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The operator A(r̃, s̃) on sequence space on �p is defined A(r̃, s̃)x = (rkxk + skxk+1)
∞
k=0, where

x = (xk) ∈ �p, and r̃ and s̃ are two convergent sequences of nonzero real numbers satisfying certain
conditions, where (1 < p < ∞). The main purpose of this paper is to determine the fine spectrum
with respect to the Goldberg’s classification of the operator A(r̃, s̃) defined by a double sequential
band matrix over the sequence space �p. Additionally, we give the approximate point spectrum,
defect spectrum, and compression spectrum of the matrix operator A(r̃, s̃) over the space �p.

1. Introduction

LetX and Y be Banach spaces, and let T : X → Y also be a bounded linear operator. By R(T),
we denote the range of T , that is,

R(T) =
{

y ∈ Y : y = Tx, x ∈ X
}

. (1.1)

By B(X), we also denote the set of all bounded linear operators on X into itself. If X is any
Banach space and T ∈ B(X), then the adjoint T ∗ of T is a bounded linear operator on the dual
X∗ of X defined by (T ∗f)(x) = f(Tx) for all f ∈ X∗ and x ∈ X.

Given an operator T ∈ B(X), the set

ρ(T) :=
{

λ ∈ C : Tλ = λI − T is a bijection
}

(1.2)
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is called the resolvent set of T and its complement with respect to the complex plain

σ(T) := C \ ρ(T) (1.3)

is called the spectrum of T . By the closed graph theorem, the inverse operator

R(λ; T) := (λI − T)−1,
(

λ ∈ ρ(T)
)

(1.4)

is always bounded and is usually called resolvent operator of T at λ.

2. Subdivisions of the Spectrum

In this section, we give the definitions of the parts point spectrum, continuous spectrum,
residual spectrum, approximate point spectrum, defect spectrum, and compression spectrum
of the spectrum. There aremany different ways to subdivide the spectrum of a bounded linear
operator. Some of them are motivated by applications to physics, in particular, quantum
mechanics.

2.1. The Point Spectrum, Continuous Spectrum, and Residual Spectrum

The name resolvent is appropriate, since T−1
λ helps to solve the equation Tλx = y. Thus,

x = T−1
λ y provided T−1

λ exists. More important, the investigation of properties of T−1
λ will

be basic for an understanding of the operator T itself. Naturally, many properties of Tλ and
T−1
λ

depend on λ, and spectral theory is concerned with those properties. For instance, we
will be interested in the set of all λ’s in the complex plane such that T−1

λ exists. Boundedness
of T−1

λ
is another property that will be essential. We will also ask for what λ’s the domain of

T−1
λ

is dense in X, to name just a few aspects. A regular value λ of T is a complex number such
that T−1

λ exists and bounded and whose domain is dense in X. For our investigation of T , Tλ,
and T−1

λ
, we need some basic concepts in spectral theory, which are given as follows (see [1,

pp. 370-371]):
The resolvent set ρ(T,X) of T is the set of all regular values λ of T . Furthermore, the

spectrum σ(T,X) is partitioned into three disjoint sets as follows.
The point (discrete) spectrum σp(T,X) is the set such that T−1

λ
does not exist. An λ ∈

σp(T,X) is called an eigenvalue of T .
The continuous spectrum σc(T,X) is the set such that T−1

λ exists and is unbounded and
the domain of T−1

λ
is dense in X.

The residual spectrum σr(T,X) is the set such that T−1
λ

exists (and may be bounded or
not), but the domain of T−1

λ is not dense in X.
Therefore, these three subspectra form a disjoint subdivisions

σ(T,X) = σp(T,X) ∪ σc(T,X) ∪ σr(T,X). (2.1)

To avoid trivial misunderstandings, let us say that some of the sets defined above, may be
empty. This is an existence problem, which we will have to discuss. Indeed, it is well known
that σc(T,X) = σr(T,X) = ∅ and the spectrum σ(T,X) consists of only the set σp(T,X) in the
finite-dimensional case.
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2.2. The Approximate Point Spectrum, Defect Spectrum, and
Compression Spectrum

In this subsection, following Appell et al. [2], we define the three more subdivisions of the
spectrum called as the approximate point spectrum, defect spectrum, and compression spectrum.

Given a bounded linear operator T in a Banach space X, we call a sequence (xk) in X
as a Weyl sequence for T if ‖xk‖ = 1 and ‖Txk‖ → 0, as k → ∞.

In what follows, we call the set

σap(T,X) :=
{

λ ∈ C : there exists a Weyl sequence for λI − T
}

(2.2)

the approximate point spectrum of T . Moreover, the subspectrum

σδ(T,X) :=
{

λ ∈ C : λI − T is not surjective
}

(2.3)

is called defect spectrum of T .
The two subspectra given by (2.2) and (2.3) form a (not necessarily disjoint) subdivi-

sion

σ(T,X) = σap(T,X) ∪ σδ(T,X) (2.4)

of the spectrum. There is another subspectrum

σco(T,X) =
{

λ ∈ C : R(λI − T)/=X
}

, (2.5)

which is often called compression spectrum in the literature. The compression spectrum gives
rise to another (not necessarily disjoint) decomposition

σ(T,X) = σap(T,X) ∪ σco(T,X) (2.6)

of the spectrum. Clearly, σp(T,X) ⊆ σap(T,X) and σco(T,X) ⊆ σδ(T,X). Moreover, comparing
these subspectra with those in (2.1)we note that

σr(T,X) = σco(T,X) \ σp(T,X),

σc(T,X) = σ(T,X) \ [σp(T,X) ∪ σco(T,X)
]

.
(2.7)

Sometimes it is useful to relate the spectrum of a bounded linear operator to that of its
adjoint. Building on classical existence and uniqueness results for linear operator equations
in Banach spaces and their adjoints is also useful.

