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Driver cognitive distraction is a hazard state, which can easily lead to traffic accidents. This study
focuses on detecting the driver cognitive distraction state based on driving performance measures.
Characteristic parameters could be directly extracted from Controller Area Network-(CAN-)Bus
data, without depending on other sensors, which improves real-time and robustness performance.
Three cognitive distraction states (no cognitive distraction, low cognitive distraction, and
high cognitive distraction) were defined using different secondary tasks. NLModel, NHModel,
LHModel, and NLHModel were developed using SVMs according to different states. The
developed system shows promising results, which can correctly classify the driver’s states in
approximately 74%. Although the sensitivity for these models is low, it is acceptable because in
this situation the driver could control the car sufficiently. Thus, driving performance measures
could be used alone to detect driver cognitive state.

1. Introduction

Driver distraction is a major factor in traffic accidents, and it is estimated that up to 23
percent of crashes and near-crashes are caused by driver distraction. As the use of in-vehicle
information systems (IVISs) such as cell phones, navigation systems, and satellite radios, will
increase these figures will likely increase [1-6]. Thus enabling drivers to benefit from IVISs
without diminishing safety is an important challenge [7]. One way to solve this problem is to
detect the driver state in real time, and when distraction occurs, the corresponding warning
system works to mitigate the effects of distraction [8].

Obviously, measuring driver state in real time is the core function in such systems.
There has been an explosion research on these topics including the definition, classification,
and detection of distraction. Donmez et al. [8] proposed a general definition that is “driver
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distraction is a diversion of attention away from activities critical for safe driving toward a
competing activity.”

Generally, visual distraction and cognitive distraction are the two major types. Visual
distraction can be described as “eye-off-road” and cognitive distraction as “mind-off-road”
[9]. Both of them can undermine drivers” performance.

Visual distraction is straightforward, occurring when drivers look away from the
roadway (e.g., to adjust a radio), which can be reasonably measured by the length and
frequency of glances away from the road [10]. Unlike visual distraction, cognitive distraction
occurs when drivers think about something not directly related to the current vehicle control
task (e.g., conversing on a hands-free cell phone or route planning) [6]. Therefore, in this
paper we only detect driver cognitive distraction.

2. Measures Selection

There are five types of measures for driver inattention detection [11]: (1) subjective report
measures (e.g., SSS, KSS); (2) driver biological measures (e.g., EEG, ECG); (3) driver physical
measures (e.g., PERCLOS, gaze direction); (4) driving performance measures (e.g., steering
wheel angle, yaw angle); (5) hybrid measures.

Since cognitive distraction needs to be done in real time and nonintrusively, the
subjective report measures and driver biological measures are not suitable for a real-life
context.

2.1. Driver Physical Measures

The most common used driver physical data for driver cognitive distraction are eye
movements [6, 12]. Azman et al. [13] found that mouth and eyes are correlated to each
other when a person is thinking or cognitively distracted and they could be used to detect
driver’s cognitive distraction. Victor et al. [9] found that cognitive distraction causes drivers
to concentrate their gaze in the center of the driving scene, as defined by the horizontal
and vertical standard deviation of gaze distribution, and diminishes drivers’ ability to detect
targets across the entire driving scene. Fletcher and Zelinsky [14] utilized faceLAB to obtain
information such as eye gaze direction, eye closure, and blink detection, as well as head
position.

2.2, Driving Performance Measures

A change in the mental state can induce the change in driving performance. Many studies
prove the fact that compared to the attentive drivers the distracted ones steer their car in
a different way; the same applies for throttle use and speed [15]. Some lines of evidence
show that drivers adjust their behavior according to cognitive demand of secondary tasks.
Drivers tend to increase the distance to the leading vehicle in the car-following scenario when
they engage in cognitively demanding secondary tasks [16-18]. This suggests that drivers
may compensate for the impairments that secondary tasks have imposed. One study found
that drivers drove faster than the normal when distracted by a cognitive task [19]. Liang
et al. [6] found that the driving measures improved the cognitive distraction detection model
performance dramatically and built SVM models used driving performance only. The driving
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measures consist of standard deviation of steering wheel position, mean of steering error, and
standard deviation of lane position. But compared with gaze behavior, they found that gaze-
related features led to much better prediction accuracy than using the driving performance
measures alone. The similar conclusion was found in [4]. Wollmer et al. [1] introduced
a technique for online driver distraction detection that used LSTM recurrent neural nets
to continuously predict the driver’s state based on driving and head-tracking data. The
measured signals include steering wheel angle, throttle position, speed, heading angle, lateral
deviation, and head rotation. These links between driving performance and cognitive state
show that driving performance measures are good candidates to predict cognitive distraction.

