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Motivated by the importance and application of discrete dynamical systems, this paper presents a
new Lyapunov characterization which is an extension of conventional Lyapunov characterization
for multistable discrete-time nonlinear systems. Based on a new type stability notion ofW-stability
introduced by D. Efimov, the estimates of solution and the Lyapunov stability theorem and con-
verse theorem are proposed for multi-stable discrete-time nonlinear systems.

1. Introduction

Theory of discrete-time systems is rapidly developed and widely applied to various fields
(see three remarkable books [1–3]). In paper [4], motivated by a continuous second-order
predator-prey ecological system of Lotka-Volterra type, Efimov introduces a new type notion,
W-stable and presents Lyapunov characterization for multistable continuous nonlinear sys-
tems. For ecological systems, they usually considered that evolution and translation of popu-
lations is continuous. Thus continuousmodels [5, 6] are considered inmany references. How-
ever, according to observing the translation process of population change, discrete models
are better to represent ecological systems [7, 8]. Thus it is meaningful to study W-stability
for discrete dynamical systems. This paper extends stability results given by Efimov about
continuous multistable systems to discrete-time multistable systems.

Stability analysis is one of the main issues for research of control systems theory. A
rapid progress has been made in local or global stability analysis for unique equilibrium [9],
trajectories [10], close invariant set [11, 12], part of state variable [13], and so forth. In papers
[14, 15], Sontag and Wang introduce Lyapunov characterization of input to state stability for
continuous systems. Paper [16] by Jiang and Wang presents the property of input to state
stability for discrete-time systems. Converse Lyapunov theorem is presented in paper [11]
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by Lin et al. and paper [17] by Jiang and Wang for continuous and discrete-time systems,
respectively. In recent years, multistable systems have attracted considerable attention [8, 18–
21]. There have many methods to deal with stability problem for multistable systems. Two
popular modern approaches are based on density functions [19] and monotone systems [20].
The former approach substitutes conventional Lyapunov function with density function for
establishing stability of stable set. The latter approach develops some constructive conditions
based on monotone systems for establishing stability of the set of equilibriums. The above
approaches are effective to handle the stability problem of multistable systems. The stability
results obtained according to the above approaches are based on conventional stable notions.
However, in the areas of theoretical biology and engineering, many systems that represent
models are called multistable systems. The set of all invariant solutions of those systems con-
tains stable subset and unstable subset.

In this paper, we firstly introduce the notion ofW-stability to discrete-time multistable
systems. Using some important approaches and techniques of stability analysis in papers
[4, 11, 14–18], new Lyapunov characterizations are proposed for discrete-time multistable
systems. Based on notions of W-Lyapunov function and weak W-Lyapunov function, the
relation of two functions is presented, and a converse Lyapunov theorem is proved. Our
main contribution is that Lyapunov characterizations presented in this paper contain the
conventional Lyapunov characterization and it should be extensively applied.

The rest of the paper is organized as follows. Problem statement and mathematical
preliminary are presented in Section 2. Stability results of multistable discrete-time nonlinear
systems are proposed in Section 3. Finally, a brief conclusion is provided to summarize the
paper in the final section.

2. Problem Statement and Mathematical Preliminary

Consider the following discrete nonlinear system:

x(k + 1) = f(x(k)), (2.1)

where x(k) ∈ Rn is the system state vector at time instant k, k ∈ Z+ = {0, 1, 2, . . .}, f : Rn → Rn

is locally Lipschitz continuous. x(k, x0) denotes the solution for any initial value x0 = x(k0),
and k0 ∈ Z+. ‖x‖ denotes the Euclidean norm of vector x.

Let M be a nonempty subset of Rn. The set is called (forward) invariant for system
(2.1) if

x0 ∈ M =⇒ x(k, x0) ∈ M, ∀k ∈ Z+. (2.2)

An invariant set is called minimal if it does not contain other smaller invariant sets. The dis-
tance of the set M from a point x ∈ Rn is defined as

‖x‖M = dist(x,M) = inf
ξ∈M

‖x − ξ‖. (2.3)

An invariant setA is said to be a locally attracting set if there exists an open neighbor-
hood U of A such that, for any x0 ∈ U, limk→+∞‖x(k, x0)‖A = 0. An invariant set R is said to



Discrete Dynamics in Nature and Society 3

be a locally repelling set if exists an open neighborhood U of R such that, for any x0 ∈ U − R,
limk→+∞‖x(k, x0)‖R > 0.

LetW ⊂ Rn be the set of all invariant solutions of system (2.1). Clearly, it is an invariant
set. Assume the set W is a closed and compact set and satisfies W = A ∪ R, where A and R
denote attracting set and repelling set, respectively.