Proposition 2.1 (see [2, Proposition 1.3, p. 28]). Spectra and subspectra of an operator T ∈ B(X)
and its adjoint T ∗ ∈ B(X∗) are related by the following relations:

(a) σ(T ∗, X∗) = σ(T,X),
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(b) σc(T ∗, X∗) ⊆ σap(T,X),

(c) σap(T ∗, X∗) = σδ(T,X),

(d) σδ(T ∗, X∗) = σap(T,X),

(e) σp(T ∗, X∗) = σco(T,X),

(f) σco(T ∗, X∗) ⊇ σp(T,X),

(g) σ(T,X) = σap(T,X) ∪ σp(T ∗, X∗) = σp(T,X) ∪ σap(T ∗, X∗).

The relations (c)–(f) show that the approximate point spectrum is in a certain sense
dual to defect spectrum, and the point spectrum dual to the compression spectrum.

The equality (g) implies, in particular, that σ(T,X) = σap(T,X) if X is a Hilbert
space and T is normal. Roughly speaking, this shows that normal (in particular, self-adjoint)
operators onHilbert spaces are most similar to matrices in finite-dimensional spaces (see [2]).

2.3. Goldberg’s Classification of Spectrum

If X is a Banach space and T ∈ B(X), then there are three possibilities for R(T):

(A) R(T) = X,

(B) R(T)/=R(T) = X,

(C) R(T)/=X,

and

(1) T−1 exists and is continuous,

(2) T−1 exists but is discontinuous,

(3) T−1 does not exist.

If these possibilities are combined in all possible ways, nine different states are created.
These are labelled by: A1, A2, A3, B1, B2, B3, C1, C2, C3. If an operator is in state C2, for
example, then R(T)/=X and T−1 exist but is discontinuous (see [3] and Figure 1).

If λ is a complex number such that Tλ = λI−T ∈ A1 or Tλ = λI−T ∈ B1, then λ ∈ ρ(T,X).
All scalar values of λ not in ρ(T,X) comprise the spectrum of T . The further classification of
σ(T,X) gives rise to the fine spectrum of T . That is, σ(T,X) can be divided into the subsets
A2σ(T,X) = ∅, A3σ(T,X), B2σ(T,X), B3σ(T,X), C1σ(T,X), C2σ(T,X), and C3σ(T,X). For
example, if Tλ = λI − T is in a given state, C2 (say), then we write λ ∈ C2σ(T,X).

By the definitions given above, we can illustrate the subdivisions (2.1) in Table 1.
Observe that the case in the first row and second column cannot occur in a Banach

space X, by the closed graph theorem. If we are not in the third column, that is, if λ is not
an eigenvalue of T , we may always consider the resolvent operator T−1

λ
(on a possibly “thin”

domain of definition) as “algebraic” inverse of λI − T .
By a sequence space, we understand a linear subspace of the space ω = C

N1 of all
complex sequences which contains φ, the set of all finitely nonzero sequences, where N1

denotes the set of positive integers. We write �∞, c, c0, and bv for the spaces of all bounded,
convergent, null, and bounded variation sequences, which are the Banach spaces with the
sup-norm ‖x‖∞ = supk∈N

|xk| and ‖x‖bv =
∑∞

k=0 |xk − xk+1|, while φ is not a Banach space
with respect to any norm, respectively, where N = {0, 1, 2, . . .}. Also by �p, we denote the
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Figure 1: State diagram for B(X) and B(X∗) for a nonreflective Banach space X.

Table 1: Subdivisions of spectrum of a linear operator.

1 2 3
T−1
λ

exists and is bounded T−1
λ

exists and is unbounded T−1
λ

does not exist

A R(λI − T) = X λ ∈ ρ(T,X) — λ ∈ σp(T,X)
λ ∈ σap(T,X)

λ ∈ σc(T,X) λ ∈ σp(T,X)
B R(λI − T) = X λ ∈ ρ(T,X) λ ∈ σap(T,X) λ ∈ σap(T,X)

λ ∈ σδ(T,X) λ ∈ σδ(T,X)
λ ∈ σr(T,X) λ ∈ σr(T,X) λ ∈ σp(T,X)

C R(λI − T)/=X λ ∈ σδ(T,X) λ ∈ σap(T,X) λ ∈ σap(T,X)
λ ∈ σδ(T,X) λ ∈ σδ(T,X)

λ ∈ σco(T,X) λ ∈ σco(T,X) λ ∈ σco(T,X)

space of all p-absolutely summable sequences, which is a Banach space with the norm
‖x‖p = (

∑∞
k=0 |xk|p)1/p, where 1 � p < ∞.

Let A = (ank) be an infinite matrix of complex numbers ank, where n, k ∈ N, and write

(Ax)n =
∑

k

ankxk (n ∈ N, x ∈ D00(A)), (2.8)

where D00(A) denotes the subspace of w consisting of x ∈ w for which the sum exists as a
finite sum. For simplicity in notation, here and in what follows, the summation without limits
runs from 0 to ∞, and we will use the convention that any term with negative subscript is
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equal to naught. More generally if μ is a normed sequence space, we can write Dμ(A) for the
x ∈ w for which the sum in (2.8) converges in the norm of μ. We write

(

λ : μ
)

=
{

A : λ ⊆ Dμ(A)
}

(2.9)

for the space of those matrices which send the whole of the sequence space λ into μ in this
sense.