2.3. Hybrid Measures

In [6], driver physical measures and driving performance measures were combined to detect
driver distraction in real time. Comparing support vector machines (SVMs) to traditional
logistic regression models, the results showed that the SVMs models performed better. In
[20], machine-learning techniques were used to detect driver cognitive distraction based on
the standard deviations of eye gaze, head orientation, pupil diameter, and average heart rate
(RRI). The eye and head parameters were obtained using faceLAB, whereas the RRI data
came from ECG. Sathyanarayana et al. [21] detected distraction by combining motion signals
from the leg and head with driving performance signals using a k-nearest neighbor classifier,
the driving performance signals adopted including vehicle speed, braking, acceleration, and
steering angle.

Among all of these measures, eye movements are one of the most promising ways
to assess driver distraction [4, 6, 12]. While most of the eye movements parameters were
obtained by faceLAB or SmartEye, these systems are not common in vehicles today, owing
to their higher price for installation into a vehicle. At the same time there are limits in the
process of extracting eye movements’ parameters [6].

(1) Complex calibration: before each experimental drive, the calibration of the gaze
vector with the simulator screen must be verified. After that, in the process
of the experiment eye tracker must be calibrated to every participant and the
calibration takes 5 to 15min. After the complex calibration, the tracking error was
approximately 5% of visual angle for most participants.

(2) Driver restriction: the participants cannot wear glasses or eye make-up because
these conditions can negatively affect tracking accuracy.

(3) Environmental restriction: eye trackers may lose tracking accuracy when vehicles
are traveling on rough roads or the lighting conditions are variable.

(4) Time delay: the Seeing Machines’ faceLAB eye tracking system takes approximately
2.6s to transfer camera image to numerical data.

These requirements limit the application of cognitive distraction system using eye
movements parameters obtained from faceLAB or SmartEye; therefore, up till now, this
scheme is only for research offline. More robust and real-time eye tracking techniques
are needed to make these detection systems become a reality. While driving performance
parameters could be obtained in real time from CAN-Bus directly, driving performance
measures are used in this study for cognitive distraction detection. In this method, the
characteristic parameters could be directly extracted without depending on other sensors,
and system real-time performance and robustness are improved.
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3. Model Development

Driving performance data were collected in a simulator experiment. The driving simulation
directly outputs driving performance original data, which is collected each 10 Hz. After
extracting characteristic parameters from the original data, SVM model was trained for
each participant. Twelve subjects participated in the experiment to detect driver’s cognitive
distraction state.

3.1. Experiment
3.1.1. Participants

Twelve participants (4 women and 8 men) aged 21-40 years old took part in this study. All
participants were experienced drivers with valid licenses. Participants were recruited via an
advertisement in school website.

3.1.2. Driving Simulator

The driving simulator used in this experiment is shown in Figure 1. The highway scenario is a
133 km long highway of a sampled actual ChangPing highway located between ChangChun
and SiPing city, with two lanes in one direction. The traffic situation selected in this
experiment was only sparse oncoming traffic and no traffic driving in the same direction
as the test subject.

3.1.3. Driving Task

The driving experiment was to drive the simulator at 80-120 km/h. Every participant was
asked to drive 4 sessions. In the first session, the participant drove 20 minutes to be familiar
with the driving condition. In the following three sessions, the participants were asked
to perform secondary tasks, including no workload tasks, low workload tasks, and high
workload tasks. Each session took 25-35 minutes.

