Therefore, the method of algebraic order four (r = 4) with dispersive order six
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(q = 6) and dissipative order five (v = 5) is now considered. From algebraic conditions
(3.1)–(3.4) and (3.7), it formed eleven equations with thirteen unknowns to be solved. We let
b1 = 0 and λ be a free parameter. Therefore, the following solution of one-parameter family is
obtained:

a31 =

[
288λ3 − 24λ − 72λ2 − 24λ2

√
3 + 3 − √

3 + 12λ
√
3
]

[
12
(
12λ − 3 +

√
3
)] ,

a21 = −2λ2 + 1
6
−
√
3

12
, a32 = −1 + 96λ3 − 8λ − 24λ2

2
(
12λ − 3 +

√
3
) , b1 = 0, b2 =

1
4
+
√
3

12
,

b3 =
1
4
−
√
3

12
, b′1 = 0, b′2 =

1
2
, b′3 =

1
2
, c1 = 2λ, c2 =

1
2
−
√
3
6

, c3 =
1
2
+
√
3
6

.

(3.9)

From the above solution, we are going to derive a method with dispersion of order-six.
The six order dispersion relation (2.10) needs to be satisfied and this can be written in terms
of RKN parameters which correspond to the above family of solution yields the following
equation:

(
2880

√
3λ4 +

(
960 − 1440

√
3
)
λ3 +

(
120 − 40

√
3
)
λ2 +

(
120

√
3 − 192

)
λ − 11

√
3 + 18

)

240
(
12λ − 3 +

√
3
) = 0,

(3.10)

and solving for λ yields

−0.1015757589, 0.09374433416, 0.2097189023, and 0.1056624327. (3.11)

The first two values will give us a nonempty stability interval while the others will produce
themethodswith empty stability interval. Taking the first two values of λ gives us two fourth-
order diagonally implicit RKN methods with dispersive order six. For λ = −0.1015757589 it
will give the method with PLTE

∥∥∥τ (5)
∥∥∥ = 1.875825 × 10−3,

∥∥∥τ ′(5)
∥∥∥
2
= 1.697439 × 10−3 (3.12)

for yn and y′
n, respectively. The dissipation constant and the stability interval are 1.19×10−4z6+

O(z8) and (−8.10, 0), respectively.
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3.1.2. The Third-Order Formula

Based on the values of A and c in Section 3.1.1, we now derive the three-stage third-order
embedded formula. Solving equations (3.1)–(3.3) simultaneously yields a solution for b̂1 and
b̂2 in terms of b̂3,

b̂1 = −0.147183860011593 + 1.39296300725792b̂3

b̂2 = 0.647183860011593 − 2.39296300725792b̂3

(3.13)

and b̂′i is the same as the fourth-order formula in Section 3.1.1. With this solution, B(5) and
C(5) are functions in terms of b̂3. Next, we plot the graph for B(5) and C(5) against b̂3. We only
consider b̂3 = [0.107, 0.3] with B(5) and C(5) lying between [2.612, 0.189], and [0.909, 0.189],
respectively. From numerical experiments, the optimal pair b̂3 = 0.1085 and giving B(5) =
1.3184 and C(5) = 0.6367, respectively, and ‖τ̂ (4)‖ = 1.624880 × 10−3. We denote this pair as
DIRKN4(3)6New method (see Table 2).

3.2. The Four-Stage DIRKN Formula

3.2.1. The Fourth-Order Formula

To derive four-stage fourth-order (r = 4) with dispersive order eight (q = 8), (3.1)–
(3.4) and (3.7) together with the dispersion relation of order six equation (2.11) are solved
simultaneously and will yield the following solution:

c1 = 2λ, c2 =
1
2
−
√
3
6

, c3 =
1
2
+
√
3
6

, c4 =
1
2
−
√
3
6

, a21 =
1
6
−
√
3

12
− 2λ2,

a32 =
1
6
+
√
3

12
− 2λ2, a43 =

1
6
−
√
3

12
− 2λ2, a31 = a41 = a42 = 0,

a11 = a22 = a33 = a44 = 2λ2, b1 = b′1 = b′2 = 0, b′3 =
1
4
−
√
3

12
,

b2 =
3
(
80λ2 − 1

)