We first introduce the notion of W-asymptotical stability [4] for continuous nonlinear
systems to discrete-time nonlinear systems (2.1).

Definition 2.1. The system (2.1) is calledW-stable with respect toW if, for some given constant
R ≥ 0 and for each R ≤ ε ≤ +∞, there exists 0 ≤ δ = δ(ε) < +∞, such that when ‖x0‖W ≤ δ, it
holds

‖x(k, x0)‖W ≤ ε, ∀k ∈ Z+. (2.4)

Remark 2.2. It is possible to exist unstable equilibriums in the set W which contains all in-
variant solutions. When the trajectories of system initiate from a neighborhood of unstable
equilibriums, it cannot ensure the trajectories in this neighborhood. Thus, the definition ofW-
stability need the existence R ≥ 0 such that ε ≥ R. If R is not empty then R > 0. Particularly,
when R is empty (it implies R = 0), W-stability is reduced to conventional stability (see
[1, 2, 9]). The constant can be related with the radius of the setW [4].

Definition 2.3. The system (2.1) is called W-asymptotically stable with respect to W if

(i) it is W-stable;

(ii) it satisfies W-attracting property. There is a positive constant c, such that, for all
‖x0‖W ≤ c, limk→+∞‖x(k, x0)‖W = 0; that is, for each 0 < η < +∞ and ‖x0‖W ≤ c,
there exists T = T(x0, η) ∈ Z+ such that

‖x(k, x0)‖W < η, ∀k ≥ T(x0, η
)
. (2.5)

Remark 2.4. T(x0, η) is dependent on x0, and η. T(·, η) is different for different initial values;
that is, there exists no uniform time of convergence to W of the trajectories which start from
the neighborhood of different initial values due to the presence of unstable equilibriums.

Example 2.5. Consider a second-order discrete system

x(k + 1) = x(k) + hy(k),

y(k + 1) = y(k) + hy(k)
(
−y(k) + x(k) − x3(k)

)
.

(2.6)

The set of all invariant solutions is W = {(0, 0), (1, 0), (−1, 0)}. Let h = 0.1. Simulation results
are shown in Figure 1.

According to Figure 1, we can get that (0, 0) is unstable and (1, 0) and (−1, 0) is asymp-
totically stable. Thus A = {(1, 0), (−1, 0)}, and R = {(0, 0)}. System (2.6) is W-asymptotically
stable by Definition 2.3.
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Figure 1:W-asymptotical stability of system (2.6)with different initial values. (a) and (b) show phase por-
traits of system (2.6)with initial value (−0.01, 0.01) and (0.01, −0.01), respectively.

Example 2.6. Consider a second-order predator-prey system with a prey refuge in the follow-
ing form:

x(k + 1) = x(k) + hx(k)
(
β1 − b1x(k) − a1(1 −m)y(k)

)
,

y(k + 1) = y(k) + hy(k)
(
β2 −

a2y(k)
(1 −m)x(k)

)
,

(2.7)

where x(k), y(k) represent the prey and predator density, parameters β1 and β2 are the
intrinsic growth rates of the prey and the predator, respectively. h is the step size. m ∈ [0, 1)
is a refuge protecting coefficient of the prey. The rest coefficients are positive constants. Let
m = 1/2, h = 0.1, β1 = β2 = 2, and a1 = a2 = b = 1. The set of all invariant solutions of system
(2.7) isW = {(0, 0), (2, 0), (4/3, 4/3)}. Simulation results are shown in Figure 2.

According to Figure 2, the trajectories of solutions from the neighborhood of points
(0,0) and (2,0) are convergent to point (4/3, 4/3). We have (0, 0) and (2, 0) are unstable and
(4/3, 4/3) is asymptotically stable. System (2.7) isW-asymptotical stable.

Remark 2.7. For system (2.7), there have been many important and interesting results, such
as the global stability, periodic solutions, almost periodic solutions, and chaos (see [4–8, 14,
15, 22]). Here our interesting focus is on W-asymptotical stability of the set of all invariant
solutions.

Throughout this paper, assume A and R are not empty. In this case, we can exclude
an open set containing R from admissible set of initial value. Then there exists a uniform
convergent time T in the definition of attracting property. That is, W-attracting property is
similar to the definition of attracting property in [9, 18]. Define a hyper-surface

Σ = {x ∈ Rn : ‖x‖R − ‖x‖A = 0}. (2.8)
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Figure 2:W-asymptotical stability of system (2.7)with different initial values. (a) and (b) show phase por-
traits of system (2.7)with initial value (0.01,0.01) and (2.01,0.01), respectively.