In the no workload task session, subjects drove the simulator without secondary task
introduced, called no cognitive distraction (NCD). During the events, researcher randomly
recorded ten different 60-second periods driving performance original data as NCD data.

In the low workload tasks session, subjects were asked to talk with the researcher.
During the events, researcher ensures the talk diverts part of subjects” attention away from
activities critical for safe driving. The talk added subjects” workload and made subjects think
about something not directly related to the current vehicle control task but not led to be
lost in thought, called low cognitive distraction (LCD). During the talking process, another
researcher randomly recorded ten different 60-second periods driving performance original
data as the LCD data.

In the high workload tasks session, subjects were asked to answer the researcher’s
questions (intelligent test questions). These intelligent test questions diverted subjects’
attention away from activities critical for safe driving, and led subjects to think and be
lost in thought, called high cognitive distraction (HCD). During the events, when another
researcher ensured subjects thought about a question, driving performance original data were
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Figure 1: Driving simulator.

recorded as the HCD data. In this session, the original data record period depends on driver’s
distraction state. This session took much more time until enough original data were recorded.

3.1.4. Original Data

The driving performance original data were directly obtained from the driving simulator
including (1) vehicle velocity, (2) vehicle acceleration, (3) steering wheel angle, (4) steering
wheel angular velocity, (5) throttle position, (6) yaw angle, and (7) yaw angular velocity.

3.2. SVM Model
3.2.1. Support Vector Machines (SVMs)

Support vector machine (SVM) is a popular machine learning method for classification,
regression, and other learning tasks, which is first proposed by Vapnik [22].

The basic idea of classification using SVMs in 2D space is shown in Figure 2. Labeled
binary-class training data D = {(x;, y;) }Ll, where x; is a vector containing multiple features
and y; is a class indicator with value either —1 or 1, are illustrated as circles and dots in
Figure 2, respectively.

They are mapped onto a high-dimensional feature space via a function ®. When
the mapped data are linearly separable in the feature space, a hyperplane maximizing the
margin from it to the closest data points of each class exists. The hyperplane yields a
nonlinear boundary in the input space. The maximum margin represents the minimized
upper bound of generalization error. The function is written in the form of a kernel function
K(xi,x;) = (D(xi)T(D(xj) used in the SVM calculation. When data are not linearly separable in
the feature space, the positive penalty parameter C allows for training error e by specifying
the cost of misclassified training instances.

As cognitive distraction affects driving performance complexly, the learning technique
of the SVM method makes it very suitable for measuring the cognitive state of humans.

3.2.2. Characteristic Parameters

The original data were preprocessed and generated a vector of characteristic parameters as
listed in Table 1 as model input.
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Figure 2: SVM algorithm [6].
Table 1: Characteristic parameters.

Feature number Features Meaning
1 VVM Mean vehicle velocity
2 VVD Standard deviation of vehicle velocity
3 VAM Mean vehicle acceleration
4 VAM Standard deviation of vehicle acceleration
5 SAM Mean steering wheel angle
6 SAD Standard deviation of steering wheel angle
7 SVM Mean steering wheel angular velocity
8 SVD Standard deviation of steering wheel angular velocity
9 TPM Mean throttle position
10 TPD Standard deviation of throttle position
11 YAM Mean yaw angle
12 YAD Standard deviation of yaw angle
13 YVM Mean yaw angular velocity
14 YVD Standard deviation of yaw angular velocity

3.2.3. Window Size

Window size denotes the period over which characteristic parameters were averaged. In
order to improve the real-time performance, the window size 1s was chosen in this paper.
The characteristic parameters were summarized across the window size to form instances as
model input. For every participant there were 600 training instances to each distraction state
(NCD, LCD, and HCD).

3.2.4. Model Training

Cognitive distraction affects driver behavior in a subtle, inconsistent manner, which can be
easily washed out by individual differences associated with driving style [23]. Thus SVM
model was trained for each participant. We randomly selected 200 training instances to each
distraction state (NCD, LCD, and HCD) and used the remaining instances, which accounted
for at least two thirds of total instances for testing.