10
(√

3 − 3 + 24λ2
√
3 + 24λ − 12λ

√
3 − 288λ3 + 72λ2

) ,

b4 = − 1 − 60λ2
√
3 − 15λ + 5λ

√
3 + 360λ3 + 120

√
3λ3

5
(√

3 − 3 + 24λ2
√
3 + 24λ − 12λ

√
3 − 288λ3 + 72λ2

) .

(3.14)
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Table 2: The DIRKN4(3)6New method.

−0.2031515178 0.02063526960
1/2 − √

3/6 0.001693829777 0.02063526960
1/2 +

√
3/6 −0.0040532720 0.2944222365 0.02063526960

0 1/4 +
√
3/12 1/4 − √

3/12
0 1/2 1/2

0.0039526263 0.3875473737 0.1085
0 1/2 1/2

By substituting the above solution to the dispersion relation of order eight (q = 8),
(2.12) gives us expression in terms of λ

(
5806080λ7 − 1451520λ6 − 1451520λ6

√
3 + 241920λ5

√
3 − 967680λ5

+ 60480λ4 + 181440λ4
√
3 − 80640

√
3λ3 + 147168λ3 + 44856λ2 − 29736λ2

√
3

+ 924λ
√
3 − 1752λ − 585 + 349

√
3
)
/
[
120960

(
12λ −

√
3 + 3

)]
= 0.0

(3.15)

and solving for λ will give us the values −0.2752157925, −0.08524516029, 0.04719733276,
0.1682412065, 0.2490198846, 0.6846776634, and −0.1056624327. Numerical results show that
choosing λ = −0.08524516029 will give us smallest dissipation constant hence more accurate
scheme compared to the others. The dissipation constant and the stability interval are
4.84 × 10−5z6 +O(z8) and (−8.188, 0), respectively.

3.2.2. The Third-Order Formula

Based on the values of A and c in Section 3.2.1, here we solve third-order embedded formula
for the values of b̂i and b̂′i obtaining

b̂1 = −0.159774247344685 + 1.51211971235225b̂3

b̂2 = 0.659774247344687 − 2.51211971235225b̂3 − b̂4

b̂′1 = 0, b̂′2 =
1
2
− b̂′4, b̂′3 =

1
2
,

(3.16)

where b̂3, b̂4, and b̂′4 are free parameters. The B(5) and C(5) are functions in terms of b̂3 and b̂4

while B
′(5) and C

′(5) are in terms of b̂′4. By setting b̂3 = 0.108, we have B(5) and C(5) in terms of
b̂4.

Similarly, we plot the graph for B(5) and C(5) against b̂4. Consider b̂4 ∈ [0.13, 0.3] with
B(5) and C(5) lying between [1.324, 2.170] and [0.302, 1.745], respectively, while b̂′4 ∈ [0.0, 0.4]
with B

′(5) andC
′(5) lying between [0.732, 2.45] and [0.592, 1.165], respectively. From numerical

experiments, the optimal pair chosen are b̂4 = 0.14 and b̂′4 = 0.28. With these values will give

B(5) = 1.369, C(5) = 0.460, B
′(5) = 1.277, C

′(5) = 0.819 (3.17)
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Table 3: The DIRKN4(3)8New method.

c1 λ̂

1/2 − √
3/6 (1/6 − √

3/12 − λ̂ ) λ̂

(1/2 +
√
3/6) 0 (1/6 +

√
3/12 − λ̂) λ̂

1/2 − √
3/6 0 0 (1/6 − √

3/12 − λ̂) λ̂

0 b2 1/4 − √
3/12 b4

0 0 1/2 1/2
b̂

′
1 b̂

′
2 0.108 0.14

0 0.22 0.5 0.28
Where c1 = −0.1704903206, b2 = 0.2332957499, b4 = 0.1610418175, b̂

