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The consensus problem for discrete time second-order multiagent systems with time delay is
studied. Some effective methods are presented to deal with consensus problems in discrete time
multiagent systems. A necessary and sufficient condition is established to ensure consensus. The
convergence rate for reaching consensus is also estimated. It is shown that arbitrary bounded time
delay can safely be tolerated. An example is presented to illustrate the theoretical result.

1. Introduction

The study of information flow and interaction among multiple agents in a group plays an
important role in understanding the coordinated movements of these agents. As a result, a
critical problem for coordinated control is to design appropriate protocols and algorithms
such that the group of agents can reach consensus on the shared information in the presence
of limited and unreliable information exchange as well as communication time delays.

In multiagent systems, communication time delays between agents are inevitable due
to various reasons. For instance, they may be caused by finite signal transmission speeds,
traffic congestions, packet losses, and inaccurate sensor measurements. In addition, in practi-
cal engineering applications, the agents in multiagent systems transmit sampled information
by using sensors or communication network, and the coordination control algorithms are
proposed based on the discrete time sampled data to achieve the whole control object.
The typical discrete-time consensus control strategy was provided by Jadbabaie et al. [1],
which is a simplified Vicsek model [2]. Recently, the consensus analysis of the discrete time



2 Discrete Dynamics in Nature and Society

first order multiagent systems with or without communication time delays has been studied
extensively, see [3–6], to name a few. While it has been realized that modeling more complex
practical processes needs the use of double integrator dynamics, as a result, cooperative
control for multiple agents with double-integrator dynamics has become an active area
of research. Compared with the first-order consensus, Ren and Atkins [7] show that the
existence of a directed spanning tree is a necessary rather than a sufficient condition to
reach second-order consensus. Therefore, the extension of consensus algorithms from first
order to second order is nontrivial. In recent years, more attention has been paid to the
consensus problem of multiagent systems with continuous time second-order systems and
much progress has been made, some important works include [8–13]. But there has been
little attention to the consensus of discrete time second-order systems. In [14], Lin and Jia
investigate the consensus of discrete time second order multiagent systems with nonuniform
time delays and dynamically changing topologies. A linear consensus protocol is introduced
to realize local control strategies for these second-order discrete-time agents. In [15], by
using the generalized Nyquist criterion and the Gerschgorin disc theorem, the consensus
algorithm with a static leader is proposed to solve the consensus problem of the discrete
time second-order multiagent systems with communication delays. In [16], the mean
square consentability problem for a network of double-integrator agents with stochastic
switching topology is studied. An LMI approach to the design of the consensus protocol is
presented. Hence, the consensus problem for discrete time second-order multiagent systems
is more important and challenging. The problem becomes more complicated when consensus
protocols are extended to systems with time delay.

Motivated by above discussion, in this paper, we consider the consensus problems for
discrete time second-order multiagent systems with time delay and provide some effective
methods to deal with consensus problems in discrete time multiagent systems.

2. Problem Statement

Let {i | i ∈ V} be a set of n agents, where V = {1, 2, . . . , n}. A directed graph G = (V,E) will
be used to model the interaction topology among these agents. The ith vertex represents the
ith agents i. The set of out-neighbors of vertex i is denoted byNi = {j ∈ V : (i, j) ∈ E}. A path
in a digraph is a sequence i0, i1, . . . , il of distinct nodes such that (il1−1, il1) ∈ E, l1 = 1, 2, . . . , l.
If there exists a path from node i to node j, we say that j is reachable from i. If j is reachable
from all other agents, j is said to be globally reachable. A directed tree is a digraph, where
every node has exactly one parent except for one node, called the root, which has no parent,
and the root has a directed path to every other node. A directed spanning tree of a digraph is
a directed tree formed by graph edges that connect all the nodes of the graph. We say that a
graph has (or contains) a directed spanning tree if there exists a directed spanning tree that is
a subset of the graph. In a digraph G, if U is a nonempty subset of V and u � v for all u ∈ U
and v ∈ V − U, then U is said to be closed.

