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This paper investigates the existence of solutions for fractional-order neutral impulsive differential
inclusions with nonlocal conditions. Utilizing the fractional calculus and fixed point theorem for
multivalued maps, new sufficient conditions are derived for ensuring the existence of solutions.

The obtained results improve and generalize some existed results. Finally, an illustrative example
is given to show the effectiveness of theoretical results.

1. Introduction

This paper deals with the existence of solutions for the following fractional-order differential
inclusions with impulsive nonlocal conditions:

‘D[x(t) - gt x()] € F(t,x(t)), teI=[0,T], t#t,
Ax|,, € Li(x(t)), k=1,...,m, 0<t;<---<t,<T, (1.1)
x(0) = xo + h(x),

where 0 < g <1 and °D1 is the Caputo fractional derivative. Iy : R — P(R) (k=1,...,m,)
and F : I x R — P(R) are multivalued maps (/(R) is the family of all nonempty subsets



2 Discrete Dynamics in Nature and Society

of R). Ax|i=y, = x(t;) — x(t), x(t;), x(t;) represents the right and left limits of x(t) at t = ty,
respectively. g, h are given functions to be specified later.

The nonlocal problem was more general and has better effect than the classical Cauchy
problems. So it has been studied extensively under various conditions in the literature [1-
7] and the references contained therein. In [2], Byszewski and Lakshmikantham considered
the existence and uniqueness of mild solutions when f and g satisfied Lipschitz conditions.
In [3], Ntouyas and Tsamatos studied the case of compactness conditions of g and T(f).
Liang et al. in [5] discussed the nonlinear nonlocal Cauchy problems when T(t) was
compact and g was Lipschitz and g was not Lipschitz and not compact, respectively.
Xue in [6] established existence results of mild solutions for semilinear differential
equations under various conditions on f, g, and T(t). Subsequently in [7], the author
examined the semilinear differential equations when T'(t) was compact and g failed to be
compact.

The theory of impulsive differential equations and differential inclusions has
received much attention for the past decades because of its wide applicability in control,
electrical engineering, mechanics, biology, and so on. For more details on this theory
and applications, we refer to the monograph of Lakshmikantham et al. [8], Samoilenko
and Perestyuk [9] and the references therein. In [10], Abada et al. discussed the
impulsive differential inclusions with delays when A was the infinitesimal generator of
a strongly continuous semigroup T(t). In the following work [11], they obtained some
existence and controllability results when A was a nondensely defined closed linear
operator.

Since fractional-order differential equations have proved to be valuable tools in
the modeling of many phenomena in physics and technical sciences, differential equa-
tions involving Riemann-Liouville as well as Caputo derivatives have been investigated
extensively in the last decades (see [12-28] and the references therein). In [13], Mophou
obtained the existence and uniqueness of mild solutions for the semilinear impulsive
fractional differential equations by means of the Schauder fixed point theorem in Banach
spaces. In [18], Benchohra and Slimani established sufficient conditions for the existence
of solutions for a class of initial value problem for impulsive fractional differential
equations. In [21], Chang and Nieto studied the existence of solutions for a class of
fractional differential inclusions with boundary conditions by means of Bohnenblust-Karlin
fixed point theorem. Balachandran et al. in [25] investigated fractional-order impulsive
integrodifferential equations in Banach spaces. In [27], Agarwal and Ahmad studied
the existence of solutions for nonlinear fractional differential equations and inclusions
of order g € (3,4] with antiperiodic boundary conditions. The existence results were
established for convex as well as nonconvex multivalued maps by some fixed point theorems,
such as Leray-Schauder degree theory, and nonlinear alternative of Leray-Schauder
type.

However, there is little information in the literature on neutral fractional-order
impulsive differential inclusions with nonlocal conditions. Motivated by works mentioned
above, we consider the existence results of (1.1) by using fixed point theorem for multivalued
maps.

This paper is organized as follows. In Section 2, we will recall briefly some basic
definitions and preliminary results which will be used throughout the paper. In Section 3,
based on the fractional calculus and fixed point theorem for multivalued maps, we will prove
the existence of solution to the problem (1.1). In Section 4, An example is given to show the
effectiveness of our abstract results.
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2. Preliminaries

In this section, we introduce some definitions, notes, and preliminary facts which will be used
in this paper.

Let C(I, R) be a Banach space, with the norm ||x||c = sup{|x(t)|,t € I}. Let L*(I, R)
denote the space of Bochner integrable functions on I with the norm ||x||z» = (foT lx(£)|Pd)'/?.