We give a short survey concerning the spectrum and the fine spectrum of the linear
operators defined by some particular triangle matrices over certain sequence spaces. The
fine spectrum of the Cesàro operator of order one on the sequence space �p studied by
González [19], where 1 < p < ∞. Also, weighted mean matrices of operators on �p have
been investigated by Cartlidge [20]. The spectrum of the Cesàro operator of order one on
the sequence spaces bv0 and bv investigated by Okutoyi [8, 21]. The spectrum and fine
spectrum of the Rhally operators on the sequence spaces c0, c, �p, bv, and bv0 were examined
by Yıldırım [9, 22–28]. The fine spectrum of the difference operator Δ over the sequence
spaces c0 and c was studied by Altay and Başar [12]. The same authors also worked the fine
spectrum of the generalized difference operator B(r, s) over c0 and c, in [29]. The fine spectra
of Δ over �1 and bv studied by Kayaduman and Furkan [30]. Recently, the fine spectra of
the difference operator Δ over the sequence spaces �p and bvp studied by Akhmedov and
Başar [31, 32], where bvp is the space of p-bounded variation sequences and introduced by
Başar and Altay [33] with 1 � p < ∞. Also, the fine spectrum of the generalized difference
operator B(r, s) over the sequence spaces �1 and bv determined by Furkan et al. [34]. Recently,
the fine spectrum of B(r, s, t) over the sequence spaces c0 and c has been studied by Furkan
et al. [35]. Quite recently, de Malafosse [11] and Altay and Başar [12] have, respectively,
studied the spectrum and the fine spectrum of the difference operator on the sequence spaces
sr and c0, c, where sr denotes the Banach space of all sequences x = (xk) normed by
‖x‖sr = supk∈N

(|xk|/rk), (r > 0). Altay and Karakuş [36] have determined the fine spectrum
of the Zweier matrix, which is a band matrix as an operator over the sequence spaces �1
and bv. Farés and de Malafosse [37] studied the spectra of the difference operator on the
sequence spaces �p(α), where (αn) denotes the sequence of positive reals and �p(α) is the
Banach space of all sequences x = (xn) normed by ‖x‖�p(α) = [

∑∞
n=1 (|xn|/αn)

p]1/p with p � 1.
Also the fine spectrum of the same operator over �1 and bv has been studied by Bilgiç and
Furkan [13]. More recently the fine spectrum of the operator B(r, s) over �p and bvp has been
studied by Bilgiç and Furkan [38]. In 2010, Srivastava and Kumar [16] have determined the
spectra and the fine spectra of generalized difference operator Δν on �1, where Δν is defined
by (Δν)nn = νn and (Δν)n+1,n = −νn for all n ∈ N, under certain conditions on the sequence
ν = (νn), and they have just generalized these results by the generalized difference operator
Δuv defined byΔuvx = (unxn+vn−1xn−1)n∈N

for all n ∈ N, (see [18]). Altun [39] has studied the
fine spectra of the Toeplitz operators, which are represented by upper and lower triangular
n-band infinite matrices, over the sequence spaces c0 and c. Later, Karakaya and Altun have
determined the fine spectra of upper triangular double-band matrices over the sequence
spaces c0 and c, in [40]. Quite recently, Akhmedov and El-Shabrawy [15] have obtained the
fine spectrum of the generalized difference operator Δa,b, defined as a double band matrix
with the convergent sequences ã = (ak) and ˜b = (bk) having certain properties, over the
sequence space c. Finally, the fine spectrum with respect to the Goldberg’s classification of
the operator B(r, s, t) defined by a triple band matrix over the sequence spaces �p and bvp
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Table 2: Spectrum and fine spectrum of some triangle matrices in certain sequence spaces. In this paper,
we study the fine spectrum of the generalized difference operator spectrum of the generalized difference
operator defined by an upper double sequential band matrix acting on the sequence spaces �p with respect
to the Goldberg’s classification. Additionally, we give the approximate point spectrum, defect spectrum,
and compression spectrum of thematrix operatorA(r̃, s̃) over the spaces �p. We quote some lemmas, which
are needed in proving the theorems given in Section 3.

σ(A, λ) σp(A, λ) σc(A, λ) σr(A, λ) refer to

σ(Cp

1 , c) — — — [4]

σ(W, c) — — — [5]

σ(C1, c0) — — — [6]

σ(C1, c0) σp(C1, c0) σc(C1, c0) σr(C1, c0) [7]

σ(C1, bv) — — — [8]

σ(R, c0) σp(R, c0) σc(R, c0) σr(R, c0) [9]

σ(R, c) σp(R, c) σc(R, c) σr(R, c) [9]

σ(Cp

1 , c0) — — — [10]

σ(Δ, sr) — — — [11]

σ(Δ, c0) — — — [11]

σ(Δ, c) — — — [11]

σ(Δ(1), c) σp(Δ(1), c) σc(Δ(1), c) σr(Δ(1), c) [12]

σ(Δ(1), c0) σp(Δ(1), c0) σc(Δ(1), c0) σr(Δ(1), c0) [12]