Then we obtain

Σ− = {x ∈ Rn : ‖x‖R − ‖x‖A < 0}, Σ+ = {x ∈ Rn : ‖x‖R − ‖x‖A > 0}. (2.9)

Let an open neighborhood U of R be U = Bρ = {x ∈ Rn : ‖x‖R < ρ}. We can choose some ρ∗

which ensure the properties Bρ ⊂ Σ−, Bρ ∩ Σ+ = ∅ hold only for ρ < ρ∗.

Definition 2.8. System (2.1) satisfies W-attracting property. Choose any open set Bρ of R. For
each η > 0 and r > 0 there exists T = T(r, η) ∈ [0,+∞) such that for any x0 ∈ {x : ‖x‖W < r}−Bρ

‖x(k, x0)‖W < η, ∀k ≥ T(r, η). (2.10)

3. Stability Results

3.1. Estimates of Solution

Lemma 3.1. The system (2.1) is W-stable with respect to W for some given R ≥ 0 if and only if for
any constant r ≥ 0 there exists a classK function α such that for any ‖x0‖W ≤ r

‖x(k, x0)‖W ≤ α
(
‖x0‖W + R̃

)
, ∀k ∈ Z+, (3.1)

where R̃ = α−1(R).

Proof. Sufficiency. For system (2.1), when ‖x0‖W ≤ r, (3.1) holds for any k ∈ Z+. For each
ε = α(r + R̃) ≥ R, choose δ = min{r, α−1(ε) − R̃}, when ‖x0‖W ≤ δ, ‖x(k, x0)‖W ≤ ε holds for
any k ∈ Z+.W-stability is ensured.
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Necessity. Assume system (2.1) is W-stable, that is, for some given R ≥ 0 and for each
ε ≥ 0, there exists δ ≥ 0, such that

‖x0‖W ≤ δ =⇒ ‖x(k, x0)‖W ≤ ε + R, k ∈ Z+. (3.2)

For fixed ε and R, let δ(ε) be the supremun of all applicable δ(ε). Clearly, the function δ(r) is
positive and nondecreasing. So there exist a class K function ϕ and a constant λ ∈ (0, 1) such
that ϕ(r) ≤ ϕ(r + R) ≤ λ(δ(r) + R̃), where R̃ = ϕ(R). Let α(r) = ϕ−1(r). Then α is a function of
class K. Let c = limr→+∞α(r). Given ‖x0‖W ≤ c − R̃, let ε + R = α(‖x0‖W + R̃). Then we have
‖x0‖W ≤ ϕ(ε +R) − R̃ ≤ δ(ε) and ‖x(k, x0)‖W ≤ α(‖x0‖W + R̃) = ε +R. ThusW-stability implies
the property as in inequality (3.1).

Remark 3.2. The construction approach of class K function α is similar to its in [9, 11]. When
R = 0, the result of Lemma 3.1 is the same as the corresponding result in [9, 11].

Lemma 3.3. The system (2.1) is W-asymptotically stable with respect to W if and only if for some
constant R ≥ 0 and any constant r ≥ 0 there exist a class KL function β and a class K function μ
such that for any ‖x0‖W ≤ r

‖x(k, x0)‖W < β(‖x0‖W + R, k), ∀k ∈ Z+. (3.3)

Proof. Sufficiency. Suppose there is a classKL function β such that inequality (3.3) is satisfied.
With fixed k = k1, we have

‖x(k, x0)‖W < β(‖x0‖W + R, k1). (3.4)

By Lemma 3.1, system (2.1) isW-stable. For any ‖x0‖W ≤ ζ, it yields

‖x(k, x0)‖W < β(ζ + R, k). (3.5)

It implies ‖x(k, x0)‖W → 0 as k → +∞. Attracting property is satisfied. Thus, system (2.1) is
W-asymptotically stable.

Necessity. Suppose that system (2.1) is W-asymptotically stable. According to
Lemma 3.1, there exists a class K function α such that for any ‖x0‖W ≤ r

‖x(k, x0)‖W ≤ α
(
‖x0‖W + R̃

)
. (3.6)

Moreover, choose an arbitrary small constant ρ which satisfies 0 < ρ < ρ∗. For any x0 ∈ {x :
‖x‖W ≤ r} − Bρ and given η > 0, there exists T(r, η) such that

‖x(k, x0)‖W < η, ∀k ≥ T(r, η). (3.7)
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Let T(r, η) be the infimun of T(r, η). The function T(r, η) is nonnegative in r and nonincreas-
ing in η, and T(r, η) = 0 for all η > α(r + R). Let

ψr
(
η
)
=

2
η

∫η

η/2
T(r, s)ds > T

(
r, η

)
. (3.8)

The function ψr(η) is positive and has the following properties:

(i) for each fixed r, ψr(η) is continuous, strictly decreasing, and ψr(η) → 0 as η → +∞;

(ii) for each fixed η, ψr(η) is strictly increasing in r.