Let (X,] - ||) be a Banach space. P(X) is the family of all nonempty subsets of
X. Poa(X), Pa(X), Pog,a(X), Pep,ev(X), and Pog,a,ev (X) denote, respectively, the family of all
nonempty bounded, closed, bounded-closed, compact-convex, and bounded-closed-convex
subsets of X. A multivalued map G : X — P(X) is convex (closed) valued if G(x) is convex
(closed) for all x € X. We say that G is bounded on bounded sets if G(B) = UyepG(x) is bounded
in X for all B € Pog(X).

A mapping G is called upper semicontinuous (u.s.c.) on X if, for each xy € X, the set
G(xp) is a nonempty closed subset of X and if, for each open set N of X containing G(xy),
there exists an open neighborhood Nj of xj such that G(Ny) € N. Gis completely continuous
if G(V) is relatively compact for every V € Poq(X). If the multivalued map G is completely
continuous with nonempty compact values, then G is u.s.c. if and only if G has a closed graph
(i.e., xn = Xu, Yn — Vs, Yn € G(x,) imply y. € G(x)).

A mapping G has a fixed point if there exists x € X such that x € G(x). A multivalued
map G : I — Py(X) is said to be measurable if, for each x € X, the function

t—d(x,G(t)) =inf{|x —z| : z € G(t)} (2.1)

is measurable.

Definition 2.1. A multivalued map F : I x X — p(X) is L!-Carathéodory if

(i) t — F(t,u) is measurable for each u € X
(ii) u — F(t, u) is upper semicontinuous for almost all t € I;

(iii) for each q > 0, there exists ¢, € LY(I, R*) such that
IE(tu)llp =sup{llvll : v € F(t,u)} < ¢q(t), (22)

forall ||u|| < gand a.e. t € 1.
Definition 2.2. A multivalued operator N : X — Py(X) is called

(a) y-Lipschitz if there exists y > 0 such that

Hi(N(x),N(y)) <yd(x,y), x,yeX; (2.3)

(b) a contraction if it is y-Lipschitz with y < 1.

The key tool in our approach is the following fixed point theorem.
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Lemma 2.3 (see [29]). Let B(0,r) and B[O, r] denote, respectively, the open and closed balls in a
Banach space X centered at origin and of radius r, and let @1 : X — Poge,ev(X) and @, : B[0,r] —
Pey,co(X) be two multivalued operators satisfying the following:

(a) @ is a contraction,

(b) @, is completely continuous.
Then either

(i) the operator inclusion x € ®x + Dyx has a solution in B[O, r] or

(ii) there exists an u € X with ||u|| = r such that Au € ®u + D,u, for some A > 1.

Lemma 2.4 (see [30]). Let I be a compact real interval and X a Banach space. Let F be an L!-
Caratheodory multivalued mapping with compact convex values with Sg,, #@, where Sg,, = {f €
LY(I,X) : f(t) € F(t,y(t)),a.et € I} and let T : LY(I,X) — C(I,X) be a linear continuous
mapping. Then the operator

['oSp:C(I, X) — P (C(I, X)),  x+—= (T'oSF)(x) = I'(Skx) (2.4)

is a closed graph operator in C(I, X) x C(I, X).

For more details on multivalued map, see the books of Aubin and Cellina [31],
Deimling [32].

Now, we recall some definitions and facts about fractional derivatives and fractional

integrals of arbitrary order, see [33].

Definition 2.5. The Riemann-Liouville fractional integral operator of order g > 0 of a function
h is defined by

IIh@t) = f t (t—s)1 " h(s)ds, (2.5)

1
I'(a)
where I is the gamma function.

Definition 2.6. The Caputo fractional-order derivative of order g > 0 of a function h(t) is
defined by

1 t
‘DI h)(t) = ——— f (t—s)" "W (s)ds, n-1<gq<n, neN". (2.6)
< > I'(n-q)Ja

Lemma 2.7 (see [34]). Let g > 0; then the differential equation
‘Diy(t) = h(t) (2.7)

has solutions y(t) = I9h(t) + co + c1t + cot> + -+ + cp1t"!, where c; € R, n = [q] + 1.
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Lemma 2.8 ( see [34]). Let a > 0; then
I%D*h(t) = h(t) + ag + art + axt> + - -+ + a1 " (2.8)

forsomea; €R, i=0,1,2,..., n-1, n=[a] +1.

3. Main results

In this section, main results are presented.
Let PC(I,R) = {x : I — R : x € C((tx-1,t],R), k = 0,1,...,m, and there exist
x(ty), x(t), k = 1,...,m with x(t;) = x(t)}. This set is a Banach space with the norm

Ixllpc = sup,eflx(®)]-
As a consequence of Lemmas 2.7 and 2.8, we can define the solution of problem (1.1).