A = (aij)n×n is the adjacency matrix, where aij denotes the weight of edge (i, j) and
aij > 0 if and only if (i, j) ∈ E. Moreover, we assume that aii > 0 for i = 1, . . . , n, that is, every
agent can use its own instantaneous state information, the same assumption is also taken by
[17]. Diagonal matrix D = diag{d1, d2, . . . , dn} is the degree matrix whose diagonal elements
are defined by di =

∑
j∈Ni

aij .
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The dynamics of agent i is described by

xi(t + h) = xi(t) + vi(t)h,

vi(t + h) = vi(t) + ui(t)h,
(2.1)

where the update time instants t ∈ R will be the form t = t0 + ph, t0 is the initial moment,
p = 1, 2, . . ., the positive real number h is the sampled time or time discretization unit, in this
paper, we assume that 0 < h < 1. xi, vi, ui : [0,∞) → R, i = 1, 2, . . . , n, denote the position (or
angle), velocity (or angular velocity), and control of agent i, respectively.

Definition 2.1. Second-order consensus in the multiagent systems (2.1) is said to be achieved
if for any initial conditions,

lim
t→∞
∥
∥xi(t) − xj(t)

∥
∥ = 0, lim

t→∞
∥
∥vi(t) − vj(t)

∥
∥ = 0, i, j = 1, 2, . . . , n. (2.2)

3. Consensus Analysis

To solve the consensus problem, we introduce the following neighbor-based feedback control
protocol

ui(t) = −vi(t) − k
1

∑
j∈Ni

aij

⎧
⎨

⎩

∑

j∈Ni

aij

[
xi(t) − xj(t − τ) + vi(t) − vj(t − τ)

]

⎫
⎬

⎭
, i = 1, 2, . . . , n,

(3.1)

where k > 0 is a control parameter, τ ≥ 0 is the time delay.

Theorem 3.1. Under control protocol (3.1), for any bounded time-delay, there exist some k > 0 such
that the consensus for (2.1) is reached asymptotically if and only if the interconnection graph G of n
agents has a globally reachable node.

Before proving Theorem 3.1, we first need to domodel transformation on systems (2.1)
under control protocol (3.1) and give some technical lemmas.

Let x(t) = (x1(t), . . . , xn(t))
T , v(t) = (v1(t), . . . , vn(t))

T , B = (bij)n×n, where bij =
aij/

∑
j∈Ni

aij , then by (2.1) and (3.1), we have

x(t + h) = x(t) + v(t)h,

v(t + h) = −khx(t) + (1 − h − kh)v(t) + khBx(t − τ) + khBv(t − τ).
(3.2)

Since there has a globally reachable node in graph G, without loss of generality, we
assume the nth node is the globally reachable and set:

Q =
(
In−1 −1n−1
0 1

)

. (3.3)
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Let x̃(t) = Qx(t), ṽ(t) = Qv(t), then x̃(t) = (x1(t) − xn(t), x2(t) − xn(t), . . . , xn−1(t) −
xn(t), xn(t))

T , ṽ(t) = (v1(t) − vn(t), v2(t) − vn(t), . . . , vn−1(t) − vn(t), vn(t))
T and

x̃(t + h) = x̃(t) + ṽ(t)h,

ṽ(t + h) = −khx̃(t) + (1 − h − kh)ṽ(t)

+ khQBQ−1x̃(t − τ) + khQBQ−1ṽ(t − τ).

(3.4)

Define y1(t) = (x1(t) − xn(t), x2(t) − xn(t), . . . , xn−1(t) − xn(t))
T , y2(t) = xn(t), z1(t) =

(v1(t) − vn(t), v2(t) − vn(t), . . . , vn−1(t) − vn(t))
T , z2(t) = vn(t).