Take χr(η) = ψ−1
r (η). Then χr(η) also satisfies the above two properties and T(r, χr(η)) <

ψr(χr(η)) = η. So

‖x(k, x0)‖W ≤ χr(k), ∀k ∈ Z+, ∀x0 ∈ {‖x0‖W ≤ r} − Bρ. (3.9)

According to inequalities (3.6) and (3.9)we get

‖x(k, x0)‖W ≤ 2

√

α
(
‖x0‖W + R̃

)
χr(k) = β(‖x0‖W + R, k). (3.10)

Thus, according to arbitrariness of ρ, there exists a class KL function β such that inequality
(3.3) is satisfied.

3.2. Stability Theorem

Definition 3.4. A continuous function W : Rn → R is a W-Lyapunov function with respect to
W for system (2.1) if

(i) there exist classK functions α1 and α2 and a constant R ≥ 0 such that for any k ∈ Z+

and x0 ∈ Rn

α1(‖x0‖W) ≤ W(x(k, x0)) ≤ α2(‖x0‖W + R); (3.11)

(ii) there exists a class K function α3 such that for any k ∈ Z+ and x0 ∈ Rn

W(
f(x(k, x0))

) −W(x(k, x0)) ≤ −α3(‖x0‖W). (3.12)

Assume system (2.1) has output y(k) = h(x(k)), where h : Rn → Rm is a continuous function.
The system (2.1) with output y(x(k)) isW-detectable if for any k ∈ Z+ and x0 ∈ Rn

y(x(k, x0)) = h(x(k, x0)) ≡ 0 =⇒ ‖x(k, x0)‖W −→ 0, k −→ +∞. (3.13)
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Definition 3.5. A continuous function W : Rn → R is a weak W-Lyapunov function with re-
spect toW for system (2.1) if

(i) there exist classK functions α1 and α2 and a constant R ≥ 0 such that for any k ∈ Z+

and x0 ∈ Rn

α1(‖x0‖W) ≤ W(x(k, x0)) ≤ α2(‖x0‖W + R); (3.14)

(ii) there exists a continuous function α3 : Rm → [0,∞), with α3(0) = 0 and α3(s) > 0
for all s /= 0 such that for any ∈ Z+ and x0 ∈ Rn

W(
f(x(k, x0))

) −W(x(k, x0)) ≤ −α3(‖h(x(k, x0))‖) ≤ 0; (3.15)

(iii) system (2.1)with output y(x(k)) isW-detectable.

Theorem 3.6. WeakW-Lyapunov function impliesW-asymptotical stability.

Proof. Suppose system (2.1) has a weak W-Lyapunov function. Using inequality (3.15), we
have

W(
f(x(k, x0))

) −W(x(k, x0)) ≤ 0. (3.16)

It implies W is bounded and

α1(‖x0‖W) ≤ W(x(k, x0)) ≤ W(x0) ≤ α2(‖x0‖W + R), ∀k ∈ Z+. (3.17)

Thus

‖x(k, x0)‖W ≤ α−11 (α2(‖x0‖W + R)). (3.18)

According to Lemma 3.1, system (2.1) isW-stable with respect toW.
Since the compactness of setW, there exist a classK function μ and a positive constant

c such that

‖x(k)‖ ≤ μ(‖x(k)‖W + c), (3.19)

which shows x(k) is bounded. Thus, for any solution of system (2.1) we can find a forward
invariant attracting compact set Ω(x(0)). Choosing x0 ∈ Ω(x(0)), we have x(k, x0) ∈ Ω(x(0))
for any k ∈ Z+.

Furthermore, byW(f(x(k, x0)))−W(x(k, x0)) ≤ 0 we getW(x(k, x0)) is nonincreasing.
However, byW(x(k, x0)) ≥ α1(‖x0‖W)we obtainW(x(k)) is nondecreasing. Thus, there exists
a positive constant d such that

W(x(k, x0)) = d, (3.20)

which implies

W(
f(x(k, x0))

) −W(x(k, x0)) = 0. (3.21)
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Then α3(h(x(k, x0))) = 0. Using the detectability of system (2.1) with y(x(k)), we have
‖x(k, x0)‖W → 0 as k → +∞. That is, W-attracting property holds.