′
1 = 0.00353468159, b̂

′
2 = 0.24846531841 and λ̂ = 2λ2 =

0.01453347471.
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Figure 7: Efficiency curves for Problem 7.

and ‖τ̂ (4)‖ = 1.294485 × 10−3 and ‖τ̂ ′(4)‖ = 1.645005 × 10−3. The pair we denote by
DIRKN4(3)8New method (see Table 3).
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Table 4: Numerical results for Problem 1 to Problem 8 with tend = 104.

Problem h DIRKN4(3)6 DIRKN4(3)8 PFRKN RKND

1
0.025 3.641739(−2) 5.515151(−4) 7.685603(−3) 3.246585(−1)
0.0125 1.121169(−3) 1.412513(−5) 2.381676(−4) 2.064614(−2)
0.00625 3.522474(−5) 3.162919(−6) 8.044719(−6) 1.293771(−3)

2
0.25 4.968941(−3) 8.176026(−5) 1.059320(−3) 4.581100(−2)
0.125 1.553957(−4) 2.266041(−6) 3.290638(−5) 2.860912(−3)
0.0625 4.858102(−6) 3.894456(−8) 1.025317(−6) 1.789827(−4)

3
0.025 5.050886(−2) 7.713254(−4) 1.065804(−2) 4.502978(−1)
0.0125 1.554479(−3) 1.993991(−5) 3.302186(−4) 2.863241(−2)
0.00625 4.884725(−5) 4.407458(−6) 1.114967(−5) 1.794225(−3)

4
0.025 5.050886(−2) 7.713235(−4) 1.065799(−2) 4.502978(−1)
0.0125 1.554479(−3) 1.993979(−5) 3.302153(−4) 2.863241(−2)
0.00625 4.884726(−5) 4.407458(−6) 1.114963(−5) 1.794225(−3)

5
0.25 3.142511(−5) 2.225689(−6) 5.906399(−6) 7.329390(−5)
0.125 9.872922(−7) 1.311623(−7) 2.060768(−7) 4.155967(−6)
0.0625 3.122323(−8) 7.739299(−9) 8.477345(−9) 4.155967(−6)

6
0.025 8.130019(−1) 5.143138(−3) 6.323161(−2) 1.581409(−1)
0.0125 7.270152(−3) 1.088848(−4) 1.513299(−3) 6.194539(−2)
0.00625 2.200129(−4) 3.162925(−6) 4.672316(−5) 4.048100(−3)

7
0.2 3.103741(−3) 4.927970(−5) 6.483674(−4) 1.326941(−2)
0.1 9.720586(−5) 1.472241(−6) 1.980997(−5) 8.293575(−4)
0.05 3.068984(−6) 7.146919(−8) 6.187652(−7) 5.183626(−5)

8
0.004 2.227290(−6) 2.224132(−6) 1.495525(−5) 1.548512(−5)
0.002 1.231234(−5) 1.231204(−5) 1.310806(−5) 1.314136(−5)
0.001 1.735729(−5) 1.735723(−5) 1.740702(−5) 1.740910(−5)

4. Problems Tested

In order to evaluate the effectiveness of the new embedded methods, we solved several
problems which have oscillatory solutions. The code developed uses constant and variable
step size mode and the results obtained are compared with the methods proposed in
[10, 11, 21, 29, 30]. Table 4 and Figures 1, 2, 3, 4, 5, 6, 7, and 8 show the numerical results
for all methods used. These codes have been denoted by the following:

(i) DIRKN4(3)8New: a new 4(3) pair with phase-lag order 8 derived in this paper.

(ii) DIRKN4(3)6New: a new 4(3) pair with phase-lag order 6 derived in this paper.