σ(B(r, s), �p) σp(B(r, s), �p) σc(B(r, s), �p) σr(B(r, s), �p) [13]

σ(B(r, s), bvp) σp(B(r, s), bvp) σc(B(r, s), bvp) σr(B(r, s), bvp) [13]

σ(B(r, s, t), �p) σp(B(r, s, t), �p) σc(B(r, s, t), �p) σr(B(r, s, t), �p) [14]

σ(B(r, s, t), bvp) σp(B(r, s, t), bvp) σc(B(r, s, t), bvp) σr(B(r, s, t), bvp) [14]

σ(Δa,b, c) σp(Δa,b, c) σc(Δa,b, c) σr(Δa,b, c) [15]

σ(Δν, �1) σp(Δν, �1) σc(Δν, �1) σr(Δν, �1) [16]

σ(Δ2
uv, c0) σp(Δ2

uv, c0) σc(Δ2
uv, c0) σr(Δ2

uv, c0) [17]

σ(Δuv, �1) σp(Δuv, �1) σc(Δuv, �1) σr(Δuv, �1) [18]

with 1 < p < ∞ has recently been studied by Furkan et al. [14]. At this stage, Table 2 may be
useful.

Lemma 2.2 (see [41, p. 253, Theorem 34.16]). The matrixA = (ank) gives rise to a bounded linear
operator T ∈ B(�1) from �1 to itself if and only if the supremum of �1 norms of the columns of A is
bounded.

Lemma 2.3 (see [41, p. 245, Theorem 34.3]). The matrix A = (ank) gives rise to a bounded linear
operator T ∈ B(�∞) from �∞ to itself if and only if the supremum of �1 norms of the rows of A is
bounded.

Lemma 2.4 (see [41, p. 254, Theorem 34.18]). Let 1 < p < ∞ andA ∈ (�∞ : �∞)∩ (�1 : �1). Then,
A ∈ (�p : �p).
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Let r̃ = (rk) and s̃ = (sk) be sequences whose entries either constants or distinct real
numbers satisfying the following conditions:

lim
k→∞

rk = r > 0,

lim
k→∞

sk = s; |s| = r,

sup
k∈N

|rk| � r, s2k � r2k.

(2.10)

Then, we define the sequential generalized difference matrix A(r̃, s̃) by

A(r̃, s̃) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

r0 s0 0 0 · · ·
0 r1 s1 0 · · ·
0 0 r2 s2 · · ·
0 0 0 r3 · · ·
...

...
...

...
. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2.11)

Therefore, we introduce the operator A(r̃, s̃) from �p to itself by

A(r̃, s̃)x = (rkxk + skxk+1)∞k=0, where x = (xk) ∈ �p. (2.12)

3. Fine Spectra of Upper Triangular Double-Band Matrices over
the Sequence Space �p

Theorem 3.1. The operator A(r̃, s̃) : �p → �p is a bounded linear operator and

sup
k∈N

(|rk|p + |sk|p
)1/p � ‖A(r̃, s̃‖�p � sup

k∈N

|rk| + sup
k∈N

|sk|. (3.1)

Proof. Since the linearity of the operator A(r̃, s̃) is not difficult to prove, we omit the detail.
Now we prove that (3.1) holds for the operator A(r̃, s̃) on the space �p. It is trivial that
A(r̃, s̃)e(k) = (0, 0, . . . , sk−1, rk, 0, . . . , 0, . . .) for e(k) ∈ �p. Therefore, we have

‖A(r̃, s̃)‖�p �

∥

∥A(r̃, s̃)e(k)
∥

∥

�p
∥

∥e(k)
∥

∥

�p

=
(|rk|p + |sk−1|p

)1/p
, (3.2)

which implies that

‖A(r̃, s̃)‖�p � sup
k∈N

(|rk|p + |sk|p
)1/p

. (3.3)
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Let x = (xk) ∈ �p, where p > 1. Then, since (skxk+1), (rkxk) ∈ �p it is easy to see by
Minkowski’s inequality that

‖A(r̃, s̃)x‖�p =
( ∞
∑

k=0

|skxk+1 + rkxk|p
)1/p

�
( ∞
∑

k=0

|skxk+1|p
)1/p

+

( ∞
∑

k=0

|rkxk|p
)1/p

� sup
k∈N

|rk|
( ∞
∑

k=0

|xk|p
)1/p

+ sup
k∈N

|sk|
( ∞
∑

k=0

|xk+1|p
)1/p

= sup
k∈N

|rk|‖x‖�p + sup
k∈N

|sk|‖x‖�p

=

(

sup
k∈N

|rk| + sup
k∈N

|sk|
)

‖x‖�p ,

(3.4)

which leads us to the result that

‖A(r̃, s̃)‖�p � sup
k∈N

|rk| + sup
k∈N

|sk|. (3.5)

Therefore, by combining the inequalities in (3.3) and (3.5)we have (3.1), as desired.

Lemma 3.2 (see [42, p. 115, Lemma 3.1]). Let 1 < p < ∞. If

α ∈ {α ∈ C : |r − α| = |s|}, (3.6)

then the series

∞
∑

k=1

∣

∣

∣

∣

(rk−1 − α)(rk−2 − α) · · · (r1 − α)(r0 − α)
sk−1sk−2 · · · s1s0

∣

∣

∣

∣

p

(3.7)

is not convergent.

Throughout the paper, by C and SD, we denote the set of constant sequences and the
set of sequences of distinct real numbers, respectively.

Theorem 3.3.