The proof is completed.

Lemma 3.7 is given by Sontag in [15]which is useful for proof of Theorem 3.8.

Lemma 3.7. Assume that β is a function of class KL. Then there exist two class K∞ functions ϕ1

and ϕ2 such that

β(s, r) ≤ ϕ1
(
ϕ2(s)e−r

)
, ∀s ≥ 0, ∀r ≥ 0. (3.22)

Theorem 3.8. Considering system (2.1), the following is equivalent:

(a) there exists aW-Lyapunov function;

(b) there exists a weak W-Lyapunov function;

(c) there isW-asymptotically stable.

Proof. (a)⇒(b). Let h(x(k)) = α3(W(x(k, x0))). Because α3 is a class K function, h(x(k)) is
continuous and inequality (3.15) is satisfied. Furthermore, when h(x(k, x0)) ≡ 0, we have

‖x(k, x0)‖W −→ 0, k −→ +∞. (3.23)

The Property (iii) of Definition 3.5 holds. Thus (a) implies (b).
(b)⇒(c). The proof is given in Theorem 3.6.
(c)⇒(a). Assume that system (2.1) is W-asymptotically stable. According to

Lemma 3.3, there exist a class KL function β and a class K function μ such that for any
x0 ∈ Rn

‖x(k, x0)‖W ≤ β(‖x0‖W + R, k), ∀k ∈ Z+. (3.24)

By Lemma 3.1, there exist two class K∞ functions ϕ1 and ϕ2 such that

‖x(k, x0)‖W ≤ β(‖x0‖W + R, k) ≤ ϕ1

(
ϕ2(‖x0‖W + R)e−k

)
. (3.25)

Let θ = ϕ−1
1 . We have

θ(‖x(k, x0)‖W) ≤ ϕ2(‖x0‖W + R)e−k. (3.26)

Define W(x(k, x0)) =
∑∞

k=0 θ(‖x(k + k0, x0)‖W). Clearly, W(x(k, x0)) is continuous since ϕ1 is
a class K∞ function. By the definition ofW, it yields

θ(‖x0‖W) ≤ W(x(k, x0)) ≤
∞∑

k=0

ϕ2(‖x0‖W + R)e−k ≤ e

e − 1
ϕ2(‖x0‖W + R). (3.27)

W satisfies the property of inequality (3.11) due to inequality (3.27).
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In the following we show W(x(k)) satisfies the property as in inequality (3.12). Arbi-
trarily choose k0 ∈ Z+ and x0 = x(k0) ∈ Rn. Then x(k0 + 1, x(k0)) = f(x(k0, x(k0))) and

W(x(k0 + 1, x(k0 + 1))) =
∞∑

k=0

θ(‖x(k + k0 + 1, x(k0 + 1))‖W). (3.28)

Since function f(x(k)) is Lipschitz continuous, the solution of system (2.1) is unique for
arbitrary initial value. Then we have

x(k + k0 + 1, x(k0 + 1)) = x(k + k0 + 1, x(k0)), ∀k ∈ Z+. (3.29)

Considering (3.28), we can get

W(x(k0 + 1, x(k0 + 1))) =
∞∑

k=0

θ(‖x(k + k0 + 1, x(k0 + 1))‖W)

=
∞∑

k=0

θ(‖x(k + k0 + 1, x(k0))‖W)

=
∞∑

k=1

θ(‖x(k + k0, x(k0))‖W)

=
∞∑

k=0

θ(‖x(k + k0, x(k0))‖W) − θ(‖x(k0, x(k0))‖W)

≤ W(x(k0, x(k0))) − θ(‖x(k0, x(k0))‖W).

(3.30)

That is,

W(x(k0 + 1, x(k0, x(k0)))) −W(x(k0, x(k0))) ≤ −θ(‖x0‖W). (3.31)

Due to the arbitrariness of k0, we have

W(
f(x(k, x0))

) −W(x(k, x0)) ≤ −θ(‖x0‖W). (3.32)

Function W satisfies the property as in inequality (3.12).

4. Conclusion

We conclude with a brief discussion. The notion of W-stability introduced by Efimov is
different from conventional notion of stability. It is required to consider the set of all invariant
solutions of systems. However, the set of all invariant solutions can contain not only stable
invariant solutions but also unstable invariant solutions. If it does not contain unstable
invariant solutions, W-stability is conventional stability. Thus our results should have an
more extensive application than those corresponding results in the sense of conventional sta-
bility.
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