(iii) RKND: a fourth-order explicit RKN derived by Dormand [29].

(iv) FPRKN: a phase-fitted fourth-order explicit RKN derived by Papadopoulos et al.
[21].

(v) DIRKN4(3)Imoni: a 4(3) RKN pair of three-stage derived by Imoni et al. [10].

(vi) DIRKN4(3)Raed: a 4(3) RKN pair derived by Al-Khasawneh et al. [11].

(vii) DIRK4(3)Butcher: a 4(3) Runge-Kutta pair with six-stage, L-stable, and FSAL
property derived by Butcher and Chen [30].
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Problem 1 (homogenous). One has

d2y(t)
dt2

= −100y(t), y(0) = 1, y′(0) = −2, 0 ≤ t ≤ 10. (4.1)

Exact solution y(t) = −(1/5) sin(10t) + cos(10t)

Problem 2 (inhomogeneous problem studied by Allen and Wing [31]). One has

d2y(t)
dt2

= −y(t) + t, y(0) = 1, y′(0) = 2, 0 ≤ t ≤ 15π. (4.2)

Exact solution y(t) = sin(t) + cos(t) + t

Problem 3 (problem studied by van der Houwen and Sommeijer [1]). One has

y′′(t) = −v2y(t) +
(
v2 − 1

)
sin(t), y(0) = 1, y′(0) = v + 1, (4.3)

where v 
 1, t ∈ [0, 50].
Exact solution is y(t) = cos(vt)+sin(vt)+sin(t). Numerical result is for the case v = 10.

Problem 4 (inhomogeneous system studied by Franco [8]). One has

y′′(t) +

⎛

⎜⎜
⎝

101
2

−99
2

−99
2

101
2

⎞

⎟⎟
⎠ y(t) = ε

⎛

⎜⎜
⎝

93
2

cos(2t) −99
2

sin(2t)

93
2

sin(2t) −99
2

cos(2t)

⎞

⎟⎟
⎠,

y(0) =
(−1 + ε

1

)
, y′(0) =

( −10
10 + 2ε

)
, t ∈ [0, 10].

(4.4)

Exact solution

y(t) =
(− cos(10t) − sin(10t) + ε cos(2t)

cos(10t) + sin(10t) + ε sin(2t)

)
(4.5)

Problem 5 (The Duffing’s equations as given in [32]). One has

y′′(t) + y(t) +
(
y(t)
)3 = 0.002 cos(1.01t), y(0) = 0.200426728067, y′(0) = 0, t ∈ [0, 10].

(4.6)

The exact solution computed by the Galerkin method and given by

y(t) =
4∑

i=0

a2i+1 cos[1.01(2i + 1)t], (4.7)
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with a1 = 0.200179477536, a3 = 0.246946143 × 10−3, a5 = 0.304014 × 10−6, a7 = 0.374 × 10−9,
and a9 < 10−12.

Problem 6 (Inhomogeneous problem studied by Lambert and Watson [33]). One has

d2y1(t)
dt2

= −v2y1(t) + v2f(t) + f ′′(t), y1(0) = a + f(0), y′
1(0) = f ′(0),

d2y2(t)
dt2

= −v2y2(t) + v2f(t) + f ′′(t), y2(0) = f(0), y′
2(0) = va + f ′(0),

0 ≤ t ≤ 20

(4.8)

Exact solution is y1(t) = a cos(vt) + f(t), y2(t) = a sin(vt) + f(t), f(t) is chosen to be e−0.05t

and parameters v and a are 20 and 0.1, respectively.

Problem 7 (an almost periodic orbit problem given in stiefel and bettis [34]). One has

d2y1(t)
dt2

+ y1(t) = 0.001 cos(t), y1(0) = 1, y′
1(0) = 0,

d2y2(t)
dt2

+ y2(t) = 0.001 sin(t), y2(0) = 0, y′
2(0) = 0.9995, 0 ≤ t ≤ 1000.