Definition 3.1. The function x € PC(I, R) is said to be a solution of the problem (1.1) if x(0) =
xo + h(x), and there exist f(t) € Sgx, Jx € Ix(x(t;)) such that integral equation

t;
x(t) = xo + h(x) — g(0,x(0)) + g(t, x(t)) + ﬁogq J‘t,._] (t; — S)q—lf(s)ds -

+ ﬁf (t=5)T"f(s)ds+ > Jx, tel,

O<ti<t

is satisfied.

For the study of the system (1.1), the following hypotheses are given:
(H1) F is a Carathéodory map with compact convex values, and for each fixed x €
R, Sfx is nonempty;

(H2) there exist a function a(-) € LP(I, R*), where p > 1/g, p € N* and a nondecreasing
continuous function Q : R* — R* such that

IF(t, x)llp =sup{|f(B)] : f(£) € F(t, x(5)} < a(®)QlIx]l), (3.2)

fort € I and each x € R;

(H3) g : I x R — Ris Lipschtiz continuous with Lipschtiz constant I, and there exists
M > 0 such that |g(t, x(t))| < M;

(H4) h: PC(I,R) — Ris Lipschtiz continuous with Lipschtiz constant I;;;

(H5) I : R — P(R) (k = 1,...,m) are multivalued maps with bounded, closed, and
convex values. And there exist ¢y >0, k =1,...,m, such that

Ha(Ik(y), Ik (x)) < ckly - x

, (3.3)

forall x,y € R;
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(H6) C = ((p - 1)/ (pg — 1)) P V/PT41/P, Cy = |xo| + [R(0)] +2M + 3 |1 (0)],

m
I +20 + > ek < 1. (3.4)
k=1
The existence of solutions is now presented.

Theorem 3.2. Assume that (H1)—-(H6) are satisfied; then the problem (1.1) has at least one solution
on I provided that there exists a real number r > 0 such that

Col"(q) +C(m +1)Q(r)||all»
(1=1n = 32 )T (q)

(3.5)

Proof. We transform the problem (1.1) into a fixed point problem by considering the
multivalued operator N(x) : PC(I,R) — P(PC(I,R)):

N(x) = {(p € PC(I,R) : ¢(t) = x0 + h(x) — g(0,x(0)) + g(t, x(t)) + Z Jx
O<t;<t

(3.6)

(-5 (s + [ (t- 5T 1f(s)ds},

r(‘%)o«, It,l F() b

where f € Sgy, Jx € Ik(x(t)), k=1,...,m
Consider the multivalued operators a,  :

a(x) = {(p € PC(I,R) : p(t) = xo + h(x) — g(0,x(0)) + g(t, x(t)) + Z ]k},

O<t;<t

B(x) = {90 € PC(I,R) : ¢(t) = (ti— )T f(s)ds + r(l—q) f (t- s)‘”f(s)ds}-

(3.7)

r(q) O<t;<t L 1

It is clear that N = a + f3. This problem of finding a solution of (1.1) is reduced to find a
solution of the operator inclusions x € a(x) + f(x). In what follows, we aim to show that the
operator a + f has a fixed point, which is a solution of the system (1.1). For this purpose, We
will show that a + f satisfies all the conditions of Lemma 2.3. For better readability, the proof
will be given in several steps.

Step 1. A priori bounded on solution: we show that the second assertion of Lemma 2.3
is not true.
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Define an open ball B(0,r) € PC(I, R), where the real number r satisfies the inequality
given in condition (3.5). Let x be a possible solution of Ax € a(x)+p(x), for some real number
A > 1 with ||x|| = r. Then we have

x(t) € At <x0 + h(x) - g(0,x(0)) + g(t, x(t)) + Z ]k>
O<t;<t (3,8)
1t
(t—s)T f(s)ds.

- )T f(s)ds + —— ( ),

r(q> O<t;<t Itz 1

Hence by (H2)-(H5), we have

lx(B)] < |x0 + h(x) — g(0,x(0)) + g(t, x() + D’ Jk

O<t;<t

f — )| f(s)|ds + —— f (t- )T f(s)]ds
F(q) O<ti<t ¥ ti1 r(q> ti

< |xo| + [R(O)| + In|x|| + 2M + ch|x(t;) | + Z|Ik(0)| (3.9)
k=1 k=1

F(q)oqu‘” (t; —s)1” 1a(s)Q(||x||)ds+ ( ) f (t-s)T 161(S)Q(||x||)ds

4 C(m+1)Q(|lx[)llall
<C 1 .
o+ < n+ éq) llx|| + )

Taking the supremum over t, we get

2l < Co + <zh . i0k>”x” , Con+ DQ(IxIDlally 3.10)
k=1 r(‘?)