Noticing that the every row sum of B is 1, we have

QBQ−1 =
(
C 0
Br
n 1

)

, (3.5)

where C = Bn−1 − 1n−1Br
n, Bn−1 is a (n − 1) × (n − 1) matrix formed by the first n − 1 rows and

the first n− 1 columns of matrix B, Br
n is a row vector formed by the first n− 1 elements of the

nth row of matrix B.
Then (3.3) can be decoupled as follows:

y1(t + h) = y1(t) + z1(t)h,

z1(t + h) = −khy1(t) + (1 − h − kh)z1(t)

+ khCy1(t − τ) + khCz1(t − τ).

(3.6)

Let ε(t) = (yT
1 (t), z

T
1 (t))

T , one can obtain that

ε(t + h) = Hε(t) + khPε(t − τ), t ≥ t0, (3.7)

where

H =
(

In−1 hIn−1
−khIn−1 (1 − h − kh)In−1

)

, P =
(
0 0
C C

)

. (3.8)

Therefore, the consensus of (2.1) is achieved if and only if ε(t) → 0 as t → ∞ for any
initial condition ε(t) = φ(t), t ∈ [t0 − τ, t0].

Now, we give some useful lemmas for proving Theorem 3.1.

Lemma 3.2 (see [18]). If a nonnegative matrix A has the same positive constant row sums given
by μ > 0, then μ is an eigenvalue of A with an associated eigenvector 1 and ρ(A) = μ, where ρ(A)
denotes the spectral radius. In addition, the eigenvalue μ ofA has algebraic multiplicity equal to one, if
and only if the graph associated with A has a spanning tree.

Lemma 3.3. Equation (3.7) has a unique equilibrium 0 if the interconnection graphG of n agents has
a globally reachable node.
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Proof. It suffices to verify that (I2(n−1) −H − khP)ε = 0, that is,

(
0 −hIn−1

kh(In−1 − C) hIn−1 + kh(In−1 − C)

)(
y1

z1

)

= 0 (3.9)

has a unique solution 0 if interconnection graph G has a globally reachable node.
By (3.9), it is obvious that z1 = 0, then it is equivalent to prove that (In−1 −C)y1 = 0 has

a unique solution y1 = 0, namely, C has no eigenvalue 1.
Since the graph G associated with A has a globally reachable node, by the definition

of B, we know that the graph associated with BT has a directed spanning tree. By Lemma 3.2,
matrix BT has the eigenvalue 1 with algebraic multiplicity 1. Therefore, by (3.5), matrix CT

has no eigenvalue 1, that is, 1 is not the eigenvalue of matrix C. The proof is completed.

Lemma 3.4. For 0 < h < 1, if 0 < k < 1, then ρ(H) < 1, where ρ(H) represents the spectral radius
of matrixH.

Proof. Let λ be any eigenvalue of H, that is,

|λI2n−2 −H| =
∣
∣
∣
∣
(λ − 1)In−1 −hIn−1
khIn−1 (λ − 1 + h + kh)In−1

∣
∣
∣
∣ = 0. (3.10)

Case I. If λ = 1, then it follows from the Laplace theorem for a partitioned matrix that
det(khIn−1) · det(hIn−1) = 0, that is kh2 = 0, which is a contradiction.
Case II. For λ/= 1, using the Laplace theorem for a partitioned matrix again, one can derive
from (3.10) that det((λ − 1)In−1) · det((λ − 1 + h + kh)In−1 + (kh2/(λ − 1))In−1) = 0, then

λ2 + (kh + h − 2)λ + kh2 − kh − h + 1 = 0. (3.11)

Therefore, we have Δ = (kh + h − 2)2 − 4(kh2 − kh − h + 1) = h2(k − 1)2 and λ1,2 = (2 − h − kh ±√
Δ)/2 = (2 − h − kh ± h(1 − k))/2. One can easily verify that |λ1,2| < 1, that is, ρ(H) < 1, for

0 < h < 1, 0 < k < 1. The proof is completed.