(4.9)

Exact solution y1(t) = cos(t) + 0.0005t sin(t), y2(t) = sin(t) − 0.0005t cos(t).

Problem 8 (linear Strehmel-Weiner problem studied in Cong [35]). One has

y′′(t) =

⎛

⎝
−20.2 0 −9.6
7989.6 −10000 −6004.2
−9.6 0 −5.8

⎞

⎠y(t) +

⎛

⎝
150 cos(10t)
75 cos(10t)
75 cos(10t)

⎞

⎠, (4.10)

y(0) =

⎛

⎝
1
2
−2

⎞

⎠, y′(0) =

⎛

⎝
0
0
0

⎞

⎠, t = [0, 10] (4.11)

Exact solution

y(t) =

⎛

⎝
cos(t) + 2 cos(5t) − 2 cos(10t)
2 cos(t) + cos(5t) − cos(10t)
−2 cos(t) + cos(5t) − cos(10t)

⎞

⎠. (4.12)

5. Numerical Results

In this section, we evaluate the effectiveness of the new DIRKN pairs derived in the previous
section when they are applied to the numerical solution of eight problems which are model
and nonmodel problems for constant and variable step size.

For constant step size, Table 4 shows the absolute maximum error for fourth-order
DIRKN4(3)6New, DIRKN4(3)8New, PFRKN, and RKND methods when solving Problems
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Figure 8: Efficiency curves for Problem 8.

1–8 with three different step values. From numerical results in Table 4, we observed that the
new DIRKN4(3)8New method is more accurate compared with PFRKN and RKND method
which is not related to the dispersion of the method. Also the new DIRKN4(3)6New method
is more accurate compared with RKND method while comparable with PFRKN method for
certain problem. Notice that all the methods are of the same algebraic order.

For variable step size, Figures 1–8 show the decimal logarithm of the maximum global
error for the solution (MAXE) versus the function evaluations and also the decimal logarithm
of the maximum global error for the solution (MAXE) versus the time taken. From Figures
1–8, we observed that DIRKN4(3)6New and DIRKN4(3)8New performed better compared
to DIRKN4(3)Raed, DIRKN4(3)Imoni, and DIRK4(3)Butcher for integrating second-order
differential equations possessing an oscillatory solution in terms of function evaluations.
This is due to the fact that when using DIRK4(3)Butcher, the second-order system of
ODEs needs to be transformed to a first-order system and hence the dimension is doubled.
Furthermore, the DIRK4(3)Butcher method has five effective stages per step. This means that
the function evaluations per step for DIRK4(3)Butcher are more than the function evaluations
per step used in the DIRKN4(3)6New and DIRKN4(3)8New methods which have three
and four function evaluations per step, respectively. Meanwhile the DIRKN4(3)Raed,
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DIRKN4(3)Imoni methods are less accurate compared with the DIRKN4(3)6New and
DIRKN4(3)8New when phase lag and dissipation is considered. Therefore the new methods
converges faster and consequently less steps are needed for a specified value of tolerance
even though DIRKN4(3)Raed and DIRKN4(3)Imoni have the same number of stages per
step with DIRKN4(3)8New and DIRKN4(3)6New method respectively.

6. Conclusion

In this paper, we have derived two 4(3) pairs, namely, DIRKN4(3)6New and
DIRKN4(3)8New which have dispersive order six and eight, respectively, with “small” dis-
sipation constant which is suitable for problems with oscillating solutions and moderate fre-
quency. From the results shown in Table 4 and Figures 1–8, we conclude that the newmethods
are more efficient for integrating second-order equations possessing an oscillatory solution
when compared to the RKND derived in [29], PFRKN derived in [21], DIRK4(3)Butcher as
in [30] and also with the others the same type of pairs for example, DIRKN4(3)Imoni pair
derived in [10] and DIRKN4(3)Raed derived in [11]. The DIRKN4(3)6New method is the
most efficient method since it has three function evaluations per step.
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