Substituting ||x|| = r in the above inequality yields

_ Col'(g) + Cm+ DRI lally

, 3.11
ST L -3 )T ) G

which is a contradiction to (3.5).
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Step 2. a: PC(I,R) — P(PC(I,R)) is a contraction mapping.
Indeed, let x1, x, € PC(I, R), and from (H5), we have

Hg(a(x1),a(x2)) = Ha (xo +h(x1) - g(0,x1(0)) + g(t, x1(1)) + D Ie(x1(t)),

O<t;<t

xo +h(x2) = g(0,x2(0)) + g(t, x2(£)) + D Te(x2(t))

O<t;<t

< Ha(h(x1), h(x2)) + Ha(-8(0,x1(0)),-g(0, x2(0)))

+ Ha(g(tx1(1)), g(t, x2(t))) + Hd< > I(xa (k). >, Ik(xz(tk))>

O<t;<t O<t;<t

< <lh +2lg + ch> llx1 = x2]|.

k=1

Hence by (3.4), a is a contraction mapping.
Step 3. p has compact, convex values, and it is completely continuous.

Claim 1. f is convex for each x € PC(I, R).
In fact, if ¢1 and ¢, belong to f(x), then there exist fi, f» € Sg such that

1 » 1 » ,
pi(t) = f (ti—s)T fi(s)ds + —J (t=5)T" fi(s)ds, i=1,2.
F(q) O<ti<t ¥ ti-1 r(q) ti
Let 0 < A < 1. Then, for each t € I, we have

(M1 + (1= Vo) (¢) = (ti—s)T! (Af1(s) + (1= L) fa(s))ds

r(q) O<ti<t J‘tl 1

F( y), (t -s)T 1(/\fl(s) +(1-4)fa(s))ds.

Since Sr, is convex (because F has convex values), we have

A1+ (1= Vg2 € P(x).

(3.12)

(3.13)

(3.14)

(3.15)

Claim 2. p maps bounded sets into bounded sets in PC(I, R). Letr >0, B, = {x € PC(I,R) :
llx|| £ r} be a bounded set in PC(I, R). For x € B,, ¢ € p(x), then there exists f € Sg, such

that

ot) = —5) f(s)ds + — (-9 'f(s)ds.

r(lq)0<t<tJ‘t11 ( ),

(3.16)
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Therefore,
_g)a1 e
|(p(t)| - Ij(q)0<t<tJ‘zl t S) |f(S)|dS+ r( ) :[ (t S) |f(S)|dS
< F(q) It, 1 (t: - 8)" " a(s)Q(||x|)ds + —— ( 7], (t—s)q 'a(s)Q(|xl)ds  (3.17)
c Clm+ 1)Q(T)||a||Lp.
I'(q)
Thus
C(m+1)Q(r)llall, .
: = 3.18
ol < ROl .

Claim 3. pmaps bounded sets into equicontinuous sets. Let 71, 7, € I, 71 < 72, B, be abounded
set of PC(I, R) as in Claim 2 and x € B,. Then there exists f € Sr, such that

1 1
p(t) = f s)q_lf(s)ds + — f (t—s)T" f(s)ds. (3.19)
r(q) O<ti<t ¥ ti-1 F(Q) £
By elementary computation, we have

lo(12) = (71)|

ﬁ fl (T2 = 8)7" = (11 = 8)7H|| f () || ds + F(l_‘i) f: (12— )7 | f(5)|ds

(r-1)/p
lall,Q(r) [ (™ _ _1p/ (p-1)

o (r-1)/p
+ llall»€2(r) <I (> — S)(Pq—P)/(P—l)ds>
I'(q) n

< lall€(r) ( p-1 >(P—1)/p
- TI(g) \pg-1

x [(Tz — )P/ P gy gy AN/ D) (g g P D/ D)

1\ D/
N ”a|1|“LE£§(T) < p 11> 4 ”(TZ )P,
q pq -

](P—l)/r’

(3.20)

As 71 — T, the right-hand side of the above inequality tends to zero. As a consequence
of Claims 1 to 3 together with the Arzeld-Ascoli theorem, we conclude that f is completely
continuous.
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Claim 4. p has a closed graph. Let x, — x., ¢, € p(x,), and ¢, — ¢,; we prove that ¢, €
p(x.). Now ¢, € p(x,) means that there exists f,, € Sry, such that

§)T fu(s)ds + —— (t—s)q Yfu(s)ds, tel. (3.21)

n(f) =
nlt) = r<q>0<t<tft,l <> .