σp

(

A(r̃, s̃), �p
)

=

{

{α ∈ C : |r − α| < |s|}, r̃ ∈ C,
{α ∈ C : |r − α| < |s|} ∪ {(rk)k∈N

}, r̃, s̃ ∈ SD.
(3.8)
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Proof. Let A(r̃, s̃)x = αx for θ /=x ∈ �p Then, by solving linear equation

r0x0 + s0x1 = αx0,

r1x1 + s1x2 = αx1,

r2x2 + s2x3 = αx2,

...

rk−1xk−1 + sk−1xk = αxk,

...

(3.9)

xk = ((α − rk)/sk−1)xk−1 for all k � 1 and

xk =
[

(rk−1 − α)(rk−2 − α) · · · (r1 − α)(r0 − α)
sk−1sk−2 · · · s1s0

]

x0. (3.10)

Part 1. Assume that r̃, s̃ ∈ C. Let rk = r and sk = s For all k ∈ N. We observe that xk =
((α − r)/s)kx0. This shows that x ∈ �p if and if only |α − r| < |s|, as asserted.
Part 2. Assume that r̃, s̃ ∈ SD. We must take x0 /= 0, since x /= 0. It is clear that, for all k ∈ N,
the vector x = (x0, x1, . . . , xk, 0, 0, . . .) is an eigenvector of the operator A(r̃, s̃) corresponding
to the eigenvalue α = rk, where x0 /= 0 and xn = ((α − rn)/sn−1)xn−1, for 1 � n � k. Thus
{rk : k ∈ N} ⊆ σp(A(r̃, s̃), �p). If rk /=α, for all k ∈ N, then xk /= 0. If we take |α − r| < |s|, since
limk→∞|xk+1/xk|p = limk→∞|(rk − α)/sk|p = |(r − α)/s|p < 1, x ∈ �p. Hence {α ∈ C : |r − α| <
|s|} ⊆ σp(A(r̃, s̃), �p). Conversely, let α ∈ σp(A(r̃, s̃), �p). Then, there exists x = (x0, x1, x2, . . .)
in �p and we have xk = ((α − rk)/sk−1)xk−1, for all k � 1. Since x ∈ �p, we can use ratio test.
And so limk→∞|xk+1/xk|p = limk→∞|(rk − α)/sk|p = |(r − α)/s|p < 1 or α ∈ {rk : k ∈ C}. If
|α − r| = |s|, by Lemma 3.2 x /∈ �p. This completes the proof.

Theorem 3.4.

σp

(

A(r̃, s̃)∗, �∗p
)

=

{

∅, r̃ ∈ C,
B, r̃ ∈ SD,

where B = {rk : k ∈ N, |r − rk| > |s|}. (3.11)

Proof. We prove the theorem by dividing into two parts.
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Part 1. Assume that r̃, s̃ ∈ C. Consider A(r̃, s̃)∗f = αf for f /= θ = (0, 0, 0, . . .) in �∗p = �q. Then,
by solving the system of linear equations

r0f0 = αf0,

s0f0 + r1f1 = αf1,

s1f1 + r2f2 = αf2,

...

sk−1fk−1 + rkfk = αfk,

...

(3.12)

we find that f0 = 0 if α/= r = rk and f1 = f2 = · · · = 0 if f0 = 0, which contradicts f /= θ. If fn0 is
the first nonzero entry of the sequence f = (fn) and α = r, then we get sn0fn0 + rfn0+1 = αfn0+1

that implies fn0 = 0, which contradicts the assumption fn0 /= 0. Hence, the equationA(r̃, s̃)∗f =
αf has no solution f /= θ.

Part 2. Assume that r̃, s̃ ∈ SD. Then, by solving the equation A(r̃, s̃)∗f = αf for f /= θ =
(0, 0, 0, . . .) in �q, we obtain (r0 − α)f0 = 0 and (rk+1 − α)fk+1 + skfk = 0 for all k ∈ N. Hence,
for all α /∈ {rk : k ∈ N}, we have fk = 0 for all k ∈ N, which contradicts our assumption. So,
α /∈ σp(A(r̃, s̃)∗, �q). This shows that σp(A(r̃, s̃)∗, �q) ⊆ {rk : k ∈ N} \ {r}. Now, we prove that

α ∈ σp

(

A(r̃, s̃)∗, �q
)

iff α ∈ B. (3.13)

If α ∈ σp(A(r̃, s̃)∗, �q), then, by solving the equation A(r̃, s̃)∗f = αf for f /= θ = (0, 0, 0, . . .) in
�q with α = r0,

fk =
s0s1s2 · · · sk−1

(r0 − rk)(r0 − rk−1)(r0 − rk−2) · · · (r0 − r1)
f0 ∀k � 1, (3.14)

which can expressed by the recursion relation

∣

∣fk
∣

∣ =
∣

∣

∣

∣

s0s1s2 · · · sk−1
(r0 − r1)(r0 − r2) · · · (r0 − rk)

∣

∣

∣

∣

∣

∣f0
∣

∣. (3.15)

Using ratio test,

lim
k→∞

∣

∣

∣

∣

fk
fk−1

∣

∣

∣

∣

q

= lim
k→∞

∣

∣

∣

∣

sk−1
rk − r0

∣

∣

∣

∣

q

=
∣

∣

∣

∣

s

r − r0

∣

∣

∣

∣

q

� 1. (3.16)