The “LIBSVM” Matlab toolbox [24] was used to train and test SVM models, and
LIBSVM is currently one of the most widely used SVM software. Linear, polynomial, radial
basis function (RBF), and sigmoid are the four basic kernels. The RBF can nonlinearly
map samples into a higher dimensional space, which can handle the case when the
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relation between class labels and attributes is nonlinear. At the same time, the RBF can
reduce numerical difficulties and tend to obtain more robust results than other kernels,
such as polynomial. Furthermore, compared to the polynomial kernel, the RBF has less
hyperparameters which influence the complexity of model selection [25]. Therefore the RBF
was chosen as the kernel function for the SVM models:

|2

K (i, 27) = e, @1

where x; and x; represent two data points and y is a predefined positive parameter. There
are two parameters for the RBF kernel C (the penalty parameter) and y, and it is not
known beforehand. In order to improve the model prediction performance, grid-search is
recommended to identify good (C, y) using cross-validation (CV). LIBSVM provides a tool to
check a grid of parameters, and CV accuracy was obtained for each parameter setting. When
the highest CV accuracy returns, (C,y) are selected to the model.

3.2.5. Model Performance Measures

Model performance was evaluated with three different measures: accuracy, sensitivity, and
specificity [26], which were calculated according to

TU
Accuracy = ToN > 100,

TP
Sensitivity = TP TN x 100, (3.2)

TN
SpeCIﬁClty = m x 100.

The definition of sensitivity and specificity is shown in Table 2. where TU represents
the number of true prediction instances; TON represents the total number of instances; TP
represents true positive, which is defined as when the driver is distracted and the model
detect result is distracted; TN represents true negative, which is defined as when the driver is
not distracted and the model detect result is no distracted; FP represents false positive, which
is defined as when the driver is not distracted and the model detect result is distracted; FN
represents false negative, which is defined as when the driver is distracted and the model
detect result is not distracted.

4. Experimental Results

Different SVM models were developed by using the same training instances from two of
the three distraction states (NCD, LCD, and HCD) to compare the accuracy of this detection
system based on driving performance measures when the driver was in different cognitive
distraction states. NLModel, NHModel, LHModel, and NLHModel were developed, where
NLModel was developed to distinguish LCD from NCD, NHModel was developed to
distinguish HCD from NCD, and LHModel was developed to distinguish LCD from HCD.



8 Discrete Dynamics in Nature and Society

Table 2: Definition of sensitivity and specificity.

Driver actual state

Model detect result Distracted No distracted
Distracted TP (true positive) FP (false positive)
No distracted FN (false negative) TN (true negative)

The selection process for the best (C,y) of a LHModel is shown in Figure 3. We
searched for C and y in the growing sequences ranging from 2% to 2% according to (4.1).
At last the best C = 0.0625, y = 0.32988 were selected when the CV accuracy was 95.75%:

Ci — 2—8+i
Y = 278+, (4.1)

subjectto: 0<i<16, 0<j<16.

After all of the models developed, the mean detecting performance is shown in
Figure 4. The mean accuracy for all NLModels was 78% (std = 0.195), the mean sensitivity
was 56% (std = 0.39), and the mean specificity was 100% (std = 0). The mean accuracy for
all LHModels was 66.14% (std = 0.1616), the mean sensitivity was 84.86% (std = 0.2024),
and the mean specificity was 47.43% (std = 0.3748). The mean accuracy for all NHModels
was 76.87% (std = 0.1568), the mean sensitivity was 54.07% (std = 0.3145), and the mean
specificity was 99.75% (std = 0.0071).

The results thus far have demonstrated that driver cognitive distraction affects driving
performance obviously, and driving performance measures could be used alone to detect
driver state. The accuracy for LHModel is 66.14%. It shows that when driver workload
changes from LCD to HCD, the driver performance changes. However, the accuracy for
NLModel (78%) and NHModel (76.87%) is higher than LHModel (66.14%), which means the
change rate of driving performance between NCD and LCD (or NCD and HCD) is higher
than it is between LCD and HCD.