Lemma 3.5. If ρ(H) < 1, then there exist positive constants K ≥ 1 and 0 < γ < 1 such that
||H||t−t0 ≤ Kγt−t0 , t ≥ t0.

Lemma 3.6. Inequality xτ+h − γxτ − l > 0 has at least one solution x ∈ (γ, 1) if 1 − γ − l > 0.

Proof. Let f(x) = xτ+h − γxτ − l, then f ′(x) = xτ−1((τ + h)xh − τγ). Set g(x) = (τ + h)xh − τγ ,
then g ′(x) = h(τ + h)xh−1 > 0, so g(x) > g(γ) = (τ + h)γh − τγ > 0 for x ∈ (γ, 1). Thus f(x) is
monotonically increasing for x ∈ (γ, 1). Since f(1) > 0, so there exists at least a x ∈ (γ, 1) such
that xτ+h − γxτ − l > 0.

Lemma 3.7 (see [19]). A digraph G = (V,E) with |V| ≥ 2 has no globally reachable node if and only
if it has at least two disjoint closed subsets of V.

Now, we are in the position to prove Theorem 3.1.
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Proof. Sufficiency. By (3.5), one derives that

ε(t) = Hpε(t0) + kh
p−1∑

s=0

Hp−1−sPε(t0 + sh − τ), (3.12)

where t = ph + t0, p = 1, 2, . . ..
For 0 < k < 1, by Lemma 3.4, ρ(H) < 1. Noticing that Lemma 3.5, there exist constants

0 < γ < 1 and K ≥ 1 such that ‖H‖t−t0 ≤ Kγt−t0 , t ≥ t0. Therefore by (3.12), we have

||ε(t)|| ≤ Kγp||ε(t0)|| + kh
p−1∑

s=0

Kγp−1−s||P || · ||ε(t0 + sh − τ)||. (3.13)

For k < (1 − γ)/hK||P ||, by Lemma 3.6, there exists a positive constant λ satisfying
γ < λ < 1 such that λτ+h − γλτ − khK||P || > 0.

In the following, we will show that

||ε(t)|| ≤ K
∣
∣
∣
∣φ
∣
∣
∣
∣λt−t0 , t ≥ t0, (3.14)

where ||φ|| = supt∈[t0−τ, t0]||ε(t)||.
It is clear that ||ε(t)|| ≤ K||φ||λt−t0 , for t ∈ [t0 − τ, t0].
Next, we first show for any η > 1,

||ε(t)|| < ηK
∣
∣
∣
∣φ
∣
∣
∣
∣λt−t0 � ϕ(t), t ≥ t0. (3.15)

If (3.15) is not true, then there must exists a t∗ = t0 + p∗h (p∗ > 0) such that

||ε(t)|| < ϕ(t), for t ∈ [0, t∗), ||ε(t∗)|| = ϕ(t∗). (3.16)

By (3.13), one can obtain that

ϕ(t∗) = ||ε(t∗)|| ≤ Kγp
∗ ||ε(t0)|| + kh

p∗−1∑

s=0

Kγp
∗−1−s||P || · ||ε(t0 + sh − τ)||

< Kη
∣
∣
∣
∣φ
∣
∣
∣
∣γp

∗
[

1 +
khK||P ||

γλτ

p∗−1∑

s=0

(
λh

γ

)s]

≤ Kη
∣
∣
∣
∣φ
∣
∣
∣
∣

[

γp
∗
+

khK||P ||
(
λh − γ

)
λτ

(
λp

∗h − γp
∗)
]

< Kη
∣
∣
∣
∣φ
∣
∣
∣
∣λt

∗−t0 = ϕ(t∗),

(3.17)

which is a contradiction. Thus, for any η > 1, (3.15) holds, let η → 1, (3.14) holds. Since there
has a globally reachable node in graph G, for 0 < k < min{1, (1 − γ)/hK||P ||}, ||ε(t)|| → 0 as
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Figure 1: The directed interaction topology of ten agents.

t → ∞ for any initial condition invoking Lemma 3.3, that is, there exist some k > 0 such that
the consensus for (2.1) is reached asymptotically.