But |s/(r − r0)|/= 1. Hence,

α = r0 ∈ {rk : k ∈ N, |rk − r| > |s|} = B. (3.17)
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If we choose α = rk /= r for all k ∈ N1, then we get f0 = f1 = f2 = · · · = fk−1 = 0 and

fn+1 =
snsn−1sn−2 · · · sk

(rk − rn+1)(rk − rn)(rk − rn−1) · · · (rk − rk+1)
fk ∀n � k, (3.18)

which can expressed by the recursion relation

∣

∣fn+1
∣

∣ =
∣

∣

∣

∣

sn−1sn−2sn−2 · · · sk
(rk − rn+1)(rk − rn−1)(rk − rn−2) · · · (rk − rk+1)

∣

∣

∣

∣

∣

∣fk
∣

∣. (3.19)

Using ratio test,

lim
n→∞

∣

∣

∣

∣

fn+1
fn

∣

∣

∣

∣

q

= lim
n→∞

∣

∣

∣

∣

sn
rn+1 − rk

∣

∣

∣

∣

q

=
∣

∣

∣

∣

s

r − rk

∣

∣

∣

∣

q

� 1. (3.20)

But |s/(r − rk)|/= 1. So we have

α = rk ∈ {rk : k ∈ N, |rk − r| > |s|} = B. Hence, σp

(

A(r̃, s̃)∗, �q
) ⊆ B. (3.21)

Conversely, let α ∈ B. Then exist k ∈ N, α = rk /= r, and

lim
n→∞

∣

∣

∣

∣

fn
fn−1

∣

∣

∣

∣

q

= lim
n→∞

∣

∣

∣

∣

sn
rn+1 − rk

∣

∣

∣

∣

q

=
∣

∣

∣

∣

s

r − rk

∣

∣

∣

∣

q

< 1. (3.22)

That is, f ∈ �q. So we have B ⊆ σp(A(r̃, s̃)∗, �q). This completes the proof.

Lemma 3.5 (see [3, p. 60]). The adjoint operator T ∗ of T is onto if and only if T is a bounded operator.

Theorem 3.6. σr(A(r̃, s̃), �p) = σp(A(r̃, s̃)∗, �∗p) \ σp(A(r̃, s̃), �p)

Proof. The proof is obvious so is omitted.

Theorem 3.7. Let (rk), (sk) in SD and C. σr(A(r̃, s̃), �p) = ∅.

Proof. By Theorems 3.4 and 3.6, σr(A(r̃, s̃), �p) = ∅.

Theorem 3.8. LetA = {α ∈ C : |r − α| � |s|} and B = {rk : k ∈ N, |r − rk| > |s|}. Then, the set B is
finite and σ(A(r̃, s̃), �p) = A ∪ B.

Proof. We will show that Aα(r̃, s̃)
∗ is onto, for |r − α| > |s|. Thus, for every y ∈ �q, we

find x ∈ �q. Aα(r̃, s̃)
∗ is triangle so it has an inverse. Also equation Aα(r̃, s̃)

∗x = y gives
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[Aα(r̃, s̃)
∗]−1y = x. It is sufficient to show that [Aα(r̃, s̃)

∗]−1 ∈ (�q : �q). We can calculate that
A = (ank) = [Aα(r̃, s̃)

∗]−1 as follows:

(ank) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
r0 − α

0 0 · · ·
−s0

(r1 − α)(r0 − α)
1

r1 − α
0 · · ·

s0s1
(r0 − α)(r1 − α)(r2 − α)

−s1
(r2 − α)(r1 − α)

1
r2 − α

· · ·
...

...
...

. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3.23)

Therefore, the supremum of the �1 norms of the rows of [Aα(r̃, s̃)
∗]−1 is Sk, where

Sk =
∣

∣

∣

∣

1
rk − α

∣

∣

∣

∣

+
∣

∣

∣

∣

sk−1
(rk−1 − α)(rk − α)

∣

∣

∣

∣

+
∣

∣

∣

∣

sk−1sk−2
(rk−2 − α)(rk−1 − α)(rk − α)

∣

∣

∣

∣

+ · · · +
∣

∣

∣

∣

s0s1 · · · sk−1
(r0 − α)(r1 − α) · · · (rk − α)

∣

∣

∣

∣

.

(3.24)

Now, we prove that (Sk) ∈ �∞. Since limk→∞|sk/(rk − α)| = |s/(r − α)| = p < 1, then there
exists k0 ∈ N such that |sk/(rk − α)| < p0 with p0 < 1, for all k � k0 + 1,

Sk =
1

|rk − α|
[

1 +
∣

∣

∣

∣

sk−1
rk−1 − α

∣

∣

∣

∣

+
∣

∣

∣

∣

sk−1sk−2
(rk−1 − α)(rk−2 − α)

∣

∣

∣

∣

+ · · · +
∣

∣

∣

∣

sk−1sk−2 · · · sk0+1sk0 · · · s0
(rk−1 − α)(rk−2 − α) · · · (rk0+1 − α)(rk0 − α) · · · (r0 − α)

∣

∣

∣

∣

]

� 1
|rk − α|

[

1 + p0 + p20 + · · · + pk−k00 + pk−k00
|sk0−1|

|rk0−1 − α|

+ · · · + pk−k00

∣

∣

∣

∣

sk0−1sk0−2 · · · s0
(rk0−1 − α)(rk0−2 − α) · · · (r0 − α)

∣

∣

∣

∣

]

.