The sensitivity for NLModel (LHModel, NHModel) means that the accuracy rate of
it predicts NCD (LCD, NCD) test instances as NCD (LCD, NCD), and the specificity for
NLModel (LHModel, NHModel) means that the accuracy rate of it predicts LCD (HCD,
HCD) test instances as LCD (HCD, HCD). From the detecting performance, specificity for
NLModel is apparently higher than sensitivity, NLModel can predict NCD test instances
accurately as NCD, while it classifies some LCD test instances as NCD. It suggests that the
characteristics of NCD are more significant than that of LCD.

One low NLModel prediction performance is shown in Figure 5, where NCD label is 1,
and LCD label is 2. It shows that NLModel can predict NCD class accurately (100%) and the
LCD class prediction accuracy is only 46%. Though NLModel classifies some LCD as NCD,
it can predict NCD accurately. False alarm rate for this system is low, which increases the
system acceptance.

It appears that low sensitivity of this system increases the missing alarm rate. However
cognitive distraction state (LCD or HCD) is defined as the driver performs a secondary task
in this paper, and the subject’s distraction state is distinguished by researcher’s subjective
judgment. At the same time, driving performance changes when the driver is in distraction
state, but which is not totally different from NCD at any moment during LCD or HCD
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o Specificity 100 47.43 99.75

Figure 4: The detecting performance for NLModel, LHModel, and NHModel.

period. Especially for experienced drivers, the characteristic change between NCD and LCD
(or HCD) is short and smooth. Thus part of the train and test instances from distraction state
(LCD or HCD) is basically similar with NCD, and the sensitivity is relatively low. Fortunately,
as long as driving performance is not affected by cognitive distraction, driver can control the
activities critical for safe driving effectively, a situation where the driver is safe. Therefore low
sensitivity is acceptable.

NLHModel is developed to classify NCD, LCD, and HCD, and NLHModel perfor-
mance shows in Figure 6. The mean accuracy was 73.86% (std = 0.1633), NCD prediction
accuracy was 97.86% (std = 0.0411), LCD prediction accuracy was 65% (std = 0.3718), HCD
prediction accuracy was 60.14% (std = 0.3457), sensitivity was 61.86% (std = 0.237), and
specificity was 97.86% (std = 0.0411). The sensitivity for NLHModel means the accuracy
rate of that it predicts NCD test instances as NCD, and the specificity for NLHModel means
the accuracy rate of it predicts LCD and HCD test instances as LCD and HCD. Thus,
NLHModel could be used to predict different cognitive state, and it has the similar conclusion
as NLModel and NHModel.

5. Discussions and Conclusion

Compared with driver physical measures, using driving performance measures to detect
driver cognitive distraction is more effective, simple, and of real time, so it is used to detect
driver state in this paper. NCD, LCD, and HCD were defined as three different cognitive
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Figure 5: NLModel prediction result.
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Figure 6: NLHModel predict performance.

distraction states using different secondary tasks. Twelve drivers were recruited to take
part in the experiment. For every participator, 7 original data about driving performance
were obtained from the driving simulator directly, and 14 characteristic parameters were
extracted as SVM models input. In order to improve real-time performance of the developed
models, window size used in this research was 1s. At last, different SVM models (NLModel,
NHModel, LHModel, and NLHModel) were developed by using the same training instances
from two of the three distraction states (NCD, LCD, and HCD) to compare the accuracy of
this detection system when the driver was in different cognitive distraction states. The mean
accuracy of each SVM model is approximately 74%; thus driving performance can be used
alone to detect driver cognitive state. The specificity is up to 99%, and false alarm rate for this
system is low, which increases the system acceptance. The sensitivity of each SVM model is
low, which is acceptable, because in this situation the driver could control the car sufficiently.

At the same time, the participator’s cognitive state is distinguished by researcher’s
subjective judgment, which affects the model’s accuracy seriously. Therefore it could be
helpful to use driver biological measures as the standard for future research to select correct
and reasonable training instances as model’s input. Furthermore, SVM models were trained
for each participant, and it might be interesting to select characteristic parameters which
cannot be affected by individual differences driving style.
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