Necessity. The consensus of (2.1) can be reached asymptotically, that is, for any initial position
and velocity and any bounded time delay τ ≥ 0, xi → xj and vi → vj as t → ∞. By way
of contradiction, suppose that the graph G has no globally reachable node. Then it follows
from Lemma 3.7 that there are at least two disjoint closed sets of nodes in graph G. Without
loss of generality, we consider the following special case, that is, τ = 0 and there are exactly
two disjoint closed sets in graph G, say V1 = {1} and V2 = {2}, that is, there is only one
node inV1 andV2, respectively, (if there are more disjoint closed sets or there are more nodes
in each disjoint closed sets, it can be proved by a similar argument only with more complex
computation). Given the initial condition satisfying x1(t0) = v1(t0) = c1 and x2(t0) = v2(t0) =
c2, by a direct computation, we have x1(t) = (2 − (1 − h)p)c1, v1(t) = (1 − h)pc1, x2(t) =
(2− (1−h)p)c2, v2(t) = (1−h)pc2, where t = t0 +ph, p = 1, 2, . . .. Hence, if c1 /= c2, the consensus
cannot be reached, a contradiction. The proof of Theorem 3.1 is completed.

Remark 3.8. By the proof procedure of Lemma 3.4 and Theorem 3.1, one can conclude
that Lemma 3.4 and Theorem 3.1 are also true for h = 1. When h = 1 and there is no
communication time delay between agents, that is, τ = 0, Theorem 3.1 is consist with
Theorem 2 in [16].

4. A Simulation Example

In this section, an example is given to demonstrate the efficiency and applicability of the
proposed method and to validate the theoretical analysis. For simplicity, we suppose that all
the edge weights are 1 in the following example.

Example 4.1. Assume that the interaction digraph of ten agents is depicted in Figure 1.

A globally reachable node can be easily found in the digraph. The initial positions
and velocities of the ten agents are chosen as [sin(t), 2 sin(t), cos(t), t, 2t, 2 cos(t), 3 sin(t),
4 sin(t), − sin(t), − cos(t)]T and [cos(t), t, t2, sin(t), sin(2t), − cos(t), 2 sin(t), 2 cos(t), 3 sin(t),
3 cos(t)]T , t ∈ [−τ, 0], respectively. Select control parameter k = 0.5, transmission time
delay τ = 1, and h = 0.01. The simulation result under the control protocol (3.1) is shown
in Figure 2, which illustrates that consensus has been achieved within about 150 seconds.
Change transmission time delay as τ = 0.5, 1.5, 2, and 10, by simulation experiments, we also
find that consensus is accomplished within about 120, 200, 250, and 700 seconds, respectively.
This shows that our designed algorithms can effectively tolerate arbitrary bounded time
delays. But when the time delay increased, the convergence rate will decrease.
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Figure 2: Positions and velocities of ten agents under control (3.1).

5. Conclusion

Based on algebraic graph theory, matrix theory, and stability theory of difference equation,
the consensus problem of discrete time second-order multiagent systems with time delay
is investigated. A necessary and sufficient condition for achieving consensus is presented.
Furthermore, the convergence rate for consensus is given. The main results presented in this
work are delay-independent (i.e., the results are valid for arbitrary bounded time delay).
In addition, the present paper applies graph theoretic tools to explore explicit graphical
conditions of the information exchange topologies under which consensus can be achieved.
Since the interagent connection structures may vary over time, the consensus of discrete
time second-order multiagent systems with time delays and switching topologies is also very
interesting to us; this case will be investigated in future research.

Acknowledgments

The work is supported jointly by National Natural Science Foundation of China under Grant
61004042, Construction Project of Engineering and Technology Research Center of Chongqing
(cstc2011pt-gc40006), and Foundation of Science and Technology project of Chongqing
Education Commission under Grant KJ100513.

References

[1] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using
nearest neighbor rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.
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