(3.25)

Therefore,

Sk � 1
|rk − α|

(

1 + p0 + p20 + · · · pk−k00 + pk−k00 Mk0
)

, (3.26)

where

Mk0 = 1 +
∣

∣

∣

∣

sk0−1
rk0−1 − α

∣

∣

∣

∣

+
∣

∣

∣

∣

sk0−1sk0−2
(rk0−1 − α)(rk0−2 − α)

∣

∣

∣

∣

+ · · · +
∣

∣

∣

∣

sk0−1sk0−2 · · · s0
(rk0−1 − α)(rk0−2 − α) · · · (r0 − α)

∣

∣

∣

∣

.

(3.27)
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Then, Mk0 � 1 and so

Sk � Mk0
|rk − α|

(

1 + p0 + p20 + · · · + pk−k00

)

. (3.28)

But there exist k1 ∈ N and a real number p1 such that 1/|rk − α| < p1 for all k � k1. Then, Sk �
(Mp1k0)/(1 − p0) for all k > max{k0, k1}. Hence, supk∈N

Sk < ∞. This shows that [A∗(r̃, s̃) −
αI]−1 ∈ (�∞ : �∞). Similarly, we can show that [(A(r̃, s̃) − αI)∗]−1 ∈ (�1 : �1). By Lemma 2.4,
we have

[

(A(r̃, s̃) − αI)∗
]−1 ∈ (�q : �q

)

for α ∈ C with |r − α| > |s|. (3.29)

Hence, Aα(r̃, s̃)
∗ is onto. By Lemma 3.5, Aα(r̃, s̃) is bounded inverse. This means that

σc

(

A(r̃, s̃), �p
) ⊆ {α ∈ C : |r − α| � |s|}. (3.30)

Combining this with Theorem 3.3 and Theorem 3.7, we get

σ
(

A(r̃, s̃), �p
) ⊆ {α ∈ C : |r − α| � |s|} ∪ B (3.31)

and again from Theorem 3.3 {α ∈ C : |r − α| < |s|} ⊆ σ(A(r̃, s̃), �p) and B ⊆ σ(A(r̃, s̃), �p).
Since the spectrum of any bounded operator is closed, we have

{α ∈ C : |r − α| � |s|} ∪ B ⊆ σ
(

A(r̃, s̃), �p
)

. (3.32)

Combining (3.31) and (3.32), we get

σ
(

A(r̃, s̃), �p
)

= A ∪ B. (3.33)

Theorem 3.9. Let (rk), (sk) in SD or C. σc(A(r̃, s̃), �p) = {α ∈ C : |r − α| = |s|}.

Proof. The proof follows of immediately from Theorems 3.3, 3.7, and 3.8 because the parts
σc(A(r̃, s̃), �p), σr(A(r̃, s̃), �p), and σp(A(r̃, s̃), �p) are pairwise disjoint sets and union of these
sets is σ(A(r̃, s̃), �p).

Theorem 3.10. Let (rk), (sk) ∈ SD and C. If |α − r| < |s|, α ∈ σ(A(r̃, s̃), �p)A3.

Proof. From Theorem 3.3, α ∈ σp(A(r̃, s̃), �p). Thus, (A(r̃, s̃) − αI)−1 does not exist. It is
sufficient to show that the operator (A(r̃, s̃) − αI) is onto, that is, for given y = (yk) ∈ �p,
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we have to find x = (xk) ∈ �p such that (A(r̃, s̃) − αI)x = y. Solving the linear equation
(A(r̃, s̃) − αI)x = y,

[A(r̃, s̃) − αI]x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

r0 − α s0 0 0 · · ·
0 r1 − α s1 0 · · ·
0 0 r2 − α s2 · · ·
0 0 0 r3 − α · · ·
...

...
...

...
. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

x0

x1

x2
...

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

y0

y1

y2
...

⎤

⎥

⎥

⎥

⎦

, (3.34)

let

x0 = 0,

x1 =
y0

s0
,

x2 =
(α − r1)y0

s1s0
+
y1

s1
,

...

xk =
(α − r1)(α − r2) · · · (α − rk−1)y0

s0s1 · · · sk−1 + · · · + (rk−2 − α)yk−2
sk−1sk−2

+
yk−1
sk−1

.

(3.35)

Then,
∑

k |xk|p � supk(Rk)
p∑

k |yk|p, where

Rk =
∣

∣

∣

∣

1
sk

∣

∣

∣

∣

+
∣

∣

∣

∣

(rk+1 − α)
sksk+1

∣

∣

∣

∣

+
∣

∣

∣

∣

(rk+1 − α)(rk+2 − α)
sksk+1sk+2

∣

∣

∣

∣

+ · · · ,

Rn
k =
∣

∣

∣

∣

1
sk

∣

∣

∣

∣

+
∣

∣

∣

∣

(rk+1 − α)
sksk+1

∣

∣

∣

∣

+
∣

∣

∣

∣

(rk+1 − α)(rk+2 − α)
sksk+1sk+2

∣

∣

∣

∣

+ · · · ,

+
∣

∣

∣

∣

(rk+1 − α)(rk+2 − α) · · · (rk+n − α)
sksk+1 · · · sn+k

∣

∣

∣

∣

(3.36)

for all k, n ∈ N. Then, since

Rn = lim
k→∞

Rk
n =
∣

∣

∣

∣

1
s

∣

∣

∣

∣

+
∣

∣

∣

∣

(r − α)
s2

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(r − α)2

s3

∣

∣

∣

∣

∣

+ · · · +
∣

∣

∣

∣

∣

(r − α)n+1

sn+2

∣

∣

∣

∣

∣

, (3.37)

we have

R = lim
n→∞

Rn =
∣

∣

∣

∣

1
s

∣

∣

∣

∣

(

1 +
∣

∣

∣

∣

r − α

s

∣

∣

∣

∣

1

+ · · ·
)