We will prove that there exists f. € Sg, such that

@.(t) = (ti =) fu(s)ds + —— f (t—s)"" fu(s)ds. (3.22)

F(q)0<t<tj,1 I'(q)

Consider the continuous operator « : L'(I, X) — C(I,X)

t

_ 1 el
N0 -Fg S, oo oo o

From Lemma 2.4, it follows that x o S is a closed graph operator. Since ¢, € k o Sgy,,
we have ¢, € k o Sgy.. That is, there exists f. € Sg,, such that

Pu(t) = J‘t,l (ti— )T fuls)ds + —— o) f (t—s)"" fu(s)ds. (3.24)

r (q) O<ti<t

Therefore, § has a closed graph.
As a consequence of Lemma 2.3, the operator inclusion x € a(x) + p(x) has a solution
which implies that the problem (1.1) has a solution on I.

Remark 3.3. If we take F(t,x) = {f(t,x)}, where f is a continuous operator, then the result
corresponds to a single-value problem. In this case, our result is also new in the present
configuration.

Corollary 3.4. Assume that (H1)-(H6) are satisfied; then the problem (1.1) has at least one solution
on I provided that

R(1-1y - 31 k) - Col(q) (3.25)
Cm+DQ®R) |

llall;, <liminf
R—+oo

Proof. From (3.25), we know that there exists a constant » > 0, such that

r(1-1i - 3, ek) = Col'(q)
lall, < Clom + DO . (3.26)

Since the proof of Corollary 3.4 follows the very same lines as the proof of Theorem 3.2,
we do not give details. O
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Corollary 3.5. Assume that (H1), (H3)-(H6), and the following condition are satisfied,
(H2') There exists a function p(-) € LP(I, R), such that

IF(t,x)llp = sup{|f(B)] : f(t) € F(t,x(t)} < p(t)lx]l, (3.27)

fort € Iandeach x € R.
Then the problem (1.1) has at least one solution on I provided that

1 —lh—ka=1 Ck

el < Con i D) (3.28)

Proof. In this case, we take a(t) = p(t), Q(x) = x in Corollary 3.4.
At last we would like to discuss the impulsive condition.

(H5)Ir : R — R (k =1,...,m) are single continuous operator, and there exists cx >
0, k=1,...,m,such that [It (y) — Ix(x)| < ckly — x|, forall x,y € R. O

Corollary 3.6. Assume that (H1)-(H4), (H5'), (H6) are satisfied; then the problem (1.1) has at least
one solution on I provided that

R(l -1 - Zzi:l Ck) - COF(q)
C(m+1)Q(R) ’

lall;» < lziaminf (3.29)

4. An Illustrative Example

In this section, an example is given to show the effectiveness of our theoretical result.
Consider the following fractional-order differential inclusions with impulsive and nonlocal
conditions:

e'x (b

‘D |x(t) - (9 +eh) (1 +|x(8)])

e F(t,x(t)), tel=[0,1], t# %

|x(1/27)] (4.1)

Ax|_q)p = ,
X172 3+ |x(1/27)]

x(0) = h(x),

where h(x) = (1/9)x(0) + (1/10)x(1), g(t,x) = (e7'x)/(9+e")(1+x), Ir(x) =x/(3+x), x €
[0,00),and F : I x R — P(R) is a multivalued map given by

(4.2)

x_ﬁ@ﬂz[ e |x(t) e x(t)] }

O+ +]x®)) (9+e)(1+|x(®)])
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Thus,
IF(t, %)l =sup{|f(H)] : f(t) € F(t,x(t))} < a(®)Q(||x])), (4.3)

where a(t) =1/(9 + €'), Q(llx]l) = [x(£)I/ (1 + [x(®)]).
By computation, we have

19
[h(x) -h(y)| < 55lx -y

1
o letx) —gby)| < 5lx -yl
(4.4)

1 1
() =L)< 3lx -yl lgt0)] <5

Suppose that xg = h(0) = Ix(0) = 0; we have I, = 1/10, 1, =2/9, M = 1/10, ¢, = 1/3,
Co=2M=1/5C=((p-1)/(pq-1))" V7.

Clearly, for suitable g € (0,1), all the conditions of Corollary 3.6 are satisfied. So there
exists at least one solution of problem (4.1) on I.
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