< ∞. (3.38)
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Since |r −α| < |s|, (Rk) is a convergent sequence of positive real numbers with limit R. Hence,
(Rk) bounded and we have supk(Rk)

p < ∞. Therefore,

∑

k

|xk|p � sup
k

(Rk)p
∑

k

∣

∣yk

∣

∣

p
< ∞. (3.39)

This shows that x = (xk) ∈ �p. Thus (A(r̃, s̃)−αI) is onto. So we have α ∈ σ(A(r̃, s̃), �p)A3.

Theorem 3.11. Let (rk), (sk) ∈ C with rk = r, sk = s for all k ∈ N. Then, the following statements
hold:

(i) σap(A(r̃, s̃), �p) = σ(A(r̃, s̃), �p),

(ii) σδ(A(r̃, s̃), �p) = {α ∈ C : |r − α| = |s|},
(iii) σco(A(r̃, s̃), �p) = ∅.

Proof. (i) Since from Table 1,

σap
(

A(r̃, s̃), �p
)

= σ(A(r̃, s̃), �1) \ σ
(

A(r̃, s̃), �p
)

C1, (3.40)

we have by Theorem 3.7

σ
(

A(r̃, s̃), �p
)

C1 = σ
(

A(r̃, s̃), �p
)

C2 = ∅. (3.41)

Hence,

σap
(

A(r̃, s̃), �p
)

= A. (3.42)

(ii) Since the following equality:

σδ

(

A(r̃, s̃), �p
)

= σ
(

A(r̃, s̃), �p
) \ σ(A(r̃, s̃), �p

)

A3 (3.43)

holds from Table 1, we derive by Theorems 3.8 and 3.10 that σδ(A(r̃, s̃), �p) = {α ∈ C : |r −α| =
|s|}.

(iii) From Table 1, we have

σco
(

A(r̃, s̃), �p
)

= σ
(

A(r̃, s̃), �p
)

C1 ∪ σ
(

A(r̃, s̃), �p
)

C2 ∪ σ(A(r̃, s̃), c0)C3. (3.44)

By Theorem 3.4, it is immediate that σco(A(r̃, s̃), �p) = ∅.

Theorem 3.12. Let (rk) ∈ SD. Then

σap

(

A(r̃, s̃), �p
)

= A ∪ B,
σδ

(

A(r̃, s̃), �p
)

= {α ∈ C : |r − α| = |s|} ∪ B,
σco

(

A(r̃, s̃), �p
)

= B.
(3.45)
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Proof. We have by Theorem 3.4 and Part (e) of Proposition 2.1 that

σp

(

A(r̃, s̃)∗, �∗p
)

= σco
(

A(r̃, s̃), �p
)

= B. (3.46)

By Theorems 3.7 and 3.4, we must have

σ
(

A(r̃, s̃), �p
)

C1 = σ
(

A(r̃, s̃), �p
)

C2 = ∅. (3.47)

Hence, σ(A(r̃, s̃), �p)C3 = {rk}. Additionally, since σ(A(r̃, s̃), �p)C1 = ∅.
Therefore, we derive from Table 1, Theorems 3.8, and 3.10 that

σap
(

A(r̃, s̃), �p
)

= σ
(

A(r̃, s̃), �p
) \ σ(A(r̃, s̃), �p

)

C1 = σ(A(r̃, s̃), �1),

σδ

(

A(r̃, s̃), �p
)

= σ
(

A(r̃, s̃), �p
) \ σ(A(r̃, s̃), �p

)

A3 = {α ∈ C : |r − α| = |s|} ∪ B.
(3.48)

4. Conclusion

In the present work, as a natural continuation of Akhmedov and El-Shabrawy [15] and
Srivastava and Kumar [18], we have determined the spectrum and the fine spectrum of
the double sequential band matrix A(r̃, s̃) on the space �p. Many researchers determine the
spectrum and fine spectrum of a matrix operator in some sequence spaces. In addition to
this, we add the definition of some new divisions of spectrum called as approximate point
spectrum, defect spectrum, and compression spectrum of the matrix operator and give the
related results for the matrix operator A(r̃, s̃) on the space �p, which is a new development
for this type works giving the fine spectrum of a matrix operator on a sequence space with
respect to the Goldberg’s classification.
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Büyükçekmece, Turkey, for his careful reading and formaking some useful corrections, which
improved the presentation of the paper.

References

[1] E. Kreyszig, Introductory Functional Analysis with Applications, JohnWiley & Sons, New York, NY, USA,
1978.

[2] J. Appell, E. Pascale, and A. Vignoli, Nonlinear Spectral Theory, vol. 10 of de Gruyter Series in Nonlinear
Analysis and Applications, Walter de Gruyter, Berlin, Germany, 2004.

[3] S. Goldberg, Unbounded Linear Operators, Dover Publications, New York, NY, USA, 1985.
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[12] B. Altay and F. Başar, “On the fine spectrum of the difference operator Δ on c0 and c,” Information
Sciences, vol. 168, no. 1–4, pp. 217–224, 